Kinetic Study of the Reaction of 5-Chlorosalicyaldehyde with M-Chloro Aniline Spectrophotometrically

Bhausaheb K. Magar¹, Vijay N Bhosale², Baban K Magare³, Anil S. Kirdant⁴

¹, ², ³ Department of Chemistry, Shivaji Arts Commerce and Science College, Kannad, Dist. Aurangabad, Maharashtra, India
⁴ Baburaoji Adaskar Mahavidyalaya, Kaj Dist. Beed, Maharashtra, India

Abstract: The second order reaction rate constant for the reaction of 5-chlorosalicyaldehyde with m-chloro aniline has been reported in ethanol at temperature range 303 to 318 K. The rate of reaction is first order with respect to 5-chlorosalicyaldehyde and m-chloro aniline. The rate of reaction increases with increases in temperature. The thermodynamic parameters are used to explain the nature of reaction. Suitable reaction mechanism has been suggested for the formation of the Schiff base. From the effect of temperature on the rate of reaction various thermodynamic parameter have been evaluated.

Keywords: Schiff base, 5-Chlorosalicylidene-M-Chloro aniline, kinetics

1. Introduction

The Schiff bases are condensations products of amines with active carbonyl compounds. The Schiff bases are also called as imines, anilis and azomithines. They contain azomethines (C=N) group and hence can acts as effective ligand. The kinetic studies of Schiff base formation as well as other carbonyl addition reaction have been interested chemists for some time. The imines derived from amines and its derivative with aromatic aldehydes have a wide variety of applications in biological and analytical chemistry. Schiff bases are known to be neoplasm inhibitors, antiviral, anticonvulsants, antimicrobial, anticancer, plant growth regulator and antitubercular agents. The study of kinetics of formation and hydrolysis of Schiff bases has received a considerable attention due to its relevance to the transformation (conversion) of >C=0 to >C=N and vice versa in biochemical processes. Schiff bases formation involves a two step reaction between the carbonyl compound and the amino compound. First, addition takes place to form a carbinolamine which then undergoes dehydration. Both step are reversible and subject to general acid – base catalyst.

Literature survey reveals that there is enormous growth of the study of metal complexes of Schiff bases. The catalytic effect of hydrogen, hydroxyl and metal ions on the formation and hydrolysis of imines have been studied by several workers. In the present work we reported here kinetic study and mechanism of the formation of Schiff base, 5-Chlorosalicylidene-M-Chloroaniline in ethanol medium spectrophotometrically.

2. Material and Methods

2.1 Experimental

Schiff base were prepared by refluxing equimolar mixture of purified 5-Chlorosalicyaldehyde and m-Chloro aniline in ethanol medium for about three hours. The resulting mixture was cooled and filtered to obtain solid Schiff base. The Schiff base obtained was recrystallised from ethanol. The purity was checked by melting point (120°C) and TLC.

2.2 Kinetic measurements; Lambert-Beer’s Law

The rate of formation of Schiff base was followed by spectrophotometer at \(\lambda_{\text{max}} \). By using UV-VIS, 1601 Shimadzu spectrophotometer The basis of the spectrophotometry is Beer’s law. This relates the absorbancy of a solution to the concentration of the species present. The prerequisite of the spectrophotometry is the validity of the Beer’s law. It is possible to ascertain the concentration of a given species in solution if it absorbs radiation of a particular wavelength and obeys Beer’s law. True variation of this law can arise when moderately concentrated solutions are used. The law is obeyed only in dilute solutions.

2.3. Standard curve

The solution of Schiff base of various concentrations (0.0001 M to 0.0004 M) was prepared using ethanol solvent.

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Using 0.0004 M solution, λ_{max} was determined. The absorbance of each coloured solution was then measured, at this λ_{max} 380 nm. The readings are recorded in Table 1. The plot of absorbance (optical density) versus concentration of the Schiff bases has been obtained as a straight line (Fig 1). The plot was used as standard curve for the determination of concentration of Schiff bases for the kinetic measurements.

$$k = \frac{2.303 \log (b(a-x))}{(a-b)t} \frac{a(b-x)}{a(b-x)}$$

Where,
$t = \text{time in second.}$
$a = \text{initial concentration of 5-Chlorosalicylaldehyde}$
$b = \text{initial concentration of m-Chloro aniline.}$
x = \text{amount of Schiff base formed in time t.}$

Graphical k values were obtained from the slope of the linear plot of $1/ (a-x)$ versus time (t) for equal concentration and plot of $\log [(a-x) / (b-x)]$ versus time (t) for unequal concentrations.

2.6 Order of reaction with respect to 5-Chlorosalicylaldehyde

To determine the order of reaction with respect to 5-Chlorosalicylaldehyde the reaction was carried out at different concentrations of 5-Chlorosalicylaldehyde by keeping the concentration of m-Chloro aniline constant at a particular temperature.

van’t Hoff’s differential method\(^{22}\) was applied to determine the order with respect to 5-Chlorosalicylaldehyde by equation\(^{25,26,27}\).

$$n = \frac{\log \left[\frac{dc}{dt}\right]}{\log \left[\frac{dc}{dt}\right]_{II}}$$

The amount of product formed (x) was plotted against the time in minutes. From the curve, the values of dc/dt have been calculated.

2.7 Order of reaction with respect to m-Chloro aniline

The order of reaction with respect to m-Chloro aniline was determined by varying concentration of m-Chloro aniline by keeping the concentration of 5-Chlorosalicylaldehyde constant at a particular temperature. The order with respect to m-Chloro aniline was determined by applying van’t Hoff’s differential method. The values of dc/dt were evaluated by plotting amount of product formed (x) against time (t) in minutes. From the effect of temperature on the reaction rate the energy of activation E_a, enthalpy of activation ΔH^*, entropy of activation ΔS^*, free energy ΔG^* and frequency factor (A) were calculated.

3. Result and Discussion

Kinetics of formation of Schiff bases was carried out at equal concentration. The second order rate constant was calculated by using equation of second order at equal concentration and graphical k values determined from the straight line plots of $1/(a-x)$ verses time.

3.1 Reaction order

The kinetic study is carried out at different concentration of 5-Chlorosalicylaldehyde (1×10^{-4} to 4×10^{-4} mol dm$^{-3}$) at constant concentration of m-Chloro aniline (4×10^{-4} mol dm$^{-3}$) in ethanol medium at 303 K. The plot of dc/dt against log [...
5 Cl S.A] is linear and slope of plot was found to be nearly one, indicates the order with respect to 5-Chlorosalicylaldehyde is first order. Similarly the kinetic study is carried out at different concentration of m-Chloro aniline (1×10^{-4} to 4×10^{-3} mol dm^{-3}) at constant concentration of 5-Chlorosalicylaldehyde (4×10^{-2} mol dm^{-3}) in ethanol medium at 303 k. The plot of dc/dt against log [m-Cl-ANI] is linear and slope of plot was found to be nearly one, indicates the order with respect to aniline is first order.

3.2 Effect of temperature on the rate of reaction

Kinetic measurements were carried out at four different temperatures 303, 308, 313 and 318 k at constant concentration of [5 Cl S.A] (4×10^{-4} mol dm^{-3}) and m-Chloro aniline (4×10^{-4} mol dm^{-3}) in ethanol. The second order rate constant depends on the reaction temperature 28- 29. The thermodynamic parameters like energy of activation (Ea), enthalpy of activation (ΔH*), entropy of activation (ΔS*), free energy (ΔG*) and frequency factor (A) were calculated (Table 3). From the value of thermodynamic parameter it is observed that ΔH* and ΔS* are the important parameter in controlling the rate of reactions. The negative values of entropy of activation indicates that activated complex is less probable and rate is slower. The negative values of entropy of activation show that the intermediate transition state is rigid. The relatively small values of ΔH* and the negative ΔS* values are consistent with the reactions which generally proceeds through highly organized transition states 30. If both the reactants are likely charged, the charge density on the surface in the transitions state will be more and hence there can be increase in solvation leading again to a negative ΔS*31.

Table 2: Rate constant

<table>
<thead>
<tr>
<th>Temp. (k)</th>
<th>k×10^3 (dm^3 mol^-1 s^-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>22.564</td>
</tr>
<tr>
<td>308</td>
<td>34.549</td>
</tr>
<tr>
<td>313</td>
<td>52.206</td>
</tr>
<tr>
<td>318</td>
<td>76.161</td>
</tr>
</tbody>
</table>

Figure 2: Plot of 1/(a-x) versus t

The rate constant values of Schiff base formation at different temperature are listed in the Table 2. The rate of formation of Schiff bases increases with increasing temperature. The plot of log k versus 1/T is straight line (Fig. 3).

3.3 Thermodynamic parameters

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ea</td>
<td>65.056 kJ</td>
</tr>
<tr>
<td>A</td>
<td>3.69 x 10^9</td>
</tr>
<tr>
<td>ΔH*</td>
<td>62.536 kJ</td>
</tr>
<tr>
<td>ΔS*</td>
<td>-61.908 JK^-1 mol^-1</td>
</tr>
<tr>
<td>ΔG*</td>
<td>81.295 kJ mol^-1</td>
</tr>
</tbody>
</table>

Figure 3: Plot of log k versus 1/T
Schiff bases formation involves a two step reaction between the carbonyl compound and the amino compound. First addition takes place to form a carbinolamine which then undergoes dehydration. Both steps exhibit general acid base catalysis. It was found that the reaction was first order in the carbonyl compounds and first order in amine. Spectroscopic studies have revealed that, under mild acidic condition there is a fast disappearance of the carbonyl function followed by a slow appearance of the product. Under mild acidic condition, rapid addition of amine to the carbonyl compound followed by the acid-catalysed dehydration of the adduct is the rate-controlling step. An increase in acidity would promote the reaction because it increases the rate of dehydration step. But with a further increase in acidity the nucleophile (RNH$_2$) may get protonated (RN$^+$H$_3$) and, thus deprived of its lone pair of electrons and is no longer in a position to attack the positive carbonyl carbon (Scheme: 1).

References

