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Abstract: Hybrid finite schemes for solving Burgers equations are developed. Hybrid Hopscotch-Crank-Nicholson-Du Fort and 

Frankel-Lax Fredrich Scheme (HP-CN-DF-LF) proved to be the most accurate when compared with Hybrid Hopscotch-Crank 

Nicholson-Du Fort and Frankel (HP-CN-DF) and Hybrid Hopscotch-Crank Nicholson-Lax Fredrich (HP-CN-LF). The developed 

methods produced results that proved to be stable, consistent and thus convergent.  
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1. Introduction 

 

We consider the 2-D system of Burgers equation given by: 

 
Several approaches have been used to solve the 2D coupled 

Burgers equation (1.1) including Finite difference methods, 

operator splitting method, Adomian Decomposition Method 

among others with varied levels of accuracy. Hopscotch 

method is a type of finite-difference method for multi-

variable partial differential equations in which implicit 

solutions are obtained using two sweeps in different 

directions. The Burgers’ equation is considered as the 

fundamental partial differential equation in the field of 

applied mathematics such as fluid mechanics, nonlinear 

acoustics, gas dynamics, and traffic flow among others. 

 

Hybrid Hopscotch-Crank-Nicholson-Lax-Friedrich’s (HP-

CN-LF) Scheme which is a scheme made by combining 

Hopscotch- Crank-Nicholson with Lax-Friedrich schemes to 

form a hybrid was used and discussed byMaritimet. 

al.(2018a)to solve system of 2D Burgers’ equation. 

Similarly Maritimet. al. (2018b) developed Hybrid 

Hopscotch-Crank-Nicholson-Du-Fort and Frankel (HP-CN-

DF) Scheme achieved acceptable level of accuracy. 

 

Rotich et. al. (2016) developed the pure Crank-Nicholson 

(CN) Scheme and hybrid Crank-Nicholson-Lax-Fredrichs’ 

(CN-LF) method by Operator Splitting. The developed 

schemes were then solved numerically using initially solved 

solution via Hopf-Cole transformation and separation of 

variables to generate the initial and boundary conditions. 

 

Kweyuet. al. (2012) generated varied sets of exact initial and 

Dirichlet boundary conditions for the 2-D Burgers’ 

equations from general analytical solution via Hopf-Cole 

transformation and separation of variables. The conditions 

were then used for the numerical solutions of the equations 

using finite difference methods.  

 

Borah et. al. (2012)studied mathematical models for fluid 

flow which often involve systems of convection-diffusion 

equations as a main ingredient. According to the paper, in 

Operator splitting - one splits the time evolution into partial 

steps to separate the effects of convection and diffusion. The 

research showed that the temporal splitting error can be 

significant when there is a shock present in the solution, and 

is well-understood for scalar convection – diffusion 

equation. It is demonstrated numerically that operator 

splitting (OS) methods for systems of convection-diffusion 

equations in one-space dimensions, has a tendency to be too 

diffusive near viscous shock waves, the potential error is 

compensated for in the diffusion step (or in a separate 

correction step), in case of scalar case, the splitting error is 

closely related to the local linearization introduced implicitly 

in the convection steps due to the use of an entropy 

condition. 

 

Espen (2011) discussed numerical quadratures in one and 

two dimensions, which is followed by a discussion regarding 

the differentiation of general operators in Banach spaces. In 

addition, the research discussed the standard and fractional 

Sobolev spaces Hs(R), and prove several properties of these 

spaces.The research showed that the operator splitting 

methods of the Godunov type and Strang type applied to the 

viscous Burgers’ equation,𝑢𝑡  =  𝑢𝑥𝑥  +  𝑢𝑢𝑥 , and the 

Korteweg–de Vries (KdV) equation, 𝑢𝑡  =  𝑢𝑥𝑥𝑥  +  𝑢𝑢𝑥 , 
(and other equations), have the correct convergence rates in 

𝐻𝑠(ℝ), for arbitrary integer 𝑠 ≥  1. The research 

investigated the Godunov method and Strang method 

numerically for the viscous Burgers’ equation and the KdV 

equation, and presented different numerical methods for the 

sub-equations from the splitting. It was discovered that the 

operator splitting methods work well numerically for the two 

equations. For the viscous Burgers’ equation, it was found 

that several combination of numerical solvers for the sub-

equations work well on the test problems, while for the KdV 

equation found only one combination of numerical solvers 

which works well on all test problems. 

 

Holden et. al. (2011) proposed a new analytical approach to 

operator splitting for equations of the type 𝑢𝑡  =  𝐴𝑢 +  𝑢𝑢𝑥  

where A is a linear differential operator such that the 

equation is well-posed. Particular examples include the 

viscous Burgers’ equation, the Korteweg–de Vries (KdV) 

equation, the Benney–Lin equation, and the Kawahara 

equation. The research showed that the Strang splitting 

method converges with the expected rate if the initial data 

are sufficiently regular. In particular, for the KdV equation 
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second-order convergence is obtained in 𝐻𝑟 for initial data in 

𝐻𝑟+5 with arbitrary 𝑟 ≥ 1. 

 

Geiser and Noack (2008) considered iterative operator-

splitting methods for non-linear differential equations with 

respect to their eigenvalues. The main feature of the 

proposed idea is the fixed-point iterative scheme that 

linearizes their underlying equations. Based on the 

approximated eigenvalues of such linearized systems we 

choose the order of the the operators for our iterative 

splitting scheme. The convergence properties of such a 

mixed method are studied and demonstrated. The findings 

was confirmed with numerical applications of the 

effectiveness of the proposed scheme in comparison with the 

standard operator-splitting methods by providing improved 

results and convergence rates. The results were applied to 

deposition processes and proved to be more effective. 

 

Holden et. al. (2000) presented an accurate numerical 

method for a large class of scalar, strongly degenerate 

convection–diffusion equations. According to the rerasearch, 

Important subclasses are hyperbolic conservation laws, 

porous medium type equations, two-phase reservoir flow 

equations, and strongly degenerate equations coming from 

the recent theory of sedimentation–consolidation processes. 

The method is based on splitting the convective and the 

diffusive terms. The nonlinear, convective part was solved 

using front tracking and dimensional splitting, while the 

nonlinear diffusion part is solved by an implicit–explicit 

finite difference scheme. A detailed convergence analysis of 

the operator splitting method was given in the research. The 

researcher presented numerical experiments with the method 

for examples modelling secondary oil recovery and 

sedimentation–consolidation processes. The research 

demonstrated that the splitting method resolves sharp 

gradients accurately, may use large time steps, has first order 

convergence, exhibits small grid orientation effects, has 

small mass balance errors, and is efficient. 

 

Hongqing et. al. (2010) proposed the Adomian 

Decomposition Method (ADM) to numerically solve the 

two-dimensional Burger’s nonlinear difference equations. 

They attempted to solve the nonlinear problem, where the 

finite difference scheme is fully implicit sheme. With the 

help of symbolic computation software Maple 13, the 

proposed method was tested and compared with the exact 

solutions for various Reynolds numbers. Two test problems 

were considered to illustrate the accuracy of the proposed 

discrete decomposition method. They showed that the 

numerical results are in good agreement with the exact 

solutions for each problem. Thus the proposed discrete 

ADM is an efficient method for the solution of the two-

dimensional Burgers’ equation. 

 

Shukla et. al. (2014) discussed a numerical solution to the 

two dimensional nonlinear coupled viscous Burgers’ 

equation with the appropriate initial and boundary 

conditions using the modified cubic-Spline differential 

quadrature method (MCB-DQM). In the method, the 

weighting coefficients were computed using the modified 

cubic B-spline as a basis function in the differential 

quadrature method. Thus, the coupled Burger equation was 

reduced into a system of ordinary differential equations. An 

optimal five stage and fourth-order strong stability 

preserving Runge–Kutta scheme was applied for solving the 

resulting system of ordinary differential equations. The 

accuracy of the scheme was illustrated by taking two 

numerical examples. Computed results were compared with 

the exact solutions and other results available in literature. 

Obtained numerical result showed that the described method 

is efficient and reliable scheme for solving two dimensional 

coupled viscous Burgers’ equation. 

 

Mittal  and Jain (2012) proposed a numerical method to 

approximate the solution of the nonlinear Burgers’ equation. 

The method is based on collocation of modified cubic B-

splines over finite elements so that continuity of the 

dependent variable and its first two derivatives throughout 

the solution range is achieved. The research applied 

modified cubic B-splines for spatial variable and derivatives 

which produced system of first order ordinary differential 

equations. The numerical approximate solutions of Burgers’ 

equation were computed without transforming the equation 

and without linearization. The method proved to be easy and 

economical to implement. 

 

Kutluay and Yagmurlu (2012) proposed the modified bi-

quintic B-spline base functions and successfully applied it to 

the two-dimensional unsteady Burgers' equation using the 

Galerkin method to obtain its numerical solutions. The 

accuracy of the numerical scheme was examined by the 

error norms 𝐿2 and 𝐿∞  .The obtained numerical results have 

been compared with the exact ones and were found to be in 

good agreement. 

 

Jiang and Wang (2010) presented an improved numerical 

solution of the Burgers' equation based on the cubic B-spline 

quasi-interpolation and the compact finite difference 

method. At first the cubic B-spline quasi-interpolation and 

the compact finite difference method are introduced. 

Moreover, the numerical scheme is presented, by using the 

derivative of the quasi-interpolation to approximate the 

spatial derivative and a two-order compact scheme to 

approximate the time derivative. The accuracy of the 

developed scheme was demonstrated by two problems. The 

advantage of the resulting scheme is simple with better 

accuracy, so it is easy to implement.From the test examples, 

the research proved that the scheme is feasible and the 

accuracy is better than other quasi-interpolation methods.  

 

Iltaf , Safyan and Arshed (2013) proposed a meshfree 

technique for the numerical solution of the 2D Burger’s 

equation. Collocation method using the Radial Basis 

Functions (RBFs) is coupled with first order accurate finite 

difference approximation. Different types of RBFs are used 

for this purpose. Performance of the proposed method is 

successfully tested in terms of various error norms. In the 

case of non-availability of exact solution, performance of the 

new method is compared with the results obtained from the 

existing numerical methods available in the literature. The 

elementary stability analysis is established theoretically and 

is also supported by numerical results. 

 

Weinan (1992) presented a general framework for analyzing 

numerical methods for the evolutionary equations that admit 

semigroup formulations. This framework was then applied 
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to spectral and pseudospectral methods for the Burgers' 

equation, using trigonometric, Chebyshev, and Legendre 

poly-nomials. Optimal order of convergence was obtained, 

which implies the spectral accuracy of these methods.  

 

Shafiqul et. al. (2014) explained that there are many 

equations in mathematics which are used in our practical life 

and Burger’s equation is one of them which is a good 

simplification of Navier-Stokes equation where the velocity 

is one spatial dimension and the external force is neglected 

in absence of pressure gradient. This equation is used to 

analyze   traffic congestion and acoustics. It occurs in 

various areas of applied mathematics, such as modeling of 

various problems in fluid dynamics and traffic flow among 

others.  Due to the complexity of the analytical solution, one 

needs to use numerical methods to solve this equation. For 

this the researchers investigated finite difference method for 

Burger’s equation and presented an explicit central 

difference scheme. An implementation of the numerical 

solution by computer programming for artificial initial and 

boundary data and verify the qualitative behavior of the 

numerical solution of Burger’s equation. The research 

considered Burger’s equation as a fundamental partial 

differential equation from fluid mechanics. First the research 

showed derivation of Navier-Stokes equation, Burger’s 

equation and numerical methods of Burger’s equation. 

Finally the research showed that the numerical result based 

on the explicit central difference scheme agrees with basic 

qualitative behavior of viscous Burger’s equation. 

 

Burns et. al. (1998) considered Burgers’ equation on the 

interval (0,1) with Neumann boundary conditions. The work 

showed that even for moderate values of the viscosity and 

for certain initial conditions, numerical solutions approach 

nonconstant shock type stationary solutions. Also the 

researchers showed that the only possible actual stationary 

solutions are constants. 

 

Han  et. al. (2006) discussed the numerical solution of 

Burgers’ equation on unbounded domains. Two artificial 

boundaries are introduced and boundary conditions are 

obtained on the artificial boundaries, which are in nonlinear 

forms. Then the original problem was reduced to an 

equivalent problem on a bounded domain. Finite difference 

method is applied to the reduced problem, and some 

numerical examples are given to show the effectiveness of 

the new approach. Using the Hopf-Cole transformation the 

researchers obtained the boundary conditions on the 

artificial boundaries. These boundary conditions are in 

nonlinear forms. With the artificial boundaries, the original 

unbounded problem was solved in a much smaller domain. 

The numerical examples showed that the new approach was 

very effective; the numerical solutions converge fast to the 

exact solutions. 

 

Aminikhah and Moradia (2014) proposed a numerical 

method for solving the systems of variable-coefficient 

coupled Burgers’ equation based on two-dimensional 

Legendre wavelets. Two-dimensional operational matrices 

of integration are introduced and then employed to find a 

solution to the systems of variable-coefficient coupled 

Burgers’ equation. It is shown that the numerical results are 

in good agreement with the exact solutions for each 

problem.  

 

In the above review, there is no mention of use of Hybrid 

Hopscotch Crank-Nicholson Du-Fort and Frankel- Lax-

Fredrich method. This research builds up on the work done 

by Maritim et. al. (2018a and 2018b) and extends to form a 

hybrid of Hopscotch Crank-Nicholson-Du Fort and Frankel-

Lax Fredrich (HP-CN-DF-LF) to solve 2D coupled Burgers 

equation (1.1). 

 

2. Approximation at the Boundaries 
 

The analytical solution of Burgers system of equations (1.1) 

at any point (𝑥, 𝑦, 𝑡) is given by the following equations, 

according to Rotich et. al. (2016): 

 
From Maritimet. al. (2018a), taking∆𝑥 = ∆𝑦 = ℎ and 
∆𝑡

ℎ2 = 𝛼 and 
∆𝑡

ℎ4𝑅𝑒
= 𝛽to obtain the Hopscotch Crank-

Nicholson scheme as shown below: 

 

3𝛽𝑈𝑖−2,𝑗
𝑛+1 + 𝑈𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑈𝑖 ,𝑗

𝑛+1 1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽+𝑈𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑈𝑖,𝑗−
2𝑛+2+𝑈𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑈𝑖,𝑗𝑛+22𝛼𝑉𝑖−1,𝑗−
1𝑛−4𝛽+𝑈𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽=𝑈𝑖,𝑗𝑛 (2.2a) 

3𝛽𝑉𝑖−2,𝑗
𝑛+1 + 𝑉𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑉𝑖 ,𝑗

𝑛+1 1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽+𝑉𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑉𝑖,𝑗−
2𝑛+2+𝑉𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑉𝑖,𝑗𝑛+22𝛼𝑉𝑖−1,𝑗−1
𝑛−4𝛽+𝑉𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽=𝑉𝑖,𝑗𝑛 (2.2b) 

 

3. Development of Hybrid Hopscotch-Crank-

Nicholson-Du-Fort and Frankel -Lax-

Friedrich’s (HP-CN-DF-LF) Scheme 
 

The developed Hybrid Hopscotch-Crank-Nicholson-Lax-

Friedrich’s (HP-CN-LF) Scheme given as: 

3𝛽𝑈𝑖−2,𝑗
𝑛+1 + 𝑈𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑈𝑖 ,𝑗

𝑛+1 1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽+𝑈𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑈𝑖,𝑗−
2𝑛+2+𝑈𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑈𝑖,𝑗𝑛+22𝛼𝑉𝑖−1,𝑗−

1𝑛−4𝛽+𝑈𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽=12𝑈𝑖+1,𝑗+1𝑛+𝑈𝑖−
1,𝑗+1𝑛+12𝑈𝑖+1,𝑗−1𝑛+𝑈𝑖−1,𝑗−1𝑛  

    (3.1a) 

3𝛽𝑉𝑖−2,𝑗
𝑛+1 + 𝑉𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑉𝑖 ,𝑗

𝑛+1 1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽+𝑉𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑉𝑖,𝑗−
2𝑛+2+𝑉𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑉𝑖,𝑗𝑛+22𝛼𝑉𝑖−1,𝑗−1
𝑛−4𝛽+𝑉𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽=12𝑉𝑖+1,𝑗+1𝑛+𝑉𝑖−1,
𝑗+1𝑛+12𝑉𝑖+1,𝑗−1𝑛+𝑉𝑖−1,𝑗−1𝑛   (3.1b) 

fromMaritimet. al. (2018a) and using and Hybrid 

Hopscotch-Crank-Nicholson-Du-Fort and Frankel (HP-CN-

DF) Scheme given by: 
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3𝛽𝑈𝑖−2,𝑗
𝑛+1 + 𝑈𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑈𝑖 ,𝑗

𝑛+1  1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽−12+𝑈𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑈
𝑖,𝑗−2𝑛+2+𝑈𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑈𝑖,𝑗𝑛+22𝛼𝑉𝑖−1
,𝑗−1𝑛−4𝛽+𝑈𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽=12𝑈𝑖,𝑗𝑛−1 (3.2a)  

3𝛽𝑉𝑖−2,𝑗
𝑛+1 + 𝑉𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑉𝑖 ,𝑗

𝑛+1  1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽−12+𝑉𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑉
𝑖,𝑗−2𝑛+2+𝑉𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑉𝑖,𝑗𝑛+22𝛼𝑉𝑖−1,
𝑗−1𝑛−4𝛽+𝑉𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽=12𝑉𝑖,𝑗𝑛−1   (3.2b)  

fromMaritimet. al. (2018b). 

In the scheme (3.2a) and (3.2b) replace 𝑈𝑖 ,𝑗
𝑛−1 and 𝑉𝑖 ,𝑗

𝑛−1 by: 
1

2
(𝑈𝑖+1,𝑗+1

𝑛−1 + 𝑈𝑖−1,𝑗+1
𝑛−1  ) +

1

2
(𝑈𝑖+1,𝑗−1

𝑛−1 +

𝑈𝑖−1,𝑗−1
𝑛−1 )and

1

2
(𝑉𝑖+1,𝑗+1

𝑛−1 + 𝑉𝑖−1,𝑗+1
𝑛−1  ) +

1

2
(𝑉𝑖+1,𝑗−1

𝑛−1 + 𝑉𝑖−1,𝑗−1
𝑛−1 ) 

respectively to get: 

3𝛽𝑈𝑖−2,𝑗
𝑛+1 + 𝑈𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑈𝑖 ,𝑗

𝑛+1  1 −

2𝛼𝑈𝑖−1,𝑗−1𝑛+4𝛽−12+𝑈𝑖+1,𝑗𝑛+1𝛼𝑈𝑖−1,𝑗−1𝑛−𝛽+3𝛽𝑈
𝑖,𝑗−2𝑛+2+𝑈𝑖,𝑗−1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−6𝛽−𝑈𝑖,𝑗𝑛+22𝛼𝑉𝑖−1
,𝑗−1𝑛−4𝛽+𝑈𝑖,𝑗+1𝑛+2𝛼𝑉𝑖−1,𝑗−1𝑛−𝛽= 
1

4
(𝑈𝑖+1,𝑗+1

𝑛−1 + 𝑈𝑖−1,𝑗+1
𝑛−1  ) +

1

4
(𝑈𝑖+1,𝑗−1

𝑛−1 + 𝑈𝑖−1,𝑗−1
𝑛−1 ) (3.3a) 

3𝛽𝑉𝑖−2,𝑗
𝑛+1 + 𝑉𝑖−1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 6𝛽 + 𝑉𝑖 ,𝑗

𝑛+1  1 − 2𝛼𝑈𝑖−1,𝑗−1
𝑛

+ 4𝛽 −
1

2
 + 𝑉𝑖+1,𝑗

𝑛+1  𝛼𝑈𝑖−1,𝑗−1
𝑛 − 𝛽 

+ 3𝛽𝑉𝑖 ,𝑗−2
𝑛+2 +𝑉𝑖 ,𝑗−1

𝑛+2  𝛼𝑉𝑖−1,𝑗−1
𝑛 − 6𝛽 

− 𝑉𝑖 ,𝑗
𝑛+2 2𝛼𝑉𝑖−1,𝑗−1

𝑛 − 4𝛽 

+ 𝑉𝑖 ,𝑗+1
𝑛+2  𝛼𝑉𝑖−1,𝑗−1

𝑛 − 𝛽 

=
1

4
 𝑉𝑖+1,𝑗+1

𝑛−1 + 𝑉𝑖−1,𝑗+1
𝑛−1   

+
1

4
 𝑉𝑖+1,𝑗−1

𝑛−1 + 𝑉𝑖−1,𝑗−1
𝑛−1   

 

4. Presentation of Results      
 

We present results in form of line graphs, 3D graphs and 

tables of values. The following data is used: 𝑘 = 0.001, ℎ =
0.1, 𝑙 = 0.1 and 𝑅𝑒 = 4000 to obtain the results. The 

computational domain is taken as a square domain 𝛺 =
  𝑥, 𝑦 : 0 ≤  𝑥 ≤ 1,0 ≤  𝑦 ≤ 1 .The initial and boundary 

conditions for 𝑢(𝑥, 𝑦, 𝑡)and 𝑣(𝑥, 𝑦, 𝑡) are taken from the 

numerical solutions by Kweyuet. al. (2012). 

 

4.1 Two Dimensional plots of Absolute Errors in 

Solutions of 𝒖(𝒙,𝒚, 𝒕) and 𝒗(𝒙,𝒚, 𝒕) 

 

Figures 4.1 and 4.2 show the absolute error in solutions of 

𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) respectively plotted as a function of 

position along the 𝑥-axis for the four hybrid schemes used, 

fixing t=1.0.   

 
Figure 4.1: Absolute error in Solution of 𝒖 for the 2-D 

Burgers’ equation 

 
Figure 4.2: Absolute error in Solution of 𝒗 for the 2-D 

Burgers’ equation 

 

The absolute errors are the variation of the numerical 

solutions of HP-CN, HP-CN-LF, HP-CN-DF and HP-CN-

DF-LF when compared with values proposed by Kweyuet. 

al. (2012). The figures clearly shows that the hybrid HP-CN-

DF-LF has the least absolute error then HP-CN-DF, HP-CN-

LF and lastly HP-CN for both 𝑢(𝑥, 𝑦, 𝑡)and 𝑣(𝑥, 𝑦, 𝑡). This 

shows that HP-CN-DF-LF is the most accurate and HP-CN 

is the least accurate. These figures show that the schemes 

developed are stable. 

 

4.2 Three Dimensional Plots of Solutions of 𝒖(𝒙,𝒚, 𝒕) 

and 𝒗(𝒙,𝒚, 𝒕) for HP-CN-DF-LF 

 
Figure 4.1: HP-CN-DF-LF Numerical Solution of u t=1.000 
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Figure 4.2: HP-CN-DF-LF Numerical Solution of v at 

t=1.000 

 

The figures 4.1 and 4.2 are 3-D images of solutions 

𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) plotted against 𝑥 and 𝑦 respectively 

using MATLAB for the hybrid HP-CN-DF-LF scheme 

developed. The figures clearly show that the solutions are 

not changing suddenly for change in 𝑥 and 𝑦 hence the 

results for HP-CN-DF-LF Scheme developed are consistent. 

 

Table 4.1: Percentage Absolute Errors in Solutions of 

u(x, y, t) 
X Y HP-CN HP-CN-LF HP-CN-DF HP-CN-DF-LF 

0.1 0.1 0.091912937 0.002049272 0.009224257 0.001024662 

0.2 0.2 0.067401849 0.001502792 0.006764432 0.000751415 

0.3 0.3 0.059010038 0.001315697 0.005922273 0.000657865 

0.4 0.4 0.054992840 0.001226131 0.005519119 0.000613081 

0.5 0.5 0.053004852 0.001181804 0.00531959 0.000590917 

0.6 0.6 0.052228321 0.001164483 0.00524162 0.000582256 

0.7 0.7 0.052252640 0.001165014 0.005244004 0.000582522 

0.8 0.8 0.052801786 0.001177243 0.005299043 0.000588636 

0.9 0.9 0.053652403 0.001196192 0.005384327 0.000598111 

The Table 4.1 shows percentage absolute errors in solutions 

of 𝑢(𝑥, 𝑦, 𝑡) when compared with the Kweyu et. al. (2012) 

values at different levels of 𝑥and 𝑦. It shows a maximum 

error of 0.091912937% and a minimum of 0.000582522%. 

 

Table 4.2: Percentage Absolute Errors in Solutions of 

𝑣(𝑥, 𝑦, 𝑡) 
X Y HP-CN HP-CN-LF HP-CN-DF HP-CN-DF-LF 

0.1 0.1 0.006254655 0.000627013 0.000139298 0.000069651 

0.2 0.2 0.009823624 0.000984803 0.000218785 0.000109395 

0.3 0.3 0.013828449 0.001386291 0.000307979 0.000153994 

0.4 0.4 0.018334820 0.001838055 0.000408344 0.000204177 

0.5 0.5 0.023367011 0.002342524 0.000520417 0.000260215 

0.6 0.6 0.028905910 0.002897773 0.000643772 0.000321894 

0.7 0.7 0.034892197 0.003497851 0.000777087 0.000388553 

0.8 0.8 0.041233979 0.004133542 0.000918314 0.000459168 

0.9 0.9 0.047817500 0.004793441 0.001064920 0.000532473 

 

The Table 4.2 shows percentage absolute errors in solutions 

of 𝑣(𝑥, 𝑦, 𝑡) when compared with the Kweyu et. al. (2012) 

values at different levels of 𝑥and 𝑦. It shows a maximum 

error of 0.047817500% and a minimum of 0.000069651% 

 

 

 

 

5. Conclusions  
 

1) The   hybrid scheme: Hopscotch-Crank-Nicholson Du-

Fort and Frankel - Lax - Friedrichs’ (HP-CN-DF-LF)  

were developed and used to solve 2D Burgers’ equation. 

2) The developed scheme proved to be stable because the 

errors did not ‘blowup’ (absolute errors less than 0.09% 

for 𝑢(𝑥, 𝑦, 𝑡) and 0.05% for 𝑣(𝑥, 𝑦, 𝑡) as shown on the 

table 4.1 and 4.2 of absolute errors. The schemes are also 

consistent because the results were not changing 

suddenly for small change in space hence convergent in 

line with Lax equivalence theorem. 
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