Semiprime Rings and it's Dependent Elements

A.R. Gotmare

GDM Arts KRN Commerce and MD Science College Jamner, India

Abstract: In this paper we study and investigate concerning dependent elements of semi prime rings and prime rings R by using generalized derivation and derivation, when R admit to satisfy some conditions, we give some results about that.

1. Introduction and Preliminaries

Some researchers have studied the notion of free action on operator algebras, Murray and von Neumann [13] and von Neumann [14] introduced the notion of free action on abelian von Neumann algebras and used it for the construction of certain factors (see M.A. Chaudhry and M. S. Samman[5], F. Ali and M. A. Chaudhry [2] and Dixmier [8]. Kallman [11] generalized the notion of free action of auto orphisms of von Neumann algebras, not necessarily abelian, by using implicitly the dependent elements of an automorphism. Choda, Kashahara and Nakamoto [6] generalized the concept of freely acting automorphisms to C - algebras by introducing dependent elements associated to auto orphisms, where C^\ast -algebra is a Banach algebra with an antiautomorphic involution * which satisfies (i) $(x^*)^* = x$, (ii) $x^*y^* = (yx)^*$, (iii) $x^* + y^* = (x + y)^*$ (iv) $(cx)^* = \overline{c}x^*$ where c is the complex conjugate of c and whose norm satisfies $(v) \|xx^*\| = \|x\|^2$. Several other authors have studied dependent elements Abrief on operator algebras. account of dependent elements in W* -algebras has also appeared in the book of Stratila [15]. It is well-known that all C^{*} - algebras and von Neumann algebras are semiprime rings; in particular, a von Neumann algebra is prime if and only if its center consists of scalar multiples of identity. [Thus a natural extension of the notions of dependent elements of mappings and free actions on C* -algebras and von Neumann algebras is the study of these notions in the context of semiprime rings and prime rings. Laradji and Thaheem [12] initiated a study of dependent elements of endomorphisms of semiprime rings and generalized a number of results of H. Choda, I. Kasahara, R. Nakamoto [6] to semiprime rings. Vukman and Kosi-Ulbl [16] and Vukman [17] have made further study of dependent elements of various mappings related to auto orphisms, derivations (α, β) -derivations and generalized derivations of semiprime rings. The main focus of the authors of J. Vukman, I.kosi-Ulbl [16] and [17] has been to identify various freely acting mappings related to these mappings, on semiprime and prime rings. The theory of centralizers (also called multipliers) of C^* -algebras and Banach algebras is well established (see C. A. Akemann, G. K. Pedersen, J. Tomiyama [1] and P. Ara, M. Mathieu [3]. Zalar [19] and Vukman and Kosi-Ulbl [18] have studied centralizers in the general framework of semiprime rings. Throughout, R will stand for associative ring with centre Z (R). As usual, the

commutator xy-yx will be denoted by [x, y]. We shall use the basic commutator identities [xy, z] = [x, z] y + x [y, z]and [x, yz] = [x, y] z + y [x, z]. A ring R is said to be ntorsion free, where $n \neq o$ is an integer, if whenever nx = 0, with x^{ϵ} R, then x=. Recall that a ring R is prime if a Rb = (0) implies that either a = 0 or b = 0, and is semiprime if aRa = (0) implies a = 0. A prime ring is semiprime but the converse is not true in general. An additive mapping d:R \rightarrow R is called a derivation provided d(xy) = d(x) y + xd(y)holds for all pairs x, y $\in \mathbb{R}$. An additive mapping d: $\mathbb{R} \rightarrow \mathbb{R}$ is called centralizing (commuting) if $[d(x),x] \in Z(R)$ ([d(x),x]= 0) for all $x \in R$. By Zalar [19], an additive mapping T:R \rightarrow R is called a left (right) centralizer if T (xy) = T(x)y(T(xy)=xT(y)) for all x, $y \in R$. If $a \in R$, then La(x) = ax and Ra(x) = xa (x \in R) define a left centralizer and a right centralizer of R, respectively. As additive mapping $T: R \rightarrow R$ is called a centralizer if T (xy) = T(x)y = xT(y) for all x, y $\in \mathbb{R}$. Let β be an automorphism of a ring R.An additive mapping d:R \rightarrow R is called an β -derivation if d(xy) = d(x) y $+\beta(x) d(y)$ holds for all x, y $\in \mathbb{R}$. Note that the mapping, d = β - I, where I denotes the identity mapping on R, is an β derivation. Of course, the concept of an β -derivation generalizes the concept of a derivation, since any Iderivation is a derivation. β -derivations are further generalized as (α, β) – derivations. Let α, β be automorphisms of R, then an additive mapping $d: R \rightarrow R$ is called as (α, β) derivation if d $(xy) = d(x) \alpha(y) + \beta(x) d(y)$ holds for all pairs x, y \in R. β - derivations and (α, β) – derivations have been applied in various situations, in particular, in the solution of some functional equations. An additive mapping T of a ring R into itself is called a generalized derivation, with the associated derivation d, if there exists a derivation d of R such that T(xy) = T(x) y +xd(y) for all x, $y \in R$. The concept of a generalized derivation covers both the concepts of a derivation and of a left centralizer provided T = d and d = 0, respectively (see B. Hvala [10]). Following A. Laradji, A. B. Thaheem [12], an element a $\in \mathbb{R}$ is called a dependent element of a mapping $T:R \rightarrow R$ if T(x) = ax holds for all $x \in R$. A mapping T:R \rightarrow R is called a free action or (act freely) on R if zero is the only dependent element of T. It is shown in [12] that in a semiprime ring R there are no non zero nilpotent dependent elements of a mapping T:R \rightarrow R. For a mapping T:R \rightarrow R,D(F) denotes the collection of all dependent elements of F.

Lemma 1:

Let R be a 2 – torsion free semi prime ring and let a, $b \in R$. If for all $x \in R$, the relation axb + bxa = 0 holds, then axb = bxa = 0 is fulfilled for all $x \in R$.

Volume 8 Issue 8, August 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

2. The Main Results

Theorem 2.1

Let R be a semi prime ring and let D and G be derivations of R into itself, then the mapping $x \rightarrow D(x) + G^2(x)$ for all $x \in R$ is a free action.

Proof: We have

 $F(x) a = ax \text{ for all } x \in R.$

Where F(s) stands for $D(x) + G^2(x)(1)$ Replacing x by by with some routine calculation, we obtain

 $F(xy) = F(x) y + xF(y) + 2D(x) D(y) \text{ for all } x, y \in \mathbb{R}. (2)$ In (1) putting xa for x with using (2), we get

 $F(x) a^2 + xF(a) a + 2D(x) D(a) a = axa \text{ for all } x \in R.$ (3) According to (1), we reduced (3) to

 $2D(x) D(a) a + xa^{2} + xa^{2} = 0 \text{ for all } x \in R(4)$ Replacing x by yx in (4) with using (4), we obtain

2D (y) x D(a) a = 0 for all x, $y \in R$. (5) Left-multiplying (4) by D (y) and applying (5), we obtain D(y) $xa^2 = 0$ for all x, $y \in R$.

Replacing y by D (a) and y by a, we get

 $D(a)^2 a^2 = 0.$ (6)

Right-multiplying (4) by a with replacing x by a and using (6), we obtain

 $a^4 = 0$. Which means that also a = 0. Thus our mapping is free action.

Theorem 2.2:

Let R be a prime ring, $\psi: R \to R$ be a generalized derivation and $a \in R$ be an element dependent on ψ then either $a \in Z$ (R) or $\psi(x) = x$ for all $x \in R$.

Proof: We have the relation

$$\psi(\mathbf{x}) = \mathbf{a} \mathbf{x}$$
 for all $\mathbf{x} \in \mathbf{R}$. (7)

Replacing x by xy in (7), we obtain

 $(\psi \ (x) \ y + xd(y)) \ a = axy \ for \ all \ x, \ y \in R. \ (8)$ According to the fact that ψ can be written in form $\psi = d + T$, where T is a left centralizer, replacing d(y) a by $\psi \ (y)$ a $- T \ (y)$ a in (8) which gives according to (7).

 $\psi (x) ya [x, a] y - xT (y) a = 0 \text{ for all } x, y \in R. (9)$ Replacing y by y ψ (n) in (9), we obtain

$$\psi (x)y\psi (x) a + [x, a]y\psi (x) - xT (y\psi (x)) a = 0 \text{ for all } x, y \in \mathbb{R}. (10)$$

Again since T is left centralizer, then (10) become

 $\psi (x) y \psi (x)a + [x, a] y \psi (x) - xT (y) \psi (x) a = 0 \text{ for all } x, y \\ \in \mathbb{R}. (11)$

According to (7), (11) reduces to

 $\psi(x)$ yax + [x, a] y $\psi(x)$ - xT (y) ax = 0 for all x, y \in R. (12) Right – multiplying (9) by x gives

 ψ (x) yax + [x, a] yx - xT (y) ax = 0 for all x \in R. (13) Subtracting (12) and (13) we obtain

[x, a] $y(\psi(x) - x) = 0$ for all $x, y \in R$. then

[x, a] R $(\psi(x) - (x)) = 0$. Since R is prime ring, we obtain either [x, a] = 0 for all $x \in R$, which leads to $a \in Z(R)$ or $\psi(x) = x$ for all $x \in R$.

Proposition 2.3

Let R be a 2-torsion semiprime ring and let a, $b \in R$ be fixed elements. Suppose that $c \in R$ is an element dependent on the mapping $x \rightarrow xa + bx$ then ac = ca.

Proof: We will assume that $a \neq 0$ since there is nothing to prove in case a = 0 and b = 0 we have (xa + bx) c = c x for all $x \in \mathbb{R}$. (14)

Replacing x by xy, we obtain

 $(xya + bxy) c = cxy \text{ for all } x, y \in \mathbb{R}. (15)$ According to (14) the (15) reduces to $(xya + bxy) c = (xa + bx) cy \text{ for all } x, y \in \mathbb{R}. \text{ then}$ $x(yac - acy) + bx (yc - cy) = 0 \text{ for all } x, y \in \mathbb{R}. \text{ then}$ $xa [y, c] + x[y,a] c + bx [y, c] = 0 \text{ for all } x, y \in \mathbb{R}.$ Replacing y by c we get

x[c, a] c = 0 for all $x \in R$. Then

R[c,a] c = 0 Since R is semiprime, we get

[c, a] c = 0. Then (16) [c, a] [c, r] + [[c, a]r] c = 0 for all $r \in \mathbb{R}$.

[c, a] [c, r] + [c, a] rc = 0 for all $r \in \mathbb{R}$. (17) Right – multiplying (16) by r, we obtain

 $[c, a] cr = 0 \text{ for all } r \in R. (18)$ Subtracting (17) and (18) we get

[c, a] [c, r] + [c, a] [c, r] = 0 for all $r \in R$. Since R is 2-torsion free with replacing r by ra, we obtain [c, a] r [c, a] = 0 for all $r \in R$. Then

[c, a] R [c, a] = 0. Since R s semi prime ring. Then ca = ac. The proof of the theorem is complete.

Theorem 2.4

Let R be a prime ring and let a, $b \in R$ be fixed elements. Suppose that $c \in R$ is an element dependent on the mapping $x \rightarrow axb$, then $ac \in Z(R)$ or $bc \in Z(R)$.

Proof: We will assume that $a \neq 0$ and $b \neq 0$, since there is nothing to prove in case a = 0 or b = 0. We have (axb) c = cx for all $x \in R$. (19)

Let x be x y in (19) we obtain

 $(axyb)\ c=cxy\ for\ all\ x,y\in R.\ (20)$ According to (19) one can replace cx by (axb) in (20), we get

Ax [bc,y] = 0 for all $xy \in \mathbb{R}$. (21)

Replacing x by cyx in the above relation, then we have acyx [bc, y] = 0 for all $x, y \in R$. (22)

Again in (21) replacing x by cx with left – multiplying by y, we get

yacx [bc, y] = 0 for all $x, y \in R$.

Subtracting (22) and (23) we obtain

[ac, y] x[bc, y] = 0 for all $x, y \in \mathbb{R}$. Then

[ac, y] R [bc, y] = 0. Since R is prime, we get.

either ac $\in Z(R)$ or bc $\in Z(R)$, the proof of the theorem is complete.

Theorem 2.5

Let R be a noncommutative 2-torsion free semiprime ring with cancellation property and a, $b \in R$ be fixed elements. Suppose that $c \in Z(R)$, is an element dependent on the mapping $x \rightarrow axb + bxa$ then $a \in Z(R)$.

Proof: Similarly, in Theorem 2.4, we will assume that $a \neq 0$ and $b \neq 0$. We have the relation

 $(axb+bxa)\ c=cx\ for\ all\ x\in R.\ (24)$ Replacing x by x y in (24), we get

 $(axyb + bxya) c = cxy \text{ for all } x, y \in R. (25)$ Right – multiplying (24) by y, we get

Volume 8 Issue 8, August 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

 $(axb + bxa) cy = cxy for all x, y \in R.$ (26) Subtracting (26) from (25), we obtain

 $ax[y,bc] + bx [y, ac] = 0 \text{ for all } x, y \in R. (27)$ Replacing x by cx in above relation, we get

acx [y, bc] + bcx [y, ac] = 0 for all x, $y \in R$. (28) Left-multiplying by y with replacing, by y x, we obtain

yacyx[y, bc] + ybcyx [y, ac] = 0 for all x, $y \in R$. (29) Subtracting (29) and (28), we get

[y, ac] x [y, bc] + [y, bc] x [y, ac] = 0 for all x, $y \in \mathbb{R}$. (30) Suppose that ac non belong to Z (R), we have [y, ac] \neq for some $y \in \mathbb{R}$.

Then from (30) with Lemma 1, we obtain [y, bc] = 0, thus (27) reduces to bx [y,ac] = 0 for all $x,y \in R$ by using the cancellation property on b we obtain that [y, ac] = 0, contrary to assumption. We have, therefore, $ac \in Z(R)$.

According to (27), we get as [y, bc] = 0 for all $x, y \in R$, whence it follows that $bc \in Z(R)$, now we have $ac \in Z(R)$ and $bc \in Z(R)$, therefore, according to (24), we obtain

((ab + ba) c - c) x = 0 for all $x \in R$.

Right – multiplying (31) by ((ab + ba) c - c) with using R is semiprime

We get
$$(ab + ba) c = c. (31)$$

Then [(ab + ba) c, r] = [c. r].

 $(ab + ba) [c, r] + [(ab + ba), r] c = [c, r] for all r \in R.$

Replacing r by c above relation reduces to

[(ab + ba),c] c = 0. By using the cancellation property on [(ab + bc),c] we obtain, $c \in Z(R)$. The proof of the theorem is complete.

The proof of the theorem is comple

Theorem 2.6

Let R be a noncommutative semiprime ring with extended centroid C and cancellation property, let a, $b \in R$ be fixed elements the mapping $x \rightarrow a \ x \ b - b \ x \ a$ is a free action.

Proof: We assume that $a \neq 0$ and $b \neq 0$ with that a and b are C, independent, otherwise, the mapping $x \rightarrow axb - bxa$ would be zero. Then, we have the following relation.

(axb - bxa) c = cx for all $x \in R$. (33) Replacing xby xy in the above relation, we obtain

 $(axyb - bxya) c = cxy \text{ for all } x, y \in \mathbb{R}.$ (34) Right – multiplication of (33) by y, we get

 $(axb - bxa) cy = cxy \text{ for all } x, y \in \mathbb{R}.$ (35) Subtracting (34) and (35) we obtain

 $ax[y,bc] - bx[y, \, ac] = 0 \mbox{ for all } x, \, y \in R \ (36)$ Replacing x by cx, we get

acx [y, bc] - bcx [y, ac] = 0 for all $x,y \in \mathbb{R}$. (37) Left – multiplying (37) by y, we get

yacy [y, bc] - ybcx [y, ac] = 0 for all x, $y \in \mathbb{R}$. (38) In (37) replacing x by yx we obtain

acyx [y, bc] - bcyx[y, ac] = 0 for all x, $y \in \mathbb{R}$. (39) Subtracting (39) and (38), we obtain

 $[y, bc] = \lambda y [y, ac] \text{ for all } y \in R. (40)$ Holds for some $\lambda y \in C$. According to (40) one can replace [y,bc] by $\lambda y [y, ac]$ in (36) we obtain (b - λya) x [y, ac] = 0for all $y \in R$.

Replacing x by cxc, we obtain $(b - \lambda ya) \operatorname{cxc} [y, ac] = 0$ for all x, y $\in \mathbb{R}$.

Using the cancellation property on [y, ac] in (41), we obtain $(b - \lambda ya) \operatorname{cxc} = 0$ for all x, $y \in \mathbf{R}$.

Again using the cancellation property on $(b - \lambda ya)$ in (42) with using R is semiprime, we obtain c = 0, which completes the proof of the theorem.

Theorem 2.7

Let R be a prime ring and let ψ : R \rightarrow R be a non – zero (σ , β) – derivation, then ψ is a free action.

Proof:

We have the relation $\psi(x) a = ax$ for all $x \in R$. (43) Replacing x by xy, we obtain

 ψ (x) σ (y) a + β (r) ψ (y) a = axy for all x, y \in R. (44) According to (49) one can replace ψ (y) a by ay above relation, which gives

 $\psi(x) \ \sigma \ (y) \ a + (\beta(x) \ a - ax) \ y = 0 \ for \ all \ x, \ y \in R. \ (45)$ Replacing y by yz in (50) we obtain

 ψ (x) σ (y) σ (z) $a + \beta$ (x) a - ax) yz = 0 for all x, y, z \in R. Right multiplying (50) by z, we get

 $\psi(x) \sigma(y) (az) + (Bx) a - ax) yz = 0$ for all x, y, $z \in R$. (52) Subtracting (52) from (51), we get

 $\psi(x)\ \sigma\ (y)\ (\sigma(z)\ a-az)=0$ for all $x,\ y,\ z\in R.$ In other words, we have

 $\psi(x) \ y(\sigma(z) \ a - az) = 0$ for all x, y, $z \in R$. Then

 ψ (x) R(σ (z) a- az) = 0. Since R is prime and ψ is non-zero, we obtain

 σ (z) a = az for all z \in R. (53)

Since σ is automorphism of R, then by other words from (53) we have

za = az for all $z \in R$. (54) itomorphism of R, then from (50) we

Also, since B is automorphism of R, then from (50) we obtain

 $\psi(x) \ \sigma \ (y) \ a + (xa - ax) = 0 \ for \ all \ x, \ y \in R. \ (55)$ Apply (54) in above relation, we obtain

 ψ (x) σ (y) a = 0 for all x, y \in R. By other words we have

 ψ (x) ya = 0 for all x, y \in R, then

 $\psi(x) Ra = 0$. By the primeness of R and ψ is non-zero of R, we obtain.

a = 0, the proof of the theorem is complete.

References

- [1] C.A. Akemann, G. K. Pedersen, J. Tomiyama: Multipliers of C^* algebras J. Funct. Anal 13 (1973), 277 301.
- [2] F. Ali and M. A. Chaudhry, Dependent elements of derivations on semiprime rings, International Journal of Mathematics and Mathematical Sciences, Vol.2009 Article ID 696737 pages, doi:10.155/2009/696737.
- [3] P. Ara, M. Mathieu: An application of local multipliers to centralizing mappings of C^* algebras. Quart J. Math Oxford 44 (1993), 129 138.
- [4] M. Bresar Jordan derivations on semiprime rings, Proc.Amer. Math Soc. 104(1988), no. 4,1003 1006. Z
- [5] M. A. Chaudhry and M. S. Samman, Free actions on semiprime rings, Mathematica Bohemica, No. 2, 133 (2008), 197-208 zbl
- [6] H. Choda I. Kasahara, R. Nakamoto: Dependent elements of auromorphisms of a C^* algebra. Proc. Japan Acad. 48 (1972), 561-565. Abl

Volume 8 Issue 8, August 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

- [7] J. Dixmier: Les Algebres d' Operateurs dans I'Espace Hilbertien, Gauthier – Villars, Parts 1957. Zbl
- [8] I. N. Herstein: Rings with involution. Univ. Chicago Press, Chicago, 1976. zbl
- [9] B. Hvala: Generalized derivations in rings, Comm. Algebra 26 (1998), 1147 1166.
- [10] R. R. Kallman: A generalization of free action. Duke Math. J. 36 (1969), 781 – 789. Zbl

Volume 8 Issue 8, August 2019 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY