SOME SPECTRAL PROPERTIES OF THE BANACH ALGEBRA $\mathcal{A} \times_d \mathcal{B}$ WITH THE DIRECT-SUM PRODUCT

H. V. DEDANIA AND H. J. KANANI

ABSTRACT. Let \mathcal{A} be a commutative Banach algebra and \mathcal{B} be a closed subalgebra of \mathcal{A} . Then $\mathcal{A} \times \mathcal{B}$ is a commutative algebra with co-ordinatewise linear operations and the direct-sum product: (a,b)(c,d) = (ac + ad + bc,bd) $(a, c \in \mathcal{A}; b, d \in \mathcal{B})$. In fact, it is a Banach algebra with a suitable norm; it is denoted by $\mathcal{A} \times_d \mathcal{B}$. Here, we study some important spectral properties of this algebra.

1. INTRODUCTION

Throughout let \mathcal{A} be a commutative algebra and \mathcal{B} be a subalgebra of \mathcal{A} . Then $\mathcal{A} \times \mathcal{B}$ is a commutative algebra with co-ordinatewise linear operations and the *direct-sum product* defined as

 $(a,b)(c,d) = (ac + ad + bc, bd) \quad ((a,b), (c,d) \in \mathcal{A} \times_d \mathcal{B}).$

This algebra will be denoted by $\mathcal{A} \times_d \mathcal{B}$. Further, if \mathcal{A} is a Banach algebra and \mathcal{B} is a closed subalgebra of \mathcal{A} , then $\mathcal{A} \times_d \mathcal{B}$ is a Banach algebra with respect to the norm $||(a,b)||_1 = ||a|| + ||b||$ ($(a,b) \in \mathcal{A} \times_d \mathcal{B}$). Some basic properties, uniqueness properties, regularity properties, and the Gel'fand theory of the Banach algebra $\mathcal{A} \times_d \mathcal{B}$ have been studied in [3]. In this paper, we further explore this Banach algebra to study its some spectral properties. These properties are spectral extension property, topological divisor of zero, multiplicative Hahn-Banach property, Quasi divisor of zero, topological annihilator condition, Ditkin's condition, and Tauberian condition.

Let $\sigma_{\mathcal{A}}(a)$ and $r_{\mathcal{A}}(a)$ denote the spectrum and the spectral radius of a in \mathcal{A} . Let $\Delta(\mathcal{A})$ denote the set of all non-zero, multiplicative, linear functionals on a commutative Banach algebra \mathcal{A} . For $a \in \mathcal{A}$, the map $\hat{a} : \Delta(\mathcal{A}) \longrightarrow \mathbb{C}$ is defined as $\hat{a}(\varphi) = \varphi(a)$. The topology on $\Delta(\mathcal{A})$ is the smallest topology such that \hat{a} is continuous for each $a \in \mathcal{A}$. Let $\varphi \in \Delta(\mathcal{A})$ and S be a non-empty subset \mathcal{A} . Define $\varphi_{\diamond} : \mathcal{A} \times S \longrightarrow \mathbb{C}$ as $\varphi_{\diamond}((a, x)) := \varphi(x)$. Now let \mathcal{I} be an ideal in \mathcal{A} , let $\varphi \in \Delta(\mathcal{I})$, and $u \in \mathcal{I}$ such that $\varphi(u) = 1$. Define $\varphi^+ : \mathcal{A} \times \mathcal{I} \longrightarrow \mathbb{C}$ as $\varphi^+((a, x)) := \varphi(au) + \varphi(x)$. Next, for $F \subset \Delta(\mathcal{A})$, define $F^+ := \{\varphi^+ : \varphi \in F\}$ and $F_{\diamond} := \{\varphi_{\diamond} : \varphi \in F\}$. In the case $F = \Delta(\mathcal{A})$, we shall write $\Delta^+(\mathcal{A})$ and $\Delta_{\diamond}(\mathcal{A})$ for F^+ and F_{\diamond} , respectively. We shall need the following result in proofs.

²⁰¹⁰ Mathematics Subject Classification. Primary 46K05; Secondary 46H05.

Key words and phrases. Banach algebras, Direct-sum product, Spectrum, Spectral radius, Spectral extension property, Gel'fand space, and Gel'fand transform.

This research work is supported by the UGC-SAP-DRS-III; The grant number is F.510/1/DRS-III/2015(SAP-I) given to the Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar.

H. V. DEDANIA AND H. J. KANANI

Lemma 1.1. [4, Chapter-3] The Gel'fand space $\Delta(\mathcal{A} \times_d \mathcal{B})$ is homeomorphic to $\Delta^+(\mathcal{A}) \biguplus \Delta_{\diamond}(\mathcal{B})$ equipped with the sum-topology. Moreover, the Shilov boundary $\partial(\mathcal{A} \times_d \mathcal{B})$ is homeomorphic to $\partial^+(\mathcal{A}) \oiint \partial_{\diamond}(\mathcal{B})$ equipped with the sum-topology.

2. Spectral Properties in Commutative Banach Algebras

Definition 2.1. [7] A norm $|\cdot|$ on \mathcal{A} is a spectral norm if $r_{\mathcal{A}}(a) \leq |a|$ $(a \in \mathcal{A})$. The Banach algebra \mathcal{A} has spectral extension property (SEP) if every norm on \mathcal{A} is a spectral norm.

Theorem 2.2. If $\mathcal{A} \times_d \mathcal{B}$ has SEP, then \mathcal{A} and \mathcal{B} have SEP.

Proof. Let $|\cdot|$ be a norm on \mathcal{A} . Define $|(a,b)|_1 = |a| + |b|$. Then $|\cdot|_1$ is an algebra norm on $\mathcal{A} \times_d \mathcal{B}$. Since $\mathcal{A} \times_d \mathcal{B}$ has SEP, we have

 $r_{\mathcal{A}}(a) = r_{\mathcal{A} \times_d \mathcal{B}}(a, 0) \le |(a, 0)|_1 = |a| \quad (a \in \mathcal{A}).$

Thus $|\cdot|$ is a spectral norm on \mathcal{A} , and so \mathcal{A} has SEP. Next suppose that $|\cdot|$ is a norm on \mathcal{B} . Define |(a,b)| = ||a+b|| + |b| on $\mathcal{A} \times_d \mathcal{B}$, where $||\cdot||$ is the Banach algebra norm on \mathcal{A} . Then, by [4, Lemma 3.2.2], $|\cdot|$ is an algebra norm on $\mathcal{A} \times_d \mathcal{B}$. Since $\mathcal{A} \times_d \mathcal{B}$ has SEP,

$$r_{\mathcal{B}}(b) = r_{\mathcal{A} \times_d \mathcal{B}}(-b, b) \le |(-b, b)| = |b| \quad (b \in \mathcal{B}).$$

Hence, $|\cdot|$ is a spectral norm on \mathcal{B} . Therefore, \mathcal{B} has SEP.

Definition 2.3. [4, Definition 1.4.18] A non-zero element $a \in \mathcal{A}$ is a topological divisor of zero (TDZ) if there is a sequence (a_n) in \mathcal{A} such that $||a_n|| = 1$ $(n \in \mathbb{N})$ and either $a_n a \longrightarrow 0$ as $n \longrightarrow \infty$. The Banach algebra \mathcal{A} has topological divisor of zero (TDZ) property if every element of \mathcal{A} is a topological divisor of zero.

Theorem 2.4. If \mathcal{A} and \mathcal{B} have TDZ property, then $\mathcal{A} \times_d \mathcal{B}$ has TDZ property.

Proof. Suppose that \mathcal{A} and \mathcal{B} have TDZ property. Let $(a, b) \in \mathcal{A} \times_d \mathcal{B}$. Then $a + b \in \mathcal{A}$. Suppose that $a + b \neq 0$. Since \mathcal{A} has TDZ property, there exists a sequence $(a_n) \subset \mathcal{A}$ such that $||a_n|| = 1$ $(n \in \mathbb{N})$ and $a_n(a + b) \longrightarrow 0$ as $n \longrightarrow \infty$. Then $((a_n, 0))$ is a sequence in $\mathcal{A} \times_d \mathcal{B}$ such that $||(a_n, 0)||_1 = ||a_n|| = 1$ $(n \in \mathbb{N})$ and $(a_n, 0)(a, b) = (a_n a + a_n b, 0) \longrightarrow (0, 0)$ as $n \longrightarrow \infty$. Therefore, (a, b) is a TDZ. If a + b = 0, then $a = -b \neq 0$. Since \mathcal{B} has TDZ property, there exists a sequence (b_n) in \mathcal{B} such that $||b_n|| = 1$ and $b_n b \longrightarrow 0$ as $n \longrightarrow \infty$. In this case, $((0, b_n))$ is a sequence in $\mathcal{A} \times_d \mathcal{B}$ such that $||(0, b_n)||_1 = ||b_n|| = 1$ and $(0, b_n)(a, b) = (-b_n b, b_n b) \longrightarrow (0, 0)$ as $n \longrightarrow \infty$. Thus, in all cases, (a, b) is a TDZ in $\mathcal{A} \times_d \mathcal{B}$. Hence $\mathcal{A} \times_d \mathcal{B}$ has TDZ property. □

Definition 2.5. [7] A commutative Banach algebra \mathcal{A} has *Multiplicative Hahn-Banach Property (MHBP)* if, for every commutative extension \mathcal{B} of \mathcal{A} , every $\varphi \in \Delta(\mathcal{A})$ can be extended to some element of $\Delta(\mathcal{B})$.

Theorem 2.6. $\mathcal{A} \times_d \mathcal{B}$ has MHBP if and only if both \mathcal{A} and \mathcal{B} have MHBP.

Proof. Let $\mathcal{A} \times_d \mathcal{B}$ have MHBP. Let \mathcal{C} be a commutative extension of \mathcal{A} , then $\mathcal{C} \times_d \mathcal{B}$ is a commutative extension of $\mathcal{A} \times_d \mathcal{B}$. Let $\varphi \in \Delta(\mathcal{A})$. Then $\varphi^+ \in \Delta^+(\mathcal{A}) \uplus \Delta_{\diamond}(\mathcal{B})$. Since $\mathcal{A} \times_d \mathcal{B}$ has MHBP, there exists $\tilde{\eta} \in \Delta(\mathcal{C} \times_d \mathcal{B}) = \Delta^+(\mathcal{C}) \uplus \Delta_{\diamond}(\mathcal{B})$ such that $\tilde{\eta} = \varphi^+$ on $\mathcal{A} \times_d \mathcal{B}$. Now, if $\tilde{\eta} \in \Delta_{\diamond}(\mathcal{B})$, then we get $\varphi(a) = \varphi^+((a, 0)) = \tilde{\eta}((a, 0)) = 0$ on \mathcal{A} . This is not possible. Hence, $\tilde{\eta}$ must be in $\Delta^+(\mathcal{C})$. Therefore, there exists $\tilde{\varphi} \in \Delta(\mathcal{C})$ such that $\tilde{\eta} = \tilde{\varphi}^+$ on $\mathcal{C} \times_d \mathcal{B}$. Also, $\tilde{\eta} = (\tilde{\varphi})^+ = \varphi^+$ on $\mathcal{A} \times_d \mathcal{B}$, implies

 $\mathbf{2}$

3

 $\tilde{\varphi} = \varphi$ on \mathcal{A} . Thus $\tilde{\varphi}$ is an extension of φ . Hence \mathcal{A} has MHBP. Similarly, it can be proved that \mathcal{B} has MHBP.

Conversely, assume that \mathcal{A} and \mathcal{B} have MHBP. Let \mathcal{C} be any extension of $\mathcal{A} \times_d \mathcal{B}$. Then \mathcal{C} is an extension of both $\mathcal{A} \times_d \{0\}$ and $\{0\} \times_d \mathcal{B}$. Let $\tilde{\eta} \in \Delta^+(\mathcal{A}) \biguplus \Delta_{\diamond}(\mathcal{B})$. Then either $\tilde{\eta} \in \Delta^+(\mathcal{A})$ or $\tilde{\eta} \in \Delta_{\diamond}(\mathcal{B})$. Suppose that $\tilde{\eta} \in \Delta^+(\mathcal{A})$. Then $\tilde{\eta} = \varphi^+$ for some $\varphi \in \Delta(\mathcal{A})$. Since \mathcal{C} is an extension of \mathcal{A} , by the hypothesis, φ can be extended to some element $\tilde{\varphi}$ of $\Delta(\mathcal{C})$. Then $\tilde{\eta} = \tilde{\varphi}^+ \in \Delta(\mathcal{C})$ and $\tilde{\eta} = \tilde{\varphi}^+ = \varphi^+$ on $\mathcal{A} \times_d \mathcal{B}$. Similarly, if $\tilde{\eta} \in \Delta_{\diamond}(\mathcal{B})$, then also it can be extended to some element of $\Delta(\mathcal{C})$. Thus $\mathcal{A} \times_d \mathcal{B}$ has MHBP.

Definition 2.7. [6] A commutative Banach algebra \mathcal{A} has *Quasi Divisor of Zero* (*QDZ*) property if there exists an open subset G of $\Delta(\mathcal{A})$ such that

- (1) $\partial(\mathcal{A}) \subset \overline{G};$
- (2) For every open subset U of G, there exist $a \in A$ and a non-empty, open set $V \subset U$ such that

$$\widehat{a}(\varphi) = \begin{cases} 0 & \text{if } \varphi \in U^{\alpha} \\ 1 & \text{if } \varphi \in V. \end{cases}$$

Theorem 2.8. $\mathcal{A} \times_d \mathcal{B}$ has QDZ property iff both \mathcal{A} and \mathcal{B} have QDZ property.

Proof. Let $\mathcal{A} \times_d \mathcal{B}$ has QDZ property. Then there exists an open set $\tilde{G} \subset \Delta(\mathcal{A} \times_d \mathcal{B})$ which satisfies the following properties.

- (1) $\partial^+(\mathcal{A}) \uplus \partial_{\diamond}(\mathcal{B}) \subset (\widetilde{G}).$
- (2) For every open subset \widetilde{U} of \widetilde{G} , there exists $(a,b) \in \mathcal{A} \times_d \mathcal{B}$ and a non-empty open subset \widetilde{V} of \widetilde{U} such that

$$(a,b)\widehat{(\varphi)} = \begin{cases} 0 & (\varphi \in \widetilde{U}^c) \\ 1 & (\varphi \in \widetilde{V}). \end{cases}$$

Let $G_{\mathcal{A}} = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \widetilde{G}\}$ and $G_{\mathcal{B}} = \{\varphi \in \Delta(\mathcal{B}) : \varphi_{\diamond} \in \widetilde{G}\}$. Then $G_{\mathcal{A}}$ and $G_{\mathcal{B}}$ are open sets in $\Delta(\mathcal{A})$ and $\Delta(\mathcal{B})$, respectively as such that $G_{\mathcal{A}}^+ \cup G_{\mathcal{B}\diamond} = \widetilde{G}$. Also, from (1) above, we get $\partial \mathcal{A} \subset \overline{G_{\mathcal{A}}}$ and $\partial \mathcal{B} \subset \overline{G_{\mathcal{B}}}$. Now, let $U \subset G_{\mathcal{A}}$ be open. Then U^+ will be open in \widetilde{G} . Hence, by (2) above, there exist $(a,b) \in \mathcal{A} \times_d \mathcal{B}$ and a non-empty open set $V^+ \subset U^+$ such that $(a,b)^{\wedge} = 0$ on $(U^+)^c$ and $(a,b)^{\wedge} = 1$ on V^+ . Now, if $\varphi \in U^c$, then $\varphi^+ \in (U^+)^c$ and $(a+b)^{\wedge}(\varphi) = \varphi(a+b) = \varphi^+((a,b)) = 0$ on U^c . If $\varphi \in V$, then $\varphi^+ \in V^+$ and $(a+b)^{\wedge}(\varphi) = \varphi^+((a,b)) = 1$. Hence \mathcal{A} has QDZ property. By similar arguments, it follows that \mathcal{B} has QDZ property.

Conversely, suppose \mathcal{A} and \mathcal{B} have QDZ property. Then there exist open subsets $G_{\mathcal{A}} \subset \Delta(\mathcal{A})$ and $G_{\mathcal{B}} \subset \Delta(\mathcal{B})$ satisfying the properties in the definition of QDZ. Then $\widetilde{G} = G_{\mathcal{A}}^+ \cup G_{\mathcal{B}\diamond}$ and

$$\partial(\mathcal{A}\times_{d}\mathcal{B}) = \partial^{+}(\mathcal{A}) \uplus \partial_{\diamond}(\mathcal{B}) \subset \overline{G_{\mathcal{A}}^{+}} \cup \overline{G_{\mathcal{B}\diamond}} = \overline{G_{\mathcal{A}}^{+} \cup G_{\mathcal{B}\diamond}} = \overline{\widetilde{G}}.$$

Let $\widetilde{U} \subset \widetilde{G}$ be open. Then the corresponding sets $U_{\mathcal{A}}$ and $U_{\mathcal{B}}$ are open in $G_{\mathcal{A}}$ and $G_{\mathcal{B}}$, respectively. Hence, there exist $a \in \mathcal{A}$ and $b \in \mathcal{B}$ such that $\widehat{a} = 0$ outside $U_{\mathcal{A}}, \widehat{a} = 1$ on some non-empty open subset $V_{\mathcal{A}}$ of $U_{\mathcal{A}}, \widehat{b} = 0$ outside $U_{\mathcal{B}}$ and $\widehat{b} = 1$ on some non-empty open subset $V_{\mathcal{B}}$ of $U_{\mathcal{B}}$. Then $(a-b,b)^{\wedge} = 0$ on $\widetilde{U}^c = (U_{\mathcal{A}}^+)^c \cup (U_{\mathcal{B}\diamond})^c$ and $(a-b,b)^{\wedge} = 1$ on $\widetilde{V} = V_{\mathcal{A}}^+ \cup V_{\mathcal{B}\diamond} \subset \widetilde{U}$. Hence $\mathcal{A} \times_d \mathcal{B}$ has QDZ property. \Box

H. V. DEDANIA AND H. J. KANANI

Definition 2.9. [6] Let \mathcal{I} be an ideal of a commutative semisimple Banach algebra \mathcal{A} . A separating net for \mathcal{I} is a net $(q_{\lambda})_{\lambda \in \Lambda}$ of quasi divisors of zero in \mathcal{A} such that

(1) $\sup\{r_{\mathcal{A}}(q_{\lambda}): \lambda \in \Lambda\} < \infty;$

4

- (2) $\lim_{\lambda \to \infty} r_{\mathcal{A}}(aq_{\lambda}) = 0 \quad (a \in \mathcal{I});$
- (3) There exists an element $b \in \mathcal{A}$ such that $q_{\lambda}b = q_{\lambda} \ (\lambda \in \Lambda)$.

Definition 2.10. [6] A commutative Banach algebra \mathcal{A} satisfies *Topological Annihilator (TAN) condition* if there exists a dense set $D \subset \partial \mathcal{A}$ such that, for every $\varphi \in D$, the ker φ admits a separating net.

Theorem 2.11. $\mathcal{A} \times_d \mathcal{B}$ has TAN property iff both \mathcal{A} and \mathcal{B} have TAN property.

Proof. Let $\mathcal{A} \times_d \mathcal{B}$ has TAN property. Then there exists dense subset \widetilde{D} of $\partial(\mathcal{A} \times_d \mathcal{B})$ such that ker $\widetilde{\eta}$ ($\widetilde{\eta} \in \widetilde{D}$) admits a separating net. Let $D_{\mathcal{A}} = \{\varphi \in \Delta(\mathcal{A}) : \varphi^+ \in \widetilde{D}\}$. Then $D_{\mathcal{A}}$ is a dense subset of $\partial \mathcal{A}$. Let $\varphi \in D_{\mathcal{A}}$. Then $\varphi^+ \in \widetilde{D}$. Hence ker φ^+ admits a separating net say $((a_\lambda, b_\lambda))_{\lambda \in \Lambda}$. Then $(a_\lambda + b_\lambda)_{\lambda \in \Lambda}$ is a separating net for ker φ . Thus \mathcal{A} has TAN property. By similar arguments it follows that \mathcal{B} has TAN property.

Conversely, assume that \mathcal{A} and \mathcal{B} have TAN property. Then there exist dense subsets $D_{\mathcal{A}} \subset \partial \mathcal{A}$ and $D_{\mathcal{B}} \subset \partial \mathcal{B}$ such that ker φ ($\varphi \in D_{\mathcal{A}} \cup D_{\mathcal{B}}$) admits a separating net. Let $\widetilde{D} = D_{\mathcal{A}}^+ \cup D_{\mathcal{B}\diamond}$. Then \widetilde{D} is a dense subset of $\partial^+(\mathcal{A}) \cup \partial_\diamond(\mathcal{B})$. Let $\widetilde{\eta} \in \widetilde{D}$. Then either $\widetilde{\eta} = \varphi^+$ for some $\varphi \in D_{\mathcal{A}}$ or $\widetilde{\eta} = \psi_\diamond$ for some $\psi \in D_{\mathcal{B}}$. If $\widetilde{\eta} = \varphi^+$, then ker φ admits a separating net $(a_\lambda)_{\lambda \in \Lambda}$. Hence $((a_\lambda, 0))_{\lambda \in \Lambda}$ is a separating net for ker $\widetilde{\eta}$. Similarly, if $\widetilde{\eta} = \psi_\diamond$, then ker ψ admits a separating net $(b_\lambda)_{\lambda \in \Lambda}$. In this case, $((-b_\lambda, b_\lambda))_{\lambda \in \Lambda}$ is a separating net for ker $\widetilde{\eta}$. Hence $\mathcal{A} \times_d \mathcal{B}$ has TAN property. \Box

Lemma 2.12. Let $a \in \mathcal{A}$ and $b \in \mathcal{B}$. Then $(a, b)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$ if and only if $(a + b)^{\wedge} \in C_c(\Delta(\mathcal{A}))$ and $\hat{b} \in C_c(\Delta(\mathcal{B}))$.

Proof. This follows from the definition of the support.

Definition 2.13. [1, Definition 4.1.31] Let \mathcal{A} be a commutative Banach algebra. Then \mathcal{A} satisfies

- (1) Ditkin's condition at $\varphi \in \Delta(\mathcal{A})$ if for every $a \in \ker(\varphi)$, there exists a sequence (a_n) in \mathcal{A} such that $\widehat{a_n} \in C_c(\Delta(\mathcal{A})), \varphi \notin supp\widehat{a_n}$ and $a_n a \longrightarrow a$ as $n \longrightarrow \infty$.
- (2) Ditkin's condition at infinity if for $a \in \mathcal{A}$, there exists a sequence (a_n) in \mathcal{A} such that $\widehat{a_n} \in C_c(\Delta(\mathcal{A}))$ and $a_n a \longrightarrow a$ as $n \longrightarrow \infty$.
- (3) Ditkin's condition if it satisfies Ditkin's condition at every $\varphi \in \Delta(\mathcal{A})$ and at infinity.

Theorem 2.14. $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition iff both \mathcal{A} and \mathcal{B} satisfy Ditkin's condition.

Proof. Let $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition. Let $\varphi \in \Delta(\mathcal{A})$ and $a \in \ker \varphi$. Then $(a, 0) \in \ker \varphi^+$. Since $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition, there exists a sequence $((a_n, b_n))$ in $\mathcal{A} \times_d \mathcal{B}$ such that $(a_n, b_n)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$ $(n \in \mathbb{N})$, $\varphi^+ \notin supp(a_n, b_n)^{\wedge}$ and $(a_n, b_n)(a, 0) \longrightarrow (a, 0)$ as $n \longrightarrow \infty$. Then $(a_n + b_n)$ is a sequence in \mathcal{A} such that $(a_n + b_n)^{\wedge} \in C_c(\Delta(\mathcal{A}))$ $(n \in \mathbb{N})$, due to Lemma 2.12, $\varphi \notin supp(a_n + b_n)^{\wedge}$ and $(a_n + b_n)a \longrightarrow a$ as $n \longrightarrow \infty$. Thus \mathcal{A} satisfies Ditkin's condition at every $\varphi \in \Delta(\mathcal{A})$. By similar arguments, it follows that \mathcal{B} satisfies Ditkin's Ditkin's condition at every $\psi \in \Delta(\mathcal{B})$.

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

SOME SPECTRAL PROPERTIES OF $\mathcal{A} \times_d \mathcal{B}$ WITH DIRECT-SUM PRODUCT

Next we show that \mathcal{A} and \mathcal{B} satisfy Ditkin's condition at infinity. Let $a \in \mathcal{A}$. Since $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition at infinity, there exists a sequence $((a_n, b_n))$ in $\mathcal{A} \times_d \mathcal{B}$ such that $(a_n, b_n)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$ and $(a_n, b_n)(a, 0)$ converges to (a, 0)as $n \longrightarrow \infty$. Then $(a_n + b_n)$ is a sequence in \mathcal{A} such that $(a_n + b_n)^{\wedge} \in C_c(\Delta(\mathcal{A}))$ due to Lemma 2.12 and $(a_n + b_n)a \longrightarrow a$ as $n \longrightarrow \infty$. Therefore, \mathcal{A} satisfies Ditkin's condition at infinity. By Similar arguments, it follows that \mathcal{B} satisfies Ditkin's condition at infinity.

Conversely, assume that both \mathcal{A} and \mathcal{B} satisfy Ditkin's condition. Let $\varphi^+ \in \Delta^+(\mathcal{A})$ and $(a, b) \in \ker \varphi^+$. Then $a+b \in \ker(\varphi)$. Since \mathcal{A} satisfies Ditkin's condition at φ , there exists a sequence (a_n) in \mathcal{A} such that $(\widehat{a_n}) \subset C_c(\Delta(\mathcal{A})), \varphi \notin supp\widehat{a_n}$ and $a_n(a+b) \longrightarrow a+b$ as $n \longrightarrow \infty$. Since \mathcal{B} satisfy ditkin's condition at infinity, there exists a sequence (b_n) in \mathcal{B} such that $(\widehat{b_n}) \in C_c(\Delta(\mathcal{B}))$ and $b_n b \longrightarrow b$ as $n \longrightarrow \infty$. Then $((a_n-b_n,b_n))$ is a sequence in $\mathcal{A} \times_d \mathcal{B}$ such that $(a_n-b_n,b_n)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$ due to Lemma 2.12, $\varphi^+ \notin supp(a_n - b_n, b_n)^{\wedge}$ and $(a_n - b_n, b_n)(a, b) \longrightarrow (a, b)$ as $n \longrightarrow \infty$. Hence, $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition at every $\varphi^+ \in \Delta^+(\mathcal{A})$. Similarly, it follows that $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition at every $\psi_{\diamond} \in \Delta_{\diamond}(\mathcal{B})$.

Next we show that $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition at infinity. Fix an arbitrary element $(a, b) \in \mathcal{A} \times_d \mathcal{B}$. Since both \mathcal{A} and \mathcal{B} satisfy Ditkin's condition at infinity, there exist sequences (a_n) in \mathcal{A} and $(b_n) \in \mathcal{B}$ such that $(\widehat{a_n}) \in C_c(\Delta(\mathcal{A})), (\widehat{b_n}) \in C_c(\Delta(\mathcal{B})), (a+b)a_n \longrightarrow a+b$ and $b_nb \longrightarrow b$. Therefore $(a_n-b_n,b_n)^{\wedge} \in C_c(\Delta(\mathcal{A}\times\mathcal{B}))$ and $(a_n - b_n, b_n)(a, b) \longrightarrow (a, b)$. Hence $\mathcal{A} \times_d \mathcal{B}$ satisfies Ditkin's condition at infinity.

Definition 2.15. [5, Definition 8.1.2] A commutative Banach algebra \mathcal{A} is said to be a Tauberian algebra if the set $\{a \in \mathcal{A} : \widehat{a} \in C_c(\Delta(\mathcal{A}))\}$ is dense in \mathcal{A} .

Theorem 2.16. $\mathcal{A} \times_d \mathcal{B}$ is Tauberian iff both \mathcal{A} and \mathcal{B} are Tauberian.

Proof. Let $\mathcal{A} \times_d \mathcal{B}$ be a Tauberian algebra. Let $a \in \mathcal{A}$ and $\epsilon > 0$. Since $\mathcal{A} \times_d \mathcal{B}$ is Tauberian, there exits $(a_0, b_0) \in \mathcal{A} \times_d \mathcal{B}$ such that $(a_0, b_0)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$ and $||(a, 0) - (a_0, b_0)||_1 = ||a - a_0|| + ||b_0|| < \epsilon$. Then $(a_0 + b_0)^{\wedge} \in C_c(\Delta(\mathcal{A}))$ and $||(a_0 + b_0) - a|| \le ||a - a_0|| + ||b_0|| < \epsilon$. Therefore, \mathcal{A} is Tauberian. Now, let $b \in \mathcal{B}$ and $\epsilon > 0$. Since $\mathcal{A} \times_d \mathcal{B}$ is Tauberian, there exits $(a_1, b_1) \in \mathcal{A} \times_d \mathcal{B}$ such that $(a_1, b_1)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$ and $||(0, b) - (a_1, b_1)||_1 = ||a_1|| + ||b - b_1|| < \epsilon$. Since $(a_1, b_1)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$, by Lemma 2.12, $\hat{b_1} \in C_c(\Delta(\mathcal{B}))$ and $||b - b_1|| < \epsilon$. Therefore, \mathcal{B} is Tauberian.

Conversely, suppose that \mathcal{A} and \mathcal{B} are Tauberian algebra. Let $(a, b) \in \mathcal{A} \times_d \mathcal{B}$ and $\epsilon > 0$. Since \mathcal{A} and \mathcal{B} are Tauberian, there exist $a_0 \in \mathcal{A}$ and $b_0 \in \mathcal{B}$ such that $\widehat{a_0} \in C_c(\Delta(\mathcal{A})), \widehat{b_0} \in C_c(\Delta(\mathcal{B})), ||(a+b) - a_0|| < \epsilon/3$ and $||b-b_0|| < \epsilon/3$. Therefore, by Lemma 2.12, $(a_0 - b_0, b_0)^{\wedge} \in C_c(\Delta(\mathcal{A} \times_d \mathcal{B}))$. Also

$$\begin{aligned} \|(a,b) - (a_0 - b_0, b_0)\|_1 &= \|a - a_0 + b_0\| + \|b - b_0\| \\ &\leq \|(a+b) - a_0\| + \|b_0 - b\| + \|b - b_0\| < \epsilon. \end{aligned}$$

Therefore $\mathcal{A} \times_d \mathcal{B}$ is a Tauberian algebra.

5

References

- 1. H. G. Dales, Banach algebras and automatic continuity, Oxford University Press, 2000.
- H. V. Dedania and H. J. Kanani, Some Banach algebra properties in the cartesian product of Banach algebras, Annals of Funct. Anal., 5(1) (2014)51-55.

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

H. V. DEDANIA AND H. J. KANANI

- 3. H. V. Dedania and H. J. Kanani, Characterization of Gel'fand space of the Banach algebra $\mathcal{A} \times_d \mathcal{B}$ with direct-sum product, Mathematics Today, April 2018 Special issue, 34(A)(2018)188-194.
- 4. H. J. Kanani, Spectral and uniqueness properties in various Banach algebra product, Ph.D. Thesis, Sardar Patel University, 2016.
- 5. R. Larsen, Banach Algebras: An Introduction, Marcel Dekker, New York, 1973.
- 6. M. J. Meyer, *Submultiplicative norms on Banach algebras*, Ph.D. Thesis, University of Oregon, 1989.
- M. J. Meyer, The spectral extension property and extension of multiplicative linear functional, Proc. American Math. Soc., 112(3)(1991)885-861.

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India.

 $E\text{-}mail \ address: \verb+hvdedania@yahoo.com+$

6

Department of Mathematics, Bahauddin Science College, Junagadh-362001, Gujarat, India.

E-mail address: hitenmaths69@gmail.com