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Abstract. Let A be a commutative Banach algebra and B be a closed sub-

algebra of A. Then A × B is a commutative algebra with co-ordinatewise

linear operations and the direct-sum product: (a, b)(c, d) = (ac + ad + bc, bd)
(a, c ∈ A; b, d ∈ B). In fact, it is a Banach algebra with a suitable norm; it is

denoted by A×d B. Here, we study some important spectral properties of this

algebra.

1. Introduction

Throughout let A be a commutative algebra and B be a subalgebra of A. Then
A × B is a commutative algebra with co-ordinatewise linear operations and the
direct-sum product defined as

(a, b)(c, d) = (ac+ ad+ bc, bd) ((a, b), (c, d) ∈ A×d B).

This algebra will be denoted by A ×d B. Further, if A is a Banach algebra and B
is a closed subalgebra of A, then A ×d B is a Banach algebra with respect to the
norm ‖(a, b)‖1 = ‖a‖ + ‖b‖ ((a, b) ∈ A ×d B). Some basic properties, uniqueness
properties, regularity properties, and the Gel’fand theory of the Banach algebra
A×dB have been studied in [3]. In this paper, we further explore this Banach alge-
bra to study its some spectral properties. These properties are spectral extension
property, topological divisor of zero, multiplicative Hahn-Banach property, Quasi
divisor of zero, topological annihilator condition, Ditkin’s condition, and Tauberian
condition.

Let σA(a) and rA(a) denote the spectrum and the spectral radius of a in A.
Let ∆(A) denote the set of all non-zero, multiplicative, linear functionals on a
commutative Banach algebra A. For a ∈ A, the map â : ∆(A) −→ C is defined
as â(ϕ) = ϕ(a). The topology on ∆(A) is the smallest topology such that â is
continuous for each a ∈ A. Let ϕ ∈ ∆(A) and S be a non-empty subset A.
Define ϕ� : A × S −→ C as ϕ�((a, x)) := ϕ(x). Now let I be an ideal in A,
let ϕ ∈ ∆(I), and u ∈ I such that ϕ(u) = 1. Define ϕ+ : A × I −→ C as
ϕ+((a, x)) := ϕ(au) + ϕ(x). Next, for F ⊂ ∆(A), define F+ := {ϕ+ : ϕ ∈ F} and
F� := {ϕ� : ϕ ∈ F}. In the case F = ∆(A), we shall write ∆+(A) and ∆�(A) for
F+ and F�, respectively. We shall need the following result in proofs.
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Lemma 1.1. [4, Chapter-3] The Gel’fand space ∆(A ×d B) is homeomorphic to
∆+(A)

⊎
∆�(B) equipped with the sum-topology. Moreover, the Shilov boundary

∂(A×d B) is homeomorphic to ∂+(A)
⊎
∂�(B) equipped with the sum-topology.

2. Spectral Properties in Commutative Banach Algebras

Definition 2.1. [7] A norm | · | on A is a spectral norm if rA(a) ≤ |a| (a ∈ A).
The Banach algebra A has spectral extension property (SEP) if every norm on A is
a spectral norm.

Theorem 2.2. If A×d B has SEP, then A and B have SEP.

Proof. Let | · | be a norm on A. Define |(a, b)|1 = |a|+ |b|. Then | · |1 is an algebra
norm on A×d B. Since A×d B has SEP, we have

rA(a) = rA×dB(a, 0) ≤ |(a, 0)|1 = |a| (a ∈ A).

Thus | · | is a spectral norm on A, and so A has SEP. Next suppose that | · | is a
norm on B. Define |(a, b)| = ‖a + b‖ + |b| on A ×d B, where ‖ · ‖ is the Banach
algebra norm on A. Then, by [4, Lemma 3.2.2], | · | is an algebra norm on A×d B.
Since A×d B has SEP,

rB(b) = rA×dB(−b, b) ≤ |(−b, b)| = |b| (b ∈ B).

Hence, | · | is a spectral norm on B. Therefore, B has SEP. �

Definition 2.3. [4, Definition 1.4.18] A non-zero element a ∈ A is a topological
divisor of zero (TDZ) if there is a sequence (an) in A such that ‖an‖ = 1 (n ∈ N)
and either ana −→ 0 as n −→∞. The Banach algebra A has topological divisor of
zero (TDZ) property if every element of A is a topological divisor of zero.

Theorem 2.4. If A and B have TDZ property, then A×d B has TDZ property.

Proof. Suppose that A and B have TDZ property. Let (a, b) ∈ A ×d B. Then
a + b ∈ A. Suppose that a + b 6= 0. Since A has TDZ property, there exists a
sequence (an) ⊂ A such that ‖an‖ = 1 (n ∈ N) and an(a + b) −→ 0 as n −→ ∞.
Then ((an, 0)) is a sequence in A ×d B such that ‖(an, 0)‖1 = ‖an‖ = 1 (n ∈ N)
and (an, 0)(a, b) = (ana + anb, 0) −→ (0, 0) as n −→ ∞. Therefore, (a, b) is a
TDZ. If a + b = 0, then a = −b 6= 0. Since B has TDZ property, there exists a
sequence (bn) in B such that ‖bn‖ = 1 and bnb −→ 0 as n −→ ∞. In this case,
((0, bn)) is a sequence in A×d B such that ‖(0, bn)‖1 = ‖bn‖ = 1 and (0, bn)(a, b) =
(−bnb, bnb) −→ (0, 0) as n −→ ∞. Thus, in all cases, (a, b) is a TDZ in A ×d B.
Hence A×d B has TDZ property. �

Definition 2.5. [7] A commutative Banach algebra A has Multiplicative Hahn-
Banach Property (MHBP) if, for every commutative extension B of A, every ϕ ∈
∆(A) can be extended to some element of ∆(B).

Theorem 2.6. A×d B has MHBP if and only if both A and B have MHBP.

Proof. Let A×dB have MHBP. Let C be a commutative extension of A, then C×dB
is a commutative extension of A×d B. Let ϕ ∈ ∆(A). Then ϕ+ ∈ ∆+(A)]∆�(B).
Since A×d B has MHBP, there exists η̃ ∈ ∆(C ×d B) = ∆+(C) ]∆�(B) such that
η̃ = ϕ+ onA×dB. Now, if η̃ ∈ ∆�(B), then we get ϕ(a) = ϕ+((a, 0)) = η̃((a, 0)) = 0
on A. This is not possible. Hence, η̃ must be in ∆+(C). Therefore, there exists
ϕ̃ ∈ ∆(C) such that η̃ = ϕ̃+ on C ×d B. Also, η̃ = (ϕ̃)+ = ϕ+ on A ×d B, implies
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ϕ̃ = ϕ on A. Thus ϕ̃ is an extension of ϕ. Hence A has MHBP. Similarly, it can
be proved that B has MHBP.

Conversely, assume that A and B have MHBP. Let C be any extension of A×dB.
Then C is an extension of both A ×d {0} and {0} ×d B. Let η̃ ∈ ∆+(A)

⊎
∆�(B).

Then either η̃ ∈ ∆+(A) or η̃ ∈ ∆�(B). Suppose that η̃ ∈ ∆+(A). Then η̃ = ϕ+

for some ϕ ∈ ∆(A). Since C is an extension of A, by the hypothesis, ϕ can be
extended to some element ϕ̃ of ∆(C). Then η̃ = ϕ̃+ ∈ ∆(C) and η̃ = ϕ̃+ = ϕ+ on
A ×d B. Similarly, if η̃ ∈ ∆�(B), then also it can be extended to some element of
∆(C). Thus A×d B has MHBP. �

Definition 2.7. [6] A commutative Banach algebra A has Quasi Divisor of Zero
(QDZ) property if there exists an open subset G of ∆(A) such that

(1) ∂(A) ⊂ G;
(2) For every open subset U of G, there exist a ∈ A and a non-empty, open set

V ⊂ U such that

â(ϕ) =

{
0 if ϕ ∈ U c
1 if ϕ ∈ V .

Theorem 2.8. A×d B has QDZ property iff both A and B have QDZ property.

Proof. Let A×dB has QDZ property. Then there exists an open set G̃ ⊂ ∆(A×dB)
which satisfies the following properties.

(1) ∂+(A) ] ∂�(B) ⊂ (G̃).

(2) For every open subset Ũ of G̃, there exists (a, b) ∈ A×dB and a non-empty

open subset Ṽ of Ũ such that

(a, b)̂(ϕ) =

{
0 (ϕ ∈ Ũ c);
1 (ϕ ∈ Ṽ ).

Let GA = {ϕ ∈ ∆(A) : ϕ+ ∈ G̃} and GB = {ϕ ∈ ∆(B) : ϕ� ∈ G̃}. Then GA
and GB are open sets in ∆(A) and ∆(B), respectively as such that G+

A ∪GB� = G̃.

Also, from (1) above, we get ∂A ⊂ GA and ∂B ⊂ GB. Now, let U ⊂ GA be open.

Then U+ will be open in G̃. Hence, by (2) above, there exist (a, b) ∈ A ×d B and
a non-empty open set V + ⊂ U+ such that (a, b)∧ = 0 on (U+)c and (a, b)∧ = 1 on
V +. Now, if ϕ ∈ U c, then ϕ+ ∈ (U+)c and (a+ b)∧(ϕ) = ϕ(a+ b) = ϕ+((a, b)) = 0
on U c. If ϕ ∈ V , then ϕ+ ∈ V + and (a + b)∧(ϕ) = ϕ+((a, b)) = 1. Hence A has
QDZ property. By similar arguments, it follows that B has QDZ property.

Conversely, suppose A and B have QDZ property. Then there exist open subsets
GA ⊂ ∆(A) and GB ⊂ ∆(B) satisfying the properties in the definition of QDZ.

Then G̃ = G+
A ∪GB� and

∂(A×d B) = ∂+(A) ] ∂�(B) ⊂ G+
A ∪GB� = G+

A ∪GB� = G̃.

Let Ũ ⊂ G̃ be open. Then the corresponding sets UA and UB are open in GA
and GB, respectively. Hence, there exist a ∈ A and b ∈ B such that â = 0 outside

UA, â = 1 on some non-empty open subset VA of UA, b̂ = 0 outside UB and b̂ = 1 on

some non-empty open subset VB of UB. Then (a−b, b)∧ = 0 on Ũ c = (U+
A )c∪(UB�)

c

and (a− b, b)∧ = 1 on Ṽ = V +
A ∪ VB� ⊂ Ũ . Hence A×d B has QDZ property. �
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Definition 2.9. [6] Let I be an ideal of a commutative semisimple Banach algebra
A. A separating net for I is a net (qλ)λ∈Λ of quasi divisors of zero in A such that

(1) sup{rA(qλ) : λ ∈ Λ} <∞;
(2) lim

λ→∞
rA(aqλ) = 0 (a ∈ I);

(3) There exists an element b ∈ A such that qλb = qλ (λ ∈ Λ).

Definition 2.10. [6] A commutative Banach algebra A satisfies Topological An-
nihilator (TAN) condition if there exists a dense set D ⊂ ∂A such that, for every
ϕ ∈ D, the kerϕ admits a separating net.

Theorem 2.11. A×d B has TAN property iff both A and B have TAN property.

Proof. Let A×dB has TAN property. Then there exists dense subset D̃ of ∂(A×dB)

such that ker η̃ (η̃ ∈ D̃) admits a separating net. Let DA = {ϕ ∈ ∆(A) : ϕ+ ∈ D̃}.
Then DA is a dense subset of ∂A. Let ϕ ∈ DA. Then ϕ+ ∈ D̃. Hence kerϕ+

admits a separating net say ((aλ, bλ))λ∈Λ. Then (aλ + bλ)λ∈Λ is a separating net
for kerϕ. Thus A has TAN property. By similar arguments it follows that B has
TAN property.

Conversely, assume that A and B have TAN property. Then there exist dense
subsets DA ⊂ ∂A and DB ⊂ ∂B such that kerϕ (ϕ ∈ DA∪DB) admits a separating

net. Let D̃ = D+
A ∪DB�. Then D̃ is a dense subset of ∂+(A) ∪ ∂�(B). Let η̃ ∈ D̃.

Then either η̃ = ϕ+ for some ϕ ∈ DA or η̃ = ψ� for some ψ ∈ DB. If η̃ = ϕ+, then
kerϕ admits a separating net (aλ)λ∈Λ. Hence ((aλ, 0))λ∈Λ is a separating net for
ker η̃. Similarly, if η̃ = ψ�, then kerψ admits a separating net (bλ)λ∈Λ. In this case,
((−bλ, bλ))λ∈Λ is a separating net for ker η̃. Hence A×d B has TAN property. �

Lemma 2.12. Let a ∈ A and b ∈ B. Then (a, b)∧ ∈ Cc(∆(A×d B)) if and only if

(a+ b)∧ ∈ Cc(∆(A)) and b̂ ∈ Cc(∆(B)).

Proof. This follows from the definition of the support. �

Definition 2.13. [1, Definition 4.1.31] Let A be a commutative Banach algebra.
Then A satisfies

(1) Ditkin’s condition at ϕ ∈ ∆(A) if for every a ∈ ker(ϕ), there exists a
sequence (an) in A such that ân ∈ Cc(∆(A)), ϕ /∈ suppân and ana −→ a
as n −→∞.

(2) Ditkin’s condition at infinity if for a ∈ A, there exists a sequence (an) in A
such that ân ∈ Cc(∆(A)) and ana −→ a as n −→∞.

(3) Ditkin’s condition if it satisfies Ditkin’s condition at every ϕ ∈ ∆(A) and
at infinity.

Theorem 2.14. A×dB satisfies Ditkin’s condition iff both A and B satisfy Ditkin’s
condition.

Proof. Let A ×d B satisfies Ditkin’s condition. Let ϕ ∈ ∆(A) and a ∈ kerϕ.
Then (a, 0) ∈ kerϕ+. Since A ×d B satisfies Ditkin’s condition, there exists a
sequence ((an, bn)) in A ×d B such that (an, bn)∧ ∈ Cc(∆(A ×d B)) (n ∈ N),
ϕ+ /∈ supp(an, bn)∧ and (an, bn)(a, 0) −→ (a, 0) as n −→ ∞. Then (an + bn) is
a sequence in A such that (an + bn)∧ ∈ Cc(∆(A)) (n ∈ N), due to Lemma 2.12,
ϕ /∈ supp(an + bn)∧ and (an + bn)a −→ a as n −→ ∞. Thus A satisfies Ditkin’s
condition at every ϕ ∈ ∆(A). By similar arguments, it follows that B satisfies
Ditkin’s condition at every ψ ∈ ∆(B).
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Next we show that A and B satisfy Ditkin’s condition at infinity. Let a ∈ A.
Since A×dB satisfies Ditkin’s condition at infinity, there exists a sequence ((an, bn))
in A×dB such that (an, bn)∧ ∈ Cc(∆(A×dB)) and (an, bn)(a, 0) converges to (a, 0)
as n −→∞. Then (an+bn) is a sequence in A such that (an+bn)∧ ∈ Cc(∆(A)) due
to Lemma 2.12 and (an + bn)a −→ a as n −→ ∞. Therefore, A satisfies Ditkin’s
condition at infinity. By Similar arguments, it follows that B satisfies Ditkin’s
condition at infinity.

Conversely, assume that both A and B satisfy Ditkin’s condition. Let ϕ+ ∈
∆+(A) and (a, b) ∈ kerϕ+. Then a+b ∈ ker(ϕ). Since A satisfies Ditkin’s condition
at ϕ, there exists a sequence (an) in A such that (ân) ⊂ Cc(∆(A)), ϕ /∈ suppân and
an(a+ b) −→ a+ b as n −→∞. Since B satisfy ditkin’s condition at infinity, there

exists a sequence (bn) in B such that (b̂n) ∈ Cc(∆(B)) and bnb −→ b as n −→ ∞.
Then ((an−bn, bn)) is a sequence in A×dB such that (an−bn, bn)∧ ∈ Cc(∆(A×dB))
due to Lemma 2.12, ϕ+ /∈ supp(an − bn, bn)∧ and (an − bn, bn)(a, b) −→ (a, b)
as n −→ ∞. Hence, A ×d B satisfies Ditkin’s condition at every ϕ+ ∈ ∆+(A).
Similarly, it follows that A×d B satisfies Ditkin’s condition at every ψ� ∈ ∆�(B).

Next we show that A×dB satisfies Ditkin’s condition at infinity. Fix an arbitrary
element (a, b) ∈ A×d B. Since both A and B satisfy Ditkin’s condition at infinity,

there exist sequences (an) in A and (bn) ∈ B such that (ân) ∈ Cc(∆(A)), (b̂n) ∈
Cc(∆(B)), (a+b)an −→ a+b and bnb −→ b. Therefore (an−bn, bn)∧ ∈ Cc(∆(A×B)
and (an − bn, bn)(a, b) −→ (a, b). Hence A ×d B satisfies Ditkin’s condition at
infinity. �

Definition 2.15. [5, Definition 8.1.2] A commutative Banach algebra A is said to
be a Tauberian algebra if the set {a ∈ A : â ∈ Cc(∆(A))} is dense in A.

Theorem 2.16. A×d B is Tauberian iff both A and B are Tauberian.

Proof. Let A ×d B be a Tauberian algebra. Let a ∈ A and ε > 0. Since A ×d B
is Tauberian, there exits (a0, b0) ∈ A ×d B such that (a0, b0)∧ ∈ Cc(∆(A ×d B))
and ‖(a, 0) − (a0, b0)‖1 = ‖a − a0‖ + ‖b0‖ < ε. Then (a0 + b0)∧ ∈ Cc(∆(A)) and
‖(a0 + b0)− a‖ ≤ ‖a− a0‖+ ‖b0‖ < ε. Therefore, A is Tauberian. Now, let b ∈ B
and ε > 0. Since A ×d B is Tauberian, there exits (a1, b1) ∈ A ×d B such that
(a1, b1)∧ ∈ Cc(∆(A ×d B)) and ‖(0, b) − (a1, b1)‖1 = ‖a1‖ + ‖b − b1‖ < ε. Since

(a1, b1)∧ ∈ Cc(∆(A ×d B)), by Lemma 2.12, b̂1 ∈ Cc(∆(B)) and ‖b − b1‖ < ε.
Therefore, B is Tauberian.

Conversely, suppose that A and B are Tauberian algebra. Let (a, b) ∈ A ×d B
and ε > 0. Since A and B are Tauberian, there exist a0 ∈ A and b0 ∈ B such that

â0 ∈ Cc(∆(A)), b̂0 ∈ Cc(∆(B)), ‖(a+ b)− a0‖ < ε/3 and ‖b− b0‖ < ε/3. Therefore,
by Lemma 2.12, (a0 − b0, b0)∧ ∈ Cc(∆(A×d B)). Also

‖(a, b)− (a0 − b0, b0)‖1 = ‖a− a0 + b0‖+ ‖b− b0‖
≤ ‖(a+ b)− a0‖+ ‖b0 − b‖+ ‖b− b0‖ < ε.

Therefore A×d B is a Tauberian algebra. �

References

1. H. G. Dales, Banach algebras and automatic continuity, Oxford University Press, 2000.

2. H. V. Dedania and H. J. Kanani, Some Banach algebra properties in the cartesian product of
Banach algebras, Annals of Funct. Anal., 5(1) (2014)51-55.

Paper ID: ART2020185 10.21275/ART2020185 322 

International Journal of Science and Research (IJSR)

Volume 8 Issue 8, August 2019

ISSN: 2319-7064

www.ijsr.net

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426



6 H. V. DEDANIA AND H. J. KANANI

3. H. V. Dedania and H. J. Kanani, Characterization of Gel’fand space of the Banach al-
gebra A ×d B with direct-sum product, Mathematics Today, April 2018 - Special issue,
34(A)(2018)188-194.

4. H. J. Kanani, Spectral and uniqueness properties in various Banach algebra product, Ph.D.
Thesis, Sardar Patel University, 2016.

5. R. Larsen, Banach Algebras: An Introduction, Marcel Dekker, New York, 1973.

6. M. J. Meyer, Submultiplicative norms on Banach algebras, Ph.D. Thesis, University of Oregon,
1989.

7. M. J. Meyer, The spectral extension property and extension of multiplicative linear functional,
Proc. American Math. Soc., 112(3)(1991)885-861.

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120,

Gujarat, India.

E-mail address: hvdedania@yahoo.com

Department of Mathematics, Bahauddin Science College, Junagadh-362001, Gujarat,

India.
E-mail address: hitenmaths69@gmail.com

Paper ID: ART2020185 10.21275/ART2020185 323 

International Journal of Science and Research (IJSR)

Volume 8 Issue 8, August 2019

ISSN: 2319-7064

www.ijsr.net

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426




