
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Empowering Innovation: Building an Independent 

Code Converter from Scratch to Save Costs in 

Legacy Application Modernization 
 

Arnab Dey 
 

 

Abstract: Legacy applications often pose a significant challenge for organizations looking to embrace modern technologies. Traditional 

methods of conversion often involve the use of third - party tools, which can come with hefty licensing fees and dependencies. In this 

article, we explore the development journey of an independent code converter tool designed from scratch to transform legacy applications 

into modern technology, ultimately saving significant costs for the banking sector. This initiative aligns with the principles of innovation, 

self - reliance, and cost - effectiveness, while adhering to IEEE standards.  

 

Keywords: Legacy application modernization, Code converter tool, Independent development, Cost savings, Third - party tools, Banking 

sector, Innovation, Self - reliance, Customization, Flexibility, Robust, architecture, Scalability, User interface design, Requirement analysis, 

Core algorithms, Testing and validation, Modern technology stack, Security measures, Error handling 

 

1. Introduction 
 

Modernizing legacy applications is a critical step for 

organizations seeking to stay competitive in an ever - 

evolving technological landscape. However, the use of third - 

party tools for code conversion can introduce financial 

burdens due to licensing fees, limited customization options, 

and potential security concerns.  

 

To address these challenges, a team of skilled developers 

embarked on a journey to create an independent code 

converter tool. The primary goal was to reduce costs, increase 

flexibility, and ensure full control over the modernization 

process.  

 

2. Development Process 
 

The development process began with a comprehensive 

analysis of the existing legacy application and an 

understanding of the target modern technology stack. The 

team outlined a roadmap that included the following key 

steps:  

 

2.1 Requirement Analysis:  

 

Identifying the specific requirements for code conversion, 

considering factors such as programming languages, 

architecture, and framework compatibility.  

 

Requirement analysis is the initial phase in developing a code 

converter tool, essential for successful legacy application 

modernization. It involves a meticulous examination of 

existing legacy code, identifying key aspects, and 

understanding the target technology stack. Specific 

programming languages, architectural patterns, and 

framework compatibility are crucial considerations during 

this phase. The goal is to define the precise requirements for 

code conversion, ensuring a clear roadmap for development. 

The analysis informs the development team about the 

challenges and intricacies involved in transitioning from 

legacy to modern technologies. The process includes 

collaboration with stakeholders to gather insights into 

customization needs and user expectations. A thorough 

understanding of both source and target technologies is 

essential for effective requirement analysis. The outcome 

guides the subsequent stages of development, including 

algorithm implementation, testing, and user interface design. 

A well - executed requirement analysis sets the foundation for 

a successful, cost - effective, and flexible code converter tool.  

 

2.2 Design and Architecture:  

 

Creating a robust and scalable architecture for the code 

converter tool, ensuring modularity and flexibility. This step 

involved careful consideration of the IEEE standards to 

maintain a high level of quality.  

 

The design and architecture of the code converter tool form 

the backbone of a successful modernization process for 

legacy applications. The development team focuses on 

creating a robust, scalable, and modular architecture to 

accommodate diverse conversion requirements. Emphasis is 

placed on adhering to industry standards such as IEEE to 

ensure high - quality code conversion. The architecture is 

designed with flexibility in mind, allowing seamless 

adaptation to various programming languages and 

frameworks. A well - thought - out design enables the 

efficient parsing of legacy code, identification of patterns, and 

accurate generation of equivalent modern code. Modularity is 

crucial, enabling easy maintenance, updates, and future 

enhancements as technology landscapes evolve. The 

architecture considers user customization needs, providing a 

user - friendly interface for transparency and control during 

the conversion process. The code converter's design aims for 

scalability to handle large - scale modernization projects 

without compromising performance. Rigorous testing is 

integrated into the design phase to ensure the reliability and 

accuracy of the code conversion process. A carefully crafted 

design and architecture set the stage for a code converter tool 

that not only meets the immediate modernization needs but 

also anticipates future technological advancements.  

 

Paper ID: SR24320191342 DOI: https://dx.doi.org/10.21275/SR24320191342 2310 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
 

2.3 Core Algorithm Development:  

 

Implementing the core algorithms responsible for parsing the 

legacy code, identifying patterns, and generating equivalent 

code in the modern technology stack. This required a deep 

understanding of both the source and target technologies.  

 

2.4 Testing and Validation:  

 

Implementing a rigorous testing phase to ensure the accuracy 

and reliability of the code conversion. This involved creating 

a comprehensive suite of test cases and validating the 

converted code against expected outcomes.  

 

2.5 User Interface Development:  

 

Designing an intuitive user interface to facilitate user 

interaction with the code converter tool. The interface aimed 

to provide transparency into the conversion process, allowing 

users to review and customize the converted code as needed.  

 

2.6 Independence from 3rd Party Tools:  

 

One of the critical objectives was to eliminate reliance on 

third - party tools, thereby avoiding licensing costs and 

dependencies. The development team ensured that every 

aspect of the code converter tool was built in - house, 

including libraries, parsers, and code generators.  

 

 

 

 

2.7 Customization and Flexibility:  

 

By developing the tool from scratch, the team provided users 

with the ability to customize the conversion process based on 

their specific requirements. This level of flexibility is often 

limited in third - party tools.  

 

2.8 Cost Savings:  

 

The elimination of third - party licensing fees resulted in 

substantial cost savings for the banking sector. These savings 

could be redirected towards further innovation, infrastructure 

improvements, or other strategic initiatives.  

 

3. Conclusion 
 

The successful development of an independent code 

converter tool from scratch exemplifies the power of 

innovation and self - reliance in the realm of legacy 

application modernization. By avoiding the pitfalls associated 

with third - party tools, the banking sector has not only saved 

significant costs but also gained control and flexibility in their 

technology transformation journey. This initiative serves as a 

model for other industries looking to embrace modernization 

while staying mindful of financial considerations and quality 

standards.  

 

References 
 

[1] Wu Xiaomin, A. Murray, M. . Storey and R. Lintern, "A 

reverse engineering approach to support software 

maintenance: version control knowledge extraction", 

Paper ID: SR24320191342 DOI: https://dx.doi.org/10.21275/SR24320191342 2311 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/


International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

11th Working Conference on Reverse Engineering, 

pp.90 - 99, 2004.  

[2] H. M. Sneed and T. Dombovari, "Comprehending a 

complex distributed object - oriented software system: a 

report from the field", Proceedings Seventh 

International Workshop on Program Comprehension, 

pp.218 - 225, 1999.  

[3] M. Feathers, Working Effectively with Legacy Code, 

USA: Prentice Hall PTR, 2004 

[4] M. S. Harrison and G. H. Walton, "Identifying high 

maintenance legacy software", Journal of Software 

Maintenance, vol.14, no.6, pp.429 - 446, Nov.2002.  

[5] H. Huijgens, A. van Deursen and R. van Solingen, 

"Success factors in managing legacy system evolution: 

A case study", 2016 IEEE/ACM International 

Conference on Software and System Processes (ICSSP), 

pp.96 - 105, 2016.  

[6] A. Cockburn, Agile Software Development: The 

Cooperative Game (2nd Edition) (Agile Software 

Development Series), Addison - Wesley Professional, 

2006.  

Paper ID: SR24320191342 DOI: https://dx.doi.org/10.21275/SR24320191342 2312 

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/



