Analysis of Factors That Affect Intention to Use e-Wallet through the Technology Acceptance Model Approach (Case Study: GO-PAY)

Achmad Taufan¹, Rudi Trisno Yuwono²

¹²Gunadarma University, Post Graduate Program on Information System, Margonda Raya 100, Depok 16424, Indonesia

Abstract: The adoption rate of app-based mobile payment services adoption in fact overtook that of the traditional mobile payment services in recent year. Indeed, most of the traditional mobile payment services have transformed into app-based mobile payment services, but very few succeed in building platforms with relevant and sticky daily use cases today. Technology acceptance model (TAM) used to determine the factors related to the intention to use, in this study are users of electronic wallet (e-wallet). The TAM approach is based on the results of hypotheses obtained in research related to the discussion of research. The data used in this study is a questionnaire distributed online. Then the questionnaire data is processed using the structural equation modeling (SEM) method. This study intends to obtain the factors that influence the intention to use e-wallet in Indonesia, in this case GO-PAY users. Then testing the previous hypotheses with the results of the hypotheses obtained in this study.

Keywords: Mobile payment, e-Wallet, Hypotheses, Technology Acceptance Model, Structural Equation Modelling.

1. Introduction

In Indonesia, the majority of the population has little or no access to financial services due to geographical location, infrastructure and cost constraints [1]. The gap between bank account holders and smartphone users is increasing. The increase in smartphone users from 2016 to 2017 is around 50%, while bank account holders only increase by around 20% [2].

The adoption rate of app-based mobile payment services adoption in fact overtook that of the traditional mobile payment services in recent year. Indeed, most of the traditional mobile payment services have transformed into app-based mobile payment services, but very few succeed in building platforms with relevant and sticky daily use cases today [2]. The growth in the use of mobile payments in Indonesia still lags behind those in the ASEAN region. Indonesia only grew about 9%, while Vietnam experienced the biggest growth in the use of mobile payments, which amounted to 24% [3].

GO-PAY or previously referred to as Go Wallet is a virtual wallet to store GO-JEK credit that can be used to pay transactions related to services within the GO-JEK application. Currently GO-PAY has been integrated with several large banks that are GO-JEK partners, and can be used as legal payment instruments. GO-PAY has the largest number of electronic wallet users in Indonesia based on the survey results of 79.38% according to participating respondents [4].

2. Literature review

2.1 Technology Acceptance Model (TAM)

One of the most extensive studies for technology adoption of individuals is the Technology Acceptance Model (TAM). TAM to explain users' habits of using computers [5]. The study explained that TAM is suitable for user acceptance of computers. Besides TAM there are actually many other methods regarding user adoption, such as uses and gratification or diffusion of innovation, but for mobile payment research, TAM is more suitable because it can be modified according to the factors needed for adoption of user acceptance [6].

2.2 Structural Equation Modelling (SEM)

Structural model illustrates the relationship between latent variables. Parameters that show the regression of endogenous latent variables in exogenous are denoted by \(\gamma \) (“gamma”). Whereas for the regression of endogenous variables in other endogenous variables it is denoted by \(\beta \) (“beta”). The exogenous latent variable may also be related in two directions (covary) with denoted \(\phi \) (“psi”), while the notation for error is \(\zeta \) [7].

Considered estimation method, its underlying assumptions, and some general guidelines as to when each is appropriate. Then moved on to a general discussion of model testing, where the fit of a given model is assessed. Finally, described the specification search process, where information is used to arrive at a more properly specified model that is theoretically meaningful.
The equation in the structural model is built with the equation: endogenous latent = β (latent endogenous) + γ (exogenous latent) + ζ (error)

So for mathematical equations for the upper structural model are:

\[\eta_1 = \beta_1 \xi_1 + \gamma_1 \xi_2 + \zeta_1 \]
\[\eta_2 = \beta_2 \xi_1 + \gamma_2 \xi_2 + \zeta_2 \]

3. Theoretical Framework

3.1 Perceived Ease of Use

Perceived ease of use is defined as the degree to which individuals believe that using a particular system would be free of physical and mental effort (Davis, 1993). In this research variable, it is said to be a direct and significant influence factor. This is supported by the results of a significant study by Wu et al. (2017) and critical ratio (CR) > 1.96 between perceived value and intention to use. Another impact that is quite influential as a factor is through the research of Amoroso & Watanabe (2012) they found the impact of implanted a mobile payment application on a Sony brand mobile phone, so that it makes it easier for users without having to do more activities such as installing additional applications on their mobile phones. In making use of new technology, the thing that becomes one of the considerations for the user is its usefulness. This is supported by research conducted by Ramos et al. (2016), examining the acceptance of NFC technology in mobile payment. The results of this study that the ease of use with its use affects users in deciding to use NFC technology. Based on the statement from the previous research, we obtained several hypotheses, namely:

H1: Perceived ease of use affect perceived usefulness
H2: Perceived ease of use affect social influences
H3: Perceived ease of use affect intention to use

3.2 Perceived Usefulness

In the acceptance of the latest technology, the most valued thing is the usefulness of the technology. This is based on Amoroso & Watanabe (2012) from the results of their research obtained a significant value between usefulness and value. This can be achieved due to the company's dedication to providing special prices, thereby increasing efficiency and effectively as benefits to be obtained. Even this is a factor that affects the interests of users. The following hypotheses are therefore formulated [8]:

H4: Perceived usefulness affect perceived value
H5: Perceived usefulness affect intention to use

3.3 Perceived Value

In terms of measurement of value is a benefit obtained from new technology. The discussion for this factor has been explained previously in the ease of use factor, that is reflected also from other strengthening studies as examined by Aksoy & Basaran [9]. The following hypotheses are therefore formulated:

H6: Perceived value affect intention to use

3.4 Social Influence

In discussing social influence factors, there are studies which state that this has a very significant influence in the current society. The social influence implication for the business is to effectively communicate with consumers the benefits of using this device. Since it seems that the words of mouth (social influence) are very influential on consumers’ intention in this sample. If the consumers can see the benefits of the usage of this device, then they can act as promoters for the businesses. It is also important to illustrate for the consumers that the usage of the MPD will be easy and it does not require technical knowledge [10]. The following hypotheses are therefore formulated:

H7: Social influences affect attractiveness of alternative
H8: Social influences affect intention to use

3.5 Attractiveness of Alternative

In relation to the discussion about the indicators of attractiveness of alternatives, it is indeed not too much to discuss because according to the research conducted by Amoroso & Watanabe (2012) [8], it was found that the conclusion did not significantly influence. But in doing this based on Pham & Ho (2015) they conducted a study of the use of NFC in mobile payment as one of the factors considered, with significant results affecting other variables [11]. The following hypotheses are therefore formulated:

H9: Attractiveness of alternative affect intention to use

3.6 Perceived Trust

The use of mobile payment in connection with the discussion of research topics is e-wallet is still said to be minimal. This is due to the inability of users in Indonesia to accept the payment system as generated through a survey of increasing the use of mobile payments compared to other Asian countries [3]. However, the research conducted by Maqableh et al (2015) found that hypothesis was supported which seemed relatively logical considering that one would expect some additional trust by the customer to have a good reputation as an online business [12]. The results of the
conclusions with the findings of Gefen (2000), which carried out a survey of the role of familiarity and trust and found that the customer behavioral intentions were highly affected by those two main factors. The following hypotheses are therefore formulated:

H10: Perceived trust affect intention to use

3.4 Perceived Security

The crucial factor for users of mobile payment technology is a security problem. Therefore, this is a factor that should have a significant impact on the user. The previous statement was based on research conducted by Amoroso & Watanabe (2012) [8] and Kumar et al (2018) [13] from the study that the effect of security has an impact on the other two factors namely trust and intention to use. This is in accordance with the researchers who have been listed previously that the results of their research lead to positive results about the direction of security in using new technology. In connection with previous research relating to the use of mobile payment, it can be used as a reference in conducting this research. The following hypotheses are therefore formulated:

H11: Perceived security affect perceived trust

H12: Perceived security affect intention to use

H13: Perceived security affect attractiveness of alternative

In the gender category, there are 2 groups, namely male and female. Respondents who participated in this study were dominated by male compared to female. There were 110 male respondents while 104 female respondents.

The total of each category of respondents who participated in this study were sorted from the largest percentage, namely the category of late adolescents aged 17-25 years as many as 52.3% (112 respondents), age range 26-35 years at 34.6% (74 respondents), age range 36-45 years is 5.6% (12 respondents), age range under 17 years is 6.1% (13 respondents) and age range above 45 years is 1.4% (3 Respondents).

The respondents of this study who participated in giving their opinions on GO-PAY services totaled 214 respondents. In order to find out the domicile of the respondent, a question is made in one of the contents of the questionnaire that questions the location / domicile of the respondent. The demographics of respondents based on domicile are listed in table 1.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total Respondent</th>
<th>% Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jakarta</td>
<td>60</td>
<td>28%</td>
</tr>
<tr>
<td>Bogor</td>
<td>26</td>
<td>12%</td>
</tr>
<tr>
<td>Depok</td>
<td>43</td>
<td>20%</td>
</tr>
<tr>
<td>Tangerang</td>
<td>12</td>
<td>6%</td>
</tr>
<tr>
<td>Bekasi</td>
<td>37</td>
<td>17%</td>
</tr>
<tr>
<td>Karawang</td>
<td>10</td>
<td>5%</td>
</tr>
<tr>
<td>Malang</td>
<td>1</td>
<td>0.5%</td>
</tr>
<tr>
<td>Surabaya</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>Bali</td>
<td>3</td>
<td>1%</td>
</tr>
<tr>
<td>Makassar</td>
<td>6</td>
<td>3%</td>
</tr>
<tr>
<td>Balipapan</td>
<td>1</td>
<td>0.5%</td>
</tr>
<tr>
<td>Yogyakarta</td>
<td>5</td>
<td>2%</td>
</tr>
<tr>
<td>Semarang</td>
<td>4</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>214</td>
<td>100%</td>
</tr>
</tbody>
</table>

The conclusion that can be drawn from table 4.2 is that GO-PAY users in Indonesia are dominated by users in the Jakarta area with a percentage reaching 28%.

4.2 Exploratory Factor Analysis (EFA)

Exploratory factor analysis is a complex multivariate statistical approach involving many linear and sequential steps. In addition, many options and rules of thumb apply themselves to EFA emphasising that clear decision sequencing and protocols are paramount in each investigation [14].

In the calculation of EFA the conditions seen are KMO Measure by comparing the results of the KMO calculation of each variable. There is the Kaiser-Meyer Olkin (KMO) assessment standard measure of sampling adequacy seen in table 2.
Table 2: KMO Measure of Sampling Adequacy Standard (Source: Cerny,1977)

<table>
<thead>
<tr>
<th>Estimate</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00 – 0.49</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>0.50 – 0.59</td>
<td>Misrable</td>
</tr>
<tr>
<td>0.60 – 0.69</td>
<td>Mediocre</td>
</tr>
<tr>
<td>0.70 – 0.79</td>
<td>Middling</td>
</tr>
<tr>
<td>0.80 – 0.89</td>
<td>Meritorious</td>
</tr>
<tr>
<td>0.90 – 1.00</td>
<td>Marvelous</td>
</tr>
</tbody>
</table>

Based on Table 3, there is a conclusion that data can be accepted if > 0.50. So if there is data that is <0.50, the data is considered inappropriate and suggested not to be used in the study [15].

Table 3: Kaiser-Meyer Olkin (KMO) Results for each Factors

<table>
<thead>
<tr>
<th>Factors</th>
<th>Barlett’s Test</th>
<th>KMO Measure Result</th>
<th>KMO Measure Standard</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>PU</td>
<td>200,426</td>
<td>0.788</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>PEU</td>
<td>146,646</td>
<td>0.613</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>PV</td>
<td>58,836</td>
<td>0.587</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>SI</td>
<td>81,702</td>
<td>0.659</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>AOI</td>
<td>155,532</td>
<td>0.648</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>PT</td>
<td>91,931</td>
<td>0.548</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>PS</td>
<td>173,181</td>
<td>0.641</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
<tr>
<td>ITU</td>
<td>120,222</td>
<td>0.675</td>
<td>0.5</td>
<td>Acceptable</td>
</tr>
</tbody>
</table>

The formula of Keiser-Meyer Olkin (KMO) Test:

\[
\text{KMO} = \frac{\sum_{i=1}^{P} \sum_{j=1}^{P} \rho_{ij}^2}{\sum_{i=1}^{P} \sum_{j=1}^{P} \rho_{ij}^2 + \sum_{i=1}^{P} \sum_{j=1}^{P} \sigma_{ij}^2} \tag{3}
\]

Where:
- \(\rho_{ij} \) = the correlation matrix
- \(\sigma_{ij} \) = the partial covariance matrix

Barlett’s Test of Sphericity formula:

\[
\text{Barlett's Test} = \text{ln} |R| \left(n-1 \right) \frac{2p + 5}{6} \tag{4}
\]

Where:
- \(R \) = determinant value
- \(n \) = amount of data
- \(p \) = Number of variables / items / indicators

4.3 Confirmatory Factor Analysis (CFA)

According to Hoyle (2019) [16], Confirmatory factor analysis is a statistical procedure for testing hypotheses about commonality among variables. As multivariate procedure confirmatory factor analysis is used to simultaneously test multiple model. At least two variables, or indicators, are necessary for the most rudimentary measurement model. Confirmatory factor analysis variability in scores on indicators according to sources specified in a measurement model.

In Figure 3 displays the CFA model using AMOS v.23. In the construct there are 2 exogenous variables, namely Perceived Ease of Use and Perceived Security. It can be seen that the results generated in the Goodness of Fit still have CFI that has not met the CFA model standard (CFI > 1.96), so that the contract cannot be accepted as a basis for evaluating covariance between variables. Then the next step is to modify the CFA model. This stage will continue in the next discussion.

Table 4: Result and Cut-off value Comparison Results for full construct

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Result</th>
<th>Cut-off value</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi Square</td>
<td>431.951</td>
<td>Small value are better</td>
<td>Rejected</td>
</tr>
<tr>
<td>RMSEA</td>
<td>0.069</td>
<td>≤0.08</td>
<td>Accepted with conditions browne & curdeck, 1993)</td>
</tr>
<tr>
<td>GFI (Goodness of fit index)</td>
<td>0.855</td>
<td>≥0.90</td>
<td>Rejected</td>
</tr>
<tr>
<td>CFI (Comparative fit index)</td>
<td>0.868</td>
<td>≥0.90</td>
<td>Rejected</td>
</tr>
</tbody>
</table>

As seen in the table above, the model that occurred in Figure 4 cannot be used in the steps taken because as seen in table
4, the results obtained still do not meet all the expected measurement criteria.

In table 5 regression weight, it can be seen that the Critical ratio value does not meet the standards in the variables examined in this study. The results show do not have a relationship between research variables with the intention to use. Then this cannot be said that the execution of the variable test has been completed.

Based on table 4.10, there is an error relationship between e_4 and e_5, then a connecting line is found in AMOS to connect the variables in this study. The results shown do not have a relationship between variables in finding factors that influence the intention to use users of the GO-PAY e-Wallet case study. This stage is done so on, so that the results are in accordance with what is expected, this is related to the comparison of hypotheses that have been formulated previously with the results obtained through this study based on the method of structural equation modeling (SEM). In Figure 5, displaying the fit model obtained in the study after making several modification processes in accordance with the modification indices that have been shown in table 5.

At the next stage, test the hypothesis and perform the respecification phase of the new model by comparing the initial model in this study. This stage has been completed, with the construct model obtained in using AMOS tools.

The mathematical model for the structural model in Figure 5 is as follows:

$$ITU = 0.80PU + 0.74PV - 0.89PEU + e_{25}$$

$$PV = 0.09PU + e_{29}$$

$$SI = 0.77PEU + e_{28}$$

$$PT = 0.97PS + e_{26}$$

$$AOA = -0.45PS + e_{30}$$

Where are as follows;

- ITU = Intention to Use
- PV = Perceived Value
- PU = Perceived Usefulness
- PEU = Perceived Ease of Use
- SI = Social Influence
- PT = Perceived Trust
- PS = Perceived Security
- AOA = Attractiveness of Alternative

In table 6, displays the results of this study by looking at the relationship between variables in finding factors that influence the intention to use users of the GO-PAY e-Wallet...
application. There are 8 hypotheses received from 13 hypotheses that have been formulated previously, because the value of CR> 1.96 and can also be seen from the significant P value with the symbol ***.

In this study there are 8 hypotheses that are accepted in relation to finding factors that influence the intention to use GO-PAY application users. The hypothesis accepted as shown in table 6 are as follows:

1) Perceived Ease of Use positively affects Social Influence
 In table 4.12 it can be seen that the value of the critical ratio (CR) reaches more than the standard expected value of 3.738> 1.96. It can be concluded that perceived ease of use has a positive and significant relationship because the value ranges from 0.01 <P <0.05.

2) Perceived Ease of Use positively affects Perceived Usefulness
 The relationship between factors perceived ease of use and perceived usefulness can be accepted, because it has a critical ratio of 11.975> 1.96 and significant.

3) The Perceived Security negatively affects Attractiveness of Alternative

4) Factors perceived security has a negative relationship means that attractiveness of alternatives must give something more first, then the factor will have an effect.
 It is based on the value of the critical ratio obtained at - 2.440 and also insignificant means that there is still a possibility that there is no relationship between the two. It can be seen in table 4.12, it can be seen that the probability value obtained in this relationship is -2.440 and also insignificant means that there is still a possibility that there is no relationship between the two because the probability value obtained is 0.015 near the 0.01 threshold.

5) Perceived Security affects positively the Perceived Trust
 In contrast to the previous relationship, perceived trust is positively affected by perceived security. This can be seen in the results of the critical ratio obtained at 11.975> 1.96 and also significantly influence.

6) Perceived Usefulness positively affects Perceived Value
 Perceived usefulness positively affects perceived value, because the value of the critical ratio obtained is 11.975> 1.96 and also significantly influences.

7) Perceived Value positively affects Intention to Use
 There is a relationship between perceived value and intention to use positive which also experiences a significant value. This can be seen in table 4.12 that the value of the critical ratio and its probability meet the existing standards.

8) Perceived Usefulness positively affects Intention to Use
 Positive perceived usefulness has a relationship to the intention to use obtained from the results of this study with the standard value of the critical ratio and the probability is fulfilled.

6. Conclusion

In study of determining the factors that influence the intention to use for GO-PAY users by using the technology acceptance model (TAM) method can be identified. The data collection techniques carried out in this study were questionnaires. The questionnaire was distributed through online media, the data collection process began on July 18, 2019 until July 21, 2019. Respondents who participated in this study amounted to 214 people. In the research male respondents were more numerous than female respondents with a total of 110 male, 104 for female respondents.

In the results of the hypothesis test it was found that there are influences that influence the intention to use in this case, namely perceived value, perceived usefulness and perceived ease of use. The method test was carried out using a structural equation modeling (SEM) approach using a tool in the form of AMOS v.22 and SPSS v.23 software in moving questionnaire data. The recommendations for subsequent development so as to obtain better results, among others:

1) It is expected that further research will use more factors that have been defined in the technology acceptance model (TAM).
2) In conducting further research, it is expected to use more data to be processed using the structural equation modeling (SEM) method. So that better results are expected.
3) Further research is recommended to use other tools in processing data other than AMOS such as LISREL, PLS, and others

References

alternatives on consumer adoption of NFC based mobile payments”

[13] The effect of perceived security and grievance redressal on continuance intention to use M-wallets in a developing country

[16] Rick Hoyle, 2012 “Confirmatory Factor Analysis”

Author Profile

Achmad Taufan received a bachelor's degree in computer in the field of information systems in 2017 and continued to study information systems master in the field of specialization in business information systems, the author is also conducting research on text mining, data mining and statistics.