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Abstract: Effective and quick spectrum sensing forms the major deciding criterion in any cognitive radio environment. A spectrum 

sensing scheme, using Kullback-Leibler Divergence with optimized spectrum sensing (KLDOSS) time in order to avail and identify the 

underutilized spectrum effectively is presented in this paper. Simulation results highlighting the competitive edge of this scheme, with 

higher probability of detection over various Signal to noise ratio (SNR) is also shown. This optimized scheme utilizes Log-Likelihood 

ratio (LLR) of all Secondary Users (SU) during each sensing instance, with Fusion Centre (FC) acquiring and assimilating these 

information to estimate the likelihood of spectrum availability.  
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1. Introduction 
 

Cognitive Radio (CR) is an innovative concept in wireless 

communication which paved the way for building efficient 

intelligence Radios. Prime motive of CRs is to achieve 

effective utilization of underutilized bandwidth [1] & [2]. 

With the age-old practice of licensed spectrum usage, in a 

non-homogenous urban infrastructure and land topography, 

overcrowding and underutilization of spectrum is inevitable. 

A recent research study made by Signals Research Group 

[3], highlights that around 88 percent of licensed spectrum 

was underutilized in licensed frequency spectrum in indoor 

environment. Thus the cognitive radio aims to achieve 

effective and efficient spectrum management, allowing other 

potential Secondary Users (SU) to temporally gain access to 

the spectrum that is not dynamically utilized by licensed 

users [4]. 

 

Many spectrum detection techniques such as Energy based 

detection [5], matched filter detection [1] and cyclo-

stationary feature detection [2] have already been explored 

for spectrum sensing with their own pros and cons. While 

sensing the spectrum, to tackle the impact of fading 

phenomenon in the wireless environment, cooperative 

spectrum sensing is utilized to take the advantage of spatial 

diversity in wireless networks. Cooperative sensing depends 

on multiple SU nodes to sense the presence or absence of 

PU [7]. Each SU communicates the probability of spectrum 

availability with the FC to estimate the likelihood of 

spectrum availability for the given probability of false alarm. 

The Fusion Centre then combines the results of the 

individual SUs to make the decision on the presence or 

absence of a PU [2] & [6]. When the Fusion Centre arrives 

at an estimation, time taken towards Spectrum sensing by 

each SU has to be minimal enough to make the Cognitive 

radio network effective. Basic tradeoff in sensing time of 

each SU is that it shall be low enough so that the cognitive 

node has sufficient time to transmit its own data and high 

enough to ensure that the interference caused to the primary 

user is minimized. Conventionally, the Spectrum sensing 

time allocated to all SU is assumed to be identical and fixed. 

This paper presents the performance of the CR network with 

proposed Optimized spectrum sensing method with 

Kullback Leibler Divergence (KLDOSS). This method 

significantly reduces the number of samples required to 

sense the licensed frequency band which in turn reduces the 

spectrum sensing time. 

 

The rest of the paper is organized as follows: In section II, 

System model is presented. In section III, Spectrum sensing 

method using KLD is presented. The Sensing time 

optimization is discussed in section IV. Simulation results 

are presented in section V. Finally Conclusions are drawn in 

section VI. 

 

2. System Model 
 

Consider the cognitive radio environment with N Secondary 

users (SU). Each SU is capable of sensing the spectrum band 

of interest with anyone of the spectrum sensing methods as 

discussed in [5], [1] and [2]. Further each SU has the 

computational capability to identify the Primary Users 

presence with LLR calculation and consequently forward 

their decision to the Fusion Centre as represented in fig. 1. 

The Fusion Centre then accumulates and assimilates these 

received decisions from all SUs to arrive at an estimate 

between the two binary hypotheses H0 and H1 which are 

defined as follows 

 

H0: PU is absent,H1: PU is present 

 

The acquired signal at the n
th

 (n=1, 2, 3, 4,……, N) SU is 

given by 

H0: Yn(s)=Wn(s), 

H1: Yn(s)=hn(s)*Xn(s)+Wn(s), s=1,2,3… (1) 

 

where hn(s) represents the fading channel coefficients, Xn(s) 

represents the independent and identically distributed signal 

samples of the PU signal acquired by the SU with mean 0 

and variance σ
2
X,n i.e., Xn(s) ~ N(0,σ

2
X,n) and Wn(s) 

represents the independent and identically distributed 

additive Gaussian white noise samples with mean 0 and 
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variance σ
2

W,n i.e., Wn(s) ~ N(0,σ
2
W,n). Under the binary 

hypotheses H0 and H1, the acquired signal distribution at the 

n
th

 SU is described by the probability density function 

P0,n(Yn(s)) and P1,n(Yn(s)) respectively. 

 

 
Figure 1: Deployment scenario 

 

The performance of the spectrum sensing method is 

evaluated and compared in terms of spectrum sensing time 

and Receiver Operating Characteristic (ROC) curve 

achieved based on different Signal to noise ratio (SNR).  

 

Probability of detection (Pd), Probability of false alarm (Pf) 

and Probability of misdetection (Pm) are the various 

performance metrics used to evaluate the performance of the 

detection method. For a given Pd, the Pf and Pm is 

represented by 

Pf=P(deciding on H1 when H0 is true)=P(decision = H1│H0) 

Pm=P(deciding on H0 when H1 is true)=P(decision = H0│H1) 

 

3. Spectrum Sensing using KLD 
 

Conventionally, the number of sensing samples acquired by 

the SU to detect the frequency spectrum of interest is fixed. 

With fixed sample size method, all SU senses the spectrum 

of interest using any conventional sensing methods and posts 

this information to Fusion centre. The Fusion Centre 

accumulates these information and then compute the LLR 

for a given fixed sample size (Sfix).  The mathematical 

expression for LLR calculation is given below in (2). 

 

LLR=  ln  
𝑃1,𝑛 (𝑌𝑛 (𝑠)

𝑃0,𝑛(𝑌𝑛(𝑠)
 𝑁

𝑛=1

𝑆𝑓𝑖𝑥
𝑠=1   (2) 

 

With Conventional method, the number of samples required 

to detect the PU signal is fixed as in the Neyman-Pearson 

approach [8]. To detect the presence or absence of a PU 

signal, the Likelihood ratio test is performed based on 

 

If LLR > λ, Decide as H1 

If LLR ≤ λ, Decide as H0         (3) 

 

The threshold value λ and the sample size Sfix are selected 

based on the Probability of false alarm(Pf) and Probability of 

misdetection(Pm) bounded to the pre-assigned values α and β 

such that 0<α,β<1i.e., 

 

Pf ≤ α and Pm ≤ β   (4) 

 

Based on equation (4), the expressions for Sfix and λ are 

given by 

𝑆𝑓𝑖𝑥 ≈ 2 
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2
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𝑁
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2
  1 − 

𝜎0,𝑛
2

𝜎1,𝑛
2  

2
𝑁
𝑛=1 𝑄−1 𝛼   (6) 

In order to minimize the spectrum sensing time, following 

enhancements were introduced into the spectrum sensing 

algorithm such that better optimization is achieved.  Here, 

each SU performs the Log-Likelihood Ratio (LLR) for each 

and every spectrum sensed sample in a sequential manner as 

stated in Wald‟s equation [8]. The sensing test is performed 

after acquiring a sample at each CR and then FC 

accumulates these values, in which the LLR value is 

compared with two threshold levels ηm and ηf. If the 

accumulated LLR value lies between the two thresholds 

levels, then one more sample is taken and further the same 

routine is repeated until LLR satisfies the following 

condition ηf≤ LLR ≥ ηm, otherwise decide as H1 and 

terminate if LLR ≥ ηm or else decide as H0 and terminate if 

LLR ≤ ηf, as described in Algorithm below, the Log 

likelihood ratio is given by 

 

LLR=  ln  
𝑃1,𝑛 (𝑌𝑛 (𝑠)

𝑃0,𝑛(𝑌𝑛(𝑠)
 𝑁

𝑛=1
𝑆
𝑠=1   (7) 

 

Threshold levels ηm and ηf can be tuned to get the desired 

detection performance, i.e., depending on the tolerance level 

of probability of false alarm Pf and miss-detection Pm. It is 

shown in [9] that if the probability of the false alarm Pf and 

the probability of the miss-detection Pm are sufficiently 

small, then for LLR based test expressions, η𝑓and η𝑚can be 

given as 

η𝑓 = ln⁡ 
1 − 𝛽

𝛼
 ⁡ 

η𝑚 = ln⁡ 
𝛼

1−𝛽
 ⁡   (8) 

 

Algorithm: Optimized Spectrum sensing using Kullback-

Leibler Divergence (KLDOSS) 

Step1: Initially set S=0 & LLRS=0 at the Fusion Centre. 

Step2: do loop 

Step 3: S=S+1. 

Step 4: All the n(n=1,2,3,…N)SU radios 

compute ln  
𝑃1,𝑛 (𝑌𝑛 (𝑆)

𝑃0,𝑛(𝑌𝑛(𝑆)
  from the acquired sample 𝑌𝑛(𝑠). 

Step 5: Each SU then sends the computed ln  
𝑃1,𝑛 (𝑌𝑛 (𝑆)

𝑃0,𝑛(𝑌𝑛(𝑆)
  to 

the Fusion centre 

Step 6: The Fusion centre then updates the LLR value 

according to   

LLRS=LLRS-1+ ln  
𝑃1,𝑛 (𝑌𝑛 (𝑆)

𝑃0,𝑛(𝑌𝑛(𝑆)
 𝑁

𝑛=1  

Step 7: while loop when LLRS≤ ηf orLLRS ≥ ηm 

Step 8: If LLRS ≤ ηm, it is decided that the „PU is absent:H0‟ 

else if LLRS ≥ ηf it is decided that the „PU is present:H1‟.  
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According to Wald‟s equation, the average number of 

samples required for detection is a random variable and it 

depends on Kullback-Leibler divergence between the two 

probability distributions. Thus the average number of 

samples required for detection depends on the signal 

conditions rather than being fixed as in conventional 

method. The average number of samples required for 

spectrum sensing in the absence of the PU is given by  

𝐸𝐻0
 𝑆𝑆𝑡𝑜𝑝  =

 −(𝜂𝑓−𝜂𝑚−𝜂𝑓𝑒
𝜂𝑚 +𝜂𝑚 𝑒

𝜂𝑓 )

(𝑒
𝜂𝑓−𝑒𝜂𝑚 )  𝐷(𝑁

𝑛=1 𝑃0,𝑛 (𝑌𝑛 (𝑠)||𝑃1,𝑛 (𝑌𝑛  𝑠 ) 
 (9) 

 

The average number of samples required for spectrum 

detection in the presence of PU is 

 

𝐸𝐻1
 𝑆𝑆𝑡𝑜𝑝  =

𝜂𝑓−𝜂𝑚−𝜂𝑓𝑒
−𝜂𝑚 +𝜂𝑚 𝑒

−𝜂𝑓

(𝑒
−𝜂𝑓−𝑒−𝜂𝑚 )  𝐷(𝑁

𝑛=1 𝑃1,𝑛 (𝑌𝑛 (𝑠)||𝑃0,𝑛 (𝑌𝑛  𝑠 ) 
 (10) 

 

Where D(f||g) represents the Kullback-Leibler divergence 

between the probability distributions. Kullback-Leibler 

divergence or relative entropy is a measure of the distance 

between two probability distributions. This distance 

however is not symmetric in general, so it is not a distance 

in the Euclidean sense. The Kullback-Leibler divergence 

between the two continuous probability density functions 

f(x) and g(x) is defined as 

 

𝐷(𝑓||𝑔)  =  E  𝑙𝑜𝑔
𝑓(𝑥)

𝑔(𝑥)
    (11) 

 

Where the expectation is taken with respect to f(x). D(f||g) is 

only finite if the support set off(x) is contained in the support 

set of g(x)[8]. Another important property of the Kullback-

Leibler divergence is that it is non-negative, i.e., D(f||g) ≥ 0  

and is non-symmetric i.e., D(f||g) ≠ D(g||f). 

 

The number of required samples on an average is dependent 

on the KL divergence as seen in equations (9), (10). 

Intuitively, the larger the KL divergence, the more the two 

hypotheses differ from each other, which in turn requires 

lesser number of samples to detect the spectrum and thus the 

sensing time is reduced. Thus if the KL divergence 

calculated at each SU is increased, the time required at the 

SU to sense the spectrum is reduced. 

 

4. Sensing Time Optimization 
 

The cognitive radio‟s frame structure is shown in Fig. 2, 

which consists of consecutive frames, where Tf is the frame 

duration and Ts is the sensing time required to sense the PU 

signal and the remaining time Td=Tf-Ts is used for 

transmitting the data of the Secondary user(SU). The 

spectrum sensing time is chosen such that more time is 

allocated for transmission of SU data. 

 
Figure 2: Frame structure of the Cognitive radio network 

 

The Probability of detection (Pd) is defined as the probability 

of identification of the PU (Licensed user) presence 

correctly [10]. Probability of false alarm (Pf) is defined as 

the probability of detecting the presence of PU when it is 

actually inactive. Probability of misdetection (Pm) refers to 

the probability of accepting the absence of the PU signal 

when it is actually present. The lower the probability of false 

alarm, the more the channel can be reused when it is 

available. For a good detection method, the Pd should be as 

high as possible and the Pf should be as low as possible. 

The expressions for Pd and Pf are given by 

𝑃𝑑 = 𝑄 
𝜆−𝑆𝑁𝜎1,𝑛

2

 2𝑆𝑁𝜎1,𝑛
2
   (12) 

𝑃𝑓 = 𝑄 
𝜆−𝑆𝑁𝜎0,𝑛

2

 2𝑆𝑁𝜎0,𝑛
2
   (13) 

As seen in expressions (12)&(13), the Probability of 

detection and false alarm are dependent on the threshold λ, 

the number of samples required for sensing Sand the number 

of Secondary Users N. 

 

5. Simulation Results 
 

The optimized spectrum sensing scheme using Kullback-

Leibler divergence (KLDOSS) is evaluated and compared 

with the conventional fixed sample size method based on 

simulation. The simulated cognitive radio network consist of 

five SU nodes (i.e., N=5) which are efficiently utilized in 

cooperative spectrum sensing. For simulation purposes, the 

targeted PU signal and the noise are considered as Gaussian 

distributed with zero mean and variance σ
2

X,n&σ
2
W,n 

respectively. Conventional detection method with fixed 

sample size uses Sfix and λ as specified by Neyman – 

Pearson detector, while the detection method using 

KLDOSS uses ηf & ηm as determined in equation (8). The 

system parameters set up for simulation is shown in Table 1.  

 

Table 1: System Parameters Set Up For Simulation 

S. No. System Parameters Values 

1 SNR at the PU (𝛾𝑝 ) -12 to 3 dB 

2 α=β 0.01 

3 No. of SUs (N) 5 

4 SNR at the SU(𝛾𝑠) 20 dB 

5 Frame Duration (Tf) 2 sec 

 

In Fig.3, it is observed that the Sensing time is substantially 

reduced with Optimized sensing method. It can also be 

observed that for lower SNR levels of PU signal, lesser the 

average samples required compared to conventional fixed 

sample size method, thus proving the method is substantially 

adaptive for lower SNR levels of primary user. 
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Figure 3: Average number of samples required for fixed 

sample size and the detection method using KLDOSS under 

the binary hypotheses H0& H1 for different values of SNR. 

 

 
Figure 4: Average number of samples required using 

KLDOSS for the binary hypotheses H0& H1 

 

In Fig. 4, it can be seen that the average number of samples 

required is reduced with the increase in Probability of false 

alarm. It is also observed that the number of samples 

required for sensing under the hypotheses H0 is 

comparatively higher than the number of samples required 

under H1. 

 
Figure 5: Average number of samples required with 

KLDOSS for binary hypotheses H0& H1 for different values 

of SNR in dB. 

 

In Fig. 5, it can be seen that the average number of samples 

required for sensing decreases with the increase in 

Probability of false alarm. 

 
Figure 6: ROC of spectrum sensing method using KLD for 

different values of SNR in dB under H0& H1 

In Fig.6, it is shown that the performance of sensing varies 

with the Signal to Noise Ratio and it can be seen that the 

performance of detection increases with increase in SNR. 

 

6. Conclusion 
 

Thus, in contrast to the conventional Neyman-Pearson based 

fixed sensing time detector, the optimized spectrum sensing 

method using KLD significantly reduces the average sensing 

time that is required to achieve the same Cognitive Radio 

network objective. Performance metrics such as Pd, Pf and 

SNR are used for the analysis of the proposed KLDOSS. 

Thus with the proposed sensing model, sensing time is 

optimized. Simulation results also demonstrate that the 

detection method using KLD is robust and outperforms the 

existing conventional signal detectors. 
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