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In this paper we have studied different aspect of para
complex and almost para complex manifold which is similar
to almost para complex manifold.

1. Introduction:

An almost para complex structure F is intregrable if an only
if NF:O.

Proof:
Consider the two projections 7 =:TmM—>T £+ M,

7zi:=%(FdJ_rF)

Then by the Frobeneus theorem, the integrability of T+M
and T-M is equivalent to respectively

7[—[77+X,7[+Y]:0 and
7z+[7r—X,7z—Y]=0

For all vector fields X and Y. The sum and the difference of
these expressions are proportional to N (X Y ) and

FN. (X,Y)

Theorem 1.1:
The necessary and sufficient condition that -V, be a almost
para complex manifold is that it contains a tangent bundle

7T\, of dimension M and a tangent bundle ﬁM conjugate
to 7Z'MS € ﬁ'M M Ty =¢.And they span together a
tangent bundle of dimension 2m, projections on 7,, and
ﬁ'M being L andM given by
(3.1)a, 2L def I —1q
b) 2M def 1+ IF

I-F

L=——
2
M = I+F
2
Solution:
2
LZZ(I_F)

4
1P+ F?-2iF
B 4
I =-2F +1

4

Ex.1Any para complex vector space (V F ) can be considered as a Pala-c8plex Ew?ﬁu'fgl(i! wivh ):zogs}tdﬁt-PMé—&cﬁﬂﬁlex structure.

4 4 4 4
Ex.2The certesian product MXN of Two Para-complex manifolds (M | FN'\) nd ( |}|2, sz is azl?lz%ra complex manifold with the P
+ + M2 532

2
Ex3Let M =M X M _ be the certesian product of two smodvh nfant - =nd V- imension. We can identify T([
_ I?+M?+2iF  1+1+2F 2I+2F
Eigen value of F on Para: = 4 = 1 = )
F has M eigen values +i and M eigen value -i. |+ F
Solution: B 2
| be a eigen values of F and the corresponding eigen value 12 _F2 12-F2 1-=1
vector P then LM =ML= = 0
P=1P oo
- *.* LM is complementary projection on 77,
Conversely < <
P I§ aP=0=a=0 Vx
__”5 b*’Q, =0=b*=0
) c'P,+d*Q,=0 (i)
=1°P CF*P,+d*FQ, =0
2
_ _ 1"=-1 _ c'P,-d*Q, =0 (ii)
Since | is a real and of rank 2m.Then M pairs of complex Adding 1+ 2

conjugate eigen value (i, -i)

2c°P,=0 = c¢*, d*=0
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Q is linearly independent

M
-1

(P.Q)

PP =0

PQ* =0
Similarity —
QP =0
QQ*=1
I=P*®P,+q"®Q,

=PP, =9,
and

q9Q, = 9,

PXQy =0
F=1{P"®P,-q'®Q,}

F?=FF ={P*®P,-q* ®OF ®Q,|
=P'OF®P,-q*OF ®Q,

=PP, - qXQX Proved.

Definition 2.1:

A vector field V is said to be contravariant almost para if it

satisfies.

L,F=0

A vector field V said to be strictly contravariant almost para
and if both V andV are contravariant almost para

analytic.

LY =[X,Y]
(LF)(Y)=L(FY)-FLY
(LF)(Y)=L,(FY)-FLY

(LF)(Y)=LY -FLY
(LE)(Y)=[X.¥ ]-F[x.Y]
(LF)(V)=[x.Y]- [x.Y]
( F)(Y)=0

[ XY ]-[X,Y]=0
Barring X=Vin (1)

[v.¥]-[Y]
(W .¥)- 9]0

"V is contravariant para complex.

@)

(LF)(X)=[V.X]-[V.X ] @
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v
=[V.X|-[V.X]-[V.X]+[V.X]

=N[V,X]
(LF)X)-(LF)X)=N(V.Y)
(LF)(X)=(LF)(X)+N(V.Y)
(LF)(X)=[L,F](X)+N(V.Y)
(LF)(X)=[L F]J(X)+N(V.Y)
(LF)(X)=(LF)(X)=N(V,X)
Necessary and sufficient condition on Para complex
manifold:
N[V,X]:O
(LF)X)=(LF)(X)
(LF)(X)=(LF)(X)=|(LF)(X)=(LF)(X)
(LF)(X)=(LF)(X)
(LF)(X)=(LF)(X)
(LF)(X)-(LF)(X)=0 0
(LF)(X) - (L, F)(x)=0
(LF)(X)-(LF)(X)=0 G
Adding (1) and (2) we get
(LF)(X)=

10.21275/ART2020617
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Theorem-2.3: [2] Hasan Shahid, M.: CR-submanifolds of Kabhlerian
A necessary and sufficient condition that a vector field V on product manifold, Indian J. Pure Appl. Math 23 (12)
an almost para complex manifold be contra variant almost (992); 873-879.
analytic. [3] I Sato and K. Matsumoto : On P- Sasakian manifold
(a) L, X = L, X satisfying certain conditions. Tensor, 33, p. 173-78
_ (1979).
|:V, X:I [V [4] K. Matsumoto : On Lorentzian para contact manifolds,
Bull. Of Yamagata Univ. Nat. Sci., 12 (1989), 51-156.
(b) LVX +L, X=0 [5] K. Yano: On a structure defined by a tensor field f of
_ the type (1,1) satisfying f*+f=0. Tensor N.S., 14 (1963),
[V.X]+[v.X]=0 99-109.
From (a)
(LF)(X)=[V.X]-[V.X]
(LF)(X)=[L,. X]- LX
If (LVF)(X)IOthen
L (FY)=(LF)(X)+ FLY
DX(FY)z(DXF)(Y)+ FD,Y
Theorem 2.4:

Nijenhuis tensor w.r.t. a contravariant Almost Para analytic
vector V is Lie constant i.e. Lee derivative of Nijenhuis
tensor with r to V vanishes.

Proof:

N[XY]=[X Y]+ [X Y ]-[ XY ]-[%.Y]

N CSJTLNICY R LY N LY)

e sttt pre
[V.(X.V)]+[V.[x.Y ]—[v [X, Yﬂ—[vl[x,\?ﬂ
=(LN)[X.7]+] [[V X]Ir] N[x [7.7]]
[v.[2.7]]+[7.[x [I’[X}]] [ [x Ir_ﬂ
LN [X__}';]—[[V__X}}]—[ v.X)¥]-{(V.X)7]
—[[_I/';X]f]+[f;[ﬁ’;—F]}+[X;[_V;Y]]
-[Z.(r.y)]-[x.7T)]

LN(XTHP.X). TR, x) WX 1]- X7+
[ﬁ: 7. r]+[ vy L [v.r (7T }ﬂ—zf[r r+
(VX X)]-[V(XT1)]-F[xT)=0

By the Jacobi’s identies, this equation assume the from

L,N=0
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