
International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Implementation of SDN Controller as Load 

Balancing Using Datacenter Topology 
 

Zahraa Alaa Baqer
1
, Mohammed Najm Abdullah

2
 

 

 1, 2Department of Computer Engineering, University of Technology, Baghdad, Iraq 

 

 

Abstract: The load balancing is the most important issue which helps to reduce traffic in datacenter topology. However balancing the 

traffic load and optimizing  better path are very important .In this paper we used Dijkstra’s Algorithm to implement the load balancing 

in software define network (SDN) controller. Mininet and floodlight controller were used to setup the network environment. The result 

show that the load balancing algorithm is increased bandwith and reduced latency of  the network, in order to achieve a better 

performance and better resource utilization of the network. . 

 

Keywords: Software Define Network (SDN), Floodlight Controller, Dijkstra’s algorithm, Mininet, Dynamic Load Balancing, 

OpenFlow(OF), Jperf 

 

1. Introduction 
 

Software define network (SDN) is an emerging technology 

and is a shortcut to the next generation of infrastructure in 

network engineering. SDN requires some mechanisms for 

the centralized controller to communicate with the 

distributed data plane as shown in Figure 1. In this way, the 

controller is a basic segment of the SDNs design that add 

achievement or disappointment of SDN. SDN is controlled 

by software applications and SDN controllers rather than the 

traditional network management consoles and commands 

that require a lot of administrative overhead and could be 

tedious to manage on a large scale[1].  

 

SDN can transform today’s static networks into more 

flexible, programmable platforms to provide scalability to 

support large data centers. It also provides virtualization that 

is needed to support automated, dynamic and secure cloud 

environment[2]. 

 
Figure 1: The Architecture of SDN 

 

In this paper, we proposed a dynamic load balancing 

algorithm that are implemented in SDN controller based on 

datacenter network topology. We are using a Dijkstra’s 

algorithm to compute the shortest paths of the same length 

and link cost between nodes based on the hop count. In load 

balancing algorithm, we can find the best path of each of the 

link present that can adapt to the topology changes. The 

floodlight controller used to implement the load balancing 

algorithm and compare it with before load balancing 

algorithm, which  are used the fat tree datacenter network 

topology that run on the Mininet emulation tool. 

 

2. Related work 
 

SDN is a hot topic for research these days; meaning that 

there are many published papers about different SDN related 

investigation. Some of those related to the problem statement 

are discussed next. 

 

J.-R. Jiang et al., 2014 [3] proposed a load balancing 

algorithm and a multicast algorithm in SDN on the basis of 

the extended Dijkstra’s algorithm for a graph derived from 

the underlying SDN topology. Which used Pyretic to 

implement the proposed algorithms with the Mininet 

emulation tool. The simulation results show that the 

proposed load balancing algorithm outperforms others in 

terms of the end-to-end latency, response time, throughput, 

and standard deviation. 

 

G. Senthil  and S. Ranjani, 2015 [4] proposed an SDN 

approach using OpenFlow protocol which was implemented 

to improve efficiency using round robin load balancing. Here 

the http demands from various customers will be coordinated 

to various predefined characterized http servers depending 

on round robin algorithm.  

 

Y.-L. Lan et al., 2016 [5] used SDN-based datacenter 

networks for dynamic load balanced path optimization, using 

EstiNet network simulator to build datacenter topology. 

Load balancing, which changes paths of flows during flow 

transmissions, achieves load balancing among different links, 

and efficiently resolves the congestion problem in datacenter 

networks. 

 

M. Beshley et al., 2017 [6] proposed the model of adaptive 

routing of heterogeneous traffic with respect to the current 

requirements regarding quality of service provisioning. The 

testbed uses the Mininet to investigate the behavioral 

characteristics of SDN and Open vSwitch as OpenFlow 

enabled switch. Traffic is generated by the Iperf application. 

Paper ID: ART2020164 10.21275/ART2020164 155 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

A network testing tool capable to create TCP and UDP 

traffic between nodes. 

 

Sminesh C. N. , 2019 [7] implemented a proactive traffic 

analysis based on load balancing using OF messages. The 

SDN control plane periodically monitors flow level statistics 

and utilization in network, which improve throughput and 

the network efficiency.  

 

3. Technical background 
 

3.1 SDN controller 

 

Controller decides where and how to make forwarding 

decision based on application that is written on top of 

floodlight controller. In the SDN, the controller is a global 

view of the network topology. Here we selected floodlight 

controller as a suitable open source, Java based OF 

controller in SDN,which is available under the Apache 2.0 

license. The Floodlight is intended to work with the 

developing number of switches, routers, virtual switches, and 

access points that support the OF standard as shown in 

Figure 2. Southbound interface in controller provides 

information to the switch and northbound interface allow 

floodlight controller to interact with various applications. It 

provides a framework for communicating with SDN switches 

using OF protocol. OF is the most common protocol used in 

SDN approach which are used to communicate the controller 

with all the network elements[8]. 

 
Figure 2: The structural design of floodlight controller[8]. 

 

3.2 Mininet emulation 

 

It is a network emulator which makes a system of virtual 

hosts, switches, controllers, and connections. Mininet has run 

standard Linux arrange programming, and its switches 

bolster OF for profoundly adaptable custom steering and 

SDN technology. That can easily connect with system by 

software CLI (Command Line Interface) and API 

(application program interface). Mininet is utilized generally 

in view of: quick to begin a straightforward system, 

supporting custom topologies and bundle sending, running 

genuine projects accessible on Linux, running on PCs, 

servers, virtual machines, having sharing and recreating 

capacity, simple to utilize, being in open source and dynamic 

advancement state. Mininet uses process based virtualization 

to emulate entities on a single OS kernel by running a real 

code, including standard network applications, the real OS 

kernel and the network stack. Therefore, a project that works 

correctly in Mininet can usually move directly to practical 

networks composed of real hardware devices. The code that 

is to be developed in Mininet, can also run in a real network 

without any modifications. It supports large scale networks 

containing large number of virtual hosts and switches[9] [10] 

[11] . 

 

3.3 Jperf 

 

Jperf stands for java perf. It is a graphical tool open source 

written in java that represents a GUI for running iperf 

(Internet Performance Working Group) without having to 

bother learning the CLI options. Which executed between 

any two hosts in client/server model to analysis the traffic for 

TCP or UDP. The server displays the result of  test network 

performance while the client acts to send the traffic to server 

via IP and port number of server. Jperf is an exceptionally 

valuable and dependable apparatus to quantify the feasible 

throughput and jitter in system interface. Jperf is a simple 

framework for writing and running automated performance 

and scalability tests, also be used to measure 

bandwidth,packet loss, delay, jitter, and other common 

network problems [12].  

 

Jperf is a useful tool which can be used to measure 

performance on IP networks, as shown in Figure 3. The test 

results are automatically graphed and presented in a format 

that is easy to read. Jperf provides many benefits over iperf 

which is a command line only application. Besides being 

reliable and easy to use, jperf is completely free. The utility 

is fully open source and runs on both Windows and Linux 

systems[13]. 

 

Jperf tool can be used in this paper for measuring the 

performance of SDN technology in Mininet emulation, 

which can be run and used by the following steps: 

 Download jperf tool version 2.0.2 on Ubuntu [14].  

 The 'java' (JRE 1.5+) executable has to be in the system 

path. 

 Decompress the file of jperf by double-clicking and from 

the terminal navigate to the untarred directory. 

 Set execution permissions on the jperf.sh script (execute 

'chmod u+x jperf.sh'). 

 In the terminal, run the following script  ‘./jperf.sh’. 

 

After running jperf software between two devices in the 

network, the results can be achieved by  selecting the 

following options, as shown in Figure 3: 

1) Choose iperf mode:  

For client, use the IP for server address and port number. 

For server, use listened port number. 

2) In application layer options, close the numbers 

transmitted in seconds. 

Paper ID: ART2020164 10.21275/ART2020164 156 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

3) Select the output format such as Gbits, Gbytes, Mbits, 

Mbytes, Kbits or Kbytes for the application layer options. 

4) In transport layer options, choose the protocol used for 

measuring the performance of networks such as TCP or 

UDP. 

5) Run the software by closing ‘run iperf’ button.  

6) Save the results.    

 

 
Figure 3: Jperf tool. 

 

3.4 OpenFlow(OF) 

The OF is a protocol between SDN controller and switching 

devices that defines an API between forwarding layer and 

controller in SDN. The OF protocol is supported network 

devices that correspondence between the control and data 

planes which access the forwarding data layer to provide an 

external application of network devices[15]. 

The network operting system is connected with SDN device 

by control communicaition in controller as seen in Figure 4. 

There are three parts associated in this protocol which are 

secure channel, groub table and more than one of flow tables 

that  can communicate by OF swiches as shown in Figure 5. 

Secure channel is responsible for communicating a virtual 

switch  like Open Virtual Switches(OVS) with SDN 

controller remotely, also for exchanging OF messages 

between an OF switch and OF controller. In turn, each 

switch consists of a series of tables, implemented in 

hardware or firmware to manage the flows of packets 

through the switch. All incoming packets from a particular 

flow are matched with the flow table. The flow table 

describes the functions that are to be performed on the 

packets. There may be one or more flow tables. A Group 

table does many actions on one or more flows. Flow table 

directs a flow to the group table. This can define the 

capacities and protocols used to centrally manage switches 

via a centralized controller. OF uses the concept of flows to 

identify network traffic based on pre-defined match rules 

which can be statically or dynamically programmed by the 

SDN control software[2, 16, 17]. 

 

Figure 4: The OpenFlow protocol with SDN controller 

 
Figure 5: The OpenFlow protocol with OpenFlow switch 

 

4. System model for SDN 
 

In this section, we present the system model for SDN using a 

dynamic load balancing algorithm for SDN in detail, also 

presented the network design and implemented based on 

datacenter network topology. 

 

4.1 Proposed system 

 

The proposed algorithm is Dijkstra algorithm that used to 

compute the shortest path between two nodes over network 

based on the hop count, which enable to minimize the search 

to a littel region in fat tree topology, and our basic aim is to 

achieve the efficient result and higher performance.  

 

The traffic flows are ordered according to their priority. 

Among selected paths, the path with least cost and load is 

selected and traffic flow is forwarded on that route. The new 

flows rules are then pushed to OVS to update switch 

forwarding tables. The performance of the algorithm is 

evaluated in a fat tree datacenter topology by collecting 

operational data of the links and switches. The pseudocode 

of proposed algorithm is shown below: 

 

Algorithm 1: Dynamic Load Balancing 

 

Paper ID: ART2020164 10.21275/ART2020164 157 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
 

Dijkstra algorithm can be used for both directed and 

undirected graphs, and G is the graph data structure 

generated by networkx library. Source is the starting point 

and target is the ending point. The start point, end point, and 

weight are all optional parameters. Algorithm 2 shows how 

to compute shortest path between nodes in the graph by 

networkx.  

 

Algorithm 2: Dijkstra’s algorithm by networkx function 

 
 

Networkx is a Python language software package for the 

creation, manipulation, and study of the structure, dynamics, 

and function of complex networks. Networkx supports the 

creation of simple undirected graphs, directed graphs, and 

multigraphs; built-in many standard graph theory algorithms, 

including Dijkstra algorithm, where nodes can be arbitrary 

data, such as image files. With networkx you can load and 

store networks in standard and nonstandard data formats, 

generate many types of random and classic networks, 

analyze network structure, build network models, design new 

network algorithms, draw networks, and much more. It 

supports arbitrary boundary value dimensions, feature-rich, 

and easy to use. To install the networkx  graph on ubuntu, 

use the following command[18]: 

$ sudo apt-get install networkx 

Start python for importing the package of networkx by the 

following command: 

import networkx as nx 

G = nx.Graph() 

 

Table 1 shows the parameters that are used in the algorithm 

with networkx. 

 

Table 1: Key notation in the algorithms 
Parameter Description 

G Networkx graph 

source Starting node for path 

target Ending node for path 

weight (None or string, optional (default = None)) – If None, 

every edge has weight/distance/cost 1. If a string, use 

this edge attribute as the edge weight. Any edge 

attribute which is not presented defaults to 1. 

method (string, optional (default = ‘dijkstra’)) – The 

algorithm to compute the path lengths. Supported 

options: ‘dijkstra 

Returns paths A generator of all paths between source and target. 

Return type generator of lists 

T Traffic Matrix 

DCN Datacenter Network Topology 

MLU Maximum Link Utilization 

L Link for path selected 

fsrc Flow of  source 

fdst Flow of destination 

Listp list of all possible path 

Psel Path selected 

 

4.2 Network design 

 

The network design in the second scenario uses datacenter 

network topology(Fat Tree Topology) to implement load 

balancing in the SDN application. Datacenter network 

topology is created by a custom topology in Mininet 

emulation such that analysis of load balancer script is 

possible. The fat tree topology with k=3 (k for number of 

layers) arrangement is considered in the work and 

implemented as shown in Figure 6. The topology here 

consists of 12 hosts and a total of 15 switches with 3 core 

switches and 6 switches for each of the aggregation and the 

edge layer. We wrote a python script in which we made API 

calls to addlink(), addHost(), and addswitch().  

 addlink():It is used to add link either to connect switch-

switch or to connect switch-host.  

 addHost():It is used for addition of hosts in the network 

topology by stating its IP address.  

 addswitch():It is used to add new switches in the network 

topology. 

 
Figure 6: Datacenter network topology used in simulation. 

 

4.3 Implementation the proposed system  

 

The main steps to implement the proposed algorithm 

based SDN environment are outlined in the flowchart shown 

in Figure 7, and it can explain the steps for implementation 

the load balancing algorithm in details as follows : 

 

Paper ID: ART2020164 10.21275/ART2020164 158 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

 
Figure 7: Steps to implemented load balancing algorithm 

using SDN. 

 

 Created a custom topology (Fat tree datacenter 

network) using python language in mininet with (12) 

hosts and (15) switches. In the first run the floodlight 

controller outside of mininet and the executed 

topology in mininet network using remote controller 

with IP address for controller to set it to use.  

 Test the connectivity for network performance till there is 

(0) % dropping in the packets. Testing is done by running 

the command ping from source to destination or pingall 

command on mininet to see the testing ping connectivity 

of the hosts in the network. 

 Run the load balancing algorithm between two host, 

in this paper using h1 (10.0.0.1) and h4 (10.0.0.4) 

for testing. 

 Check output port of switches before load balancing 

by ping h1 to h4 to verify the packet flow using 

Wireshark. Also check the bandwidth utilization by 

using iperf command between h1 and h4. 

 Enter hosts (h1 and h4) and neighbor host (h3) after 

run the python script for load balancer. 

 Create dictionaries to store information like: 

IP and Mac. 

Host, switch ports. 

Link ports (source and destination, source and destination 

port). 

Paths (source to destination). 

Final link cost (first to second switch). 

 Retrieve device information like IP address, MAC, ports, 

switched and store these in corresponding dictionaries. 

 Get the information of all connected switches with their 

links. Extract the source, destination switches and their 

corresponding port numbers. 

 Calculate route/path from source to destination. First, the 

graph will give the shortest paths based on minimum hop 

counts from source to destination and link costs will be 

calculated for these paths using networkx, which finds the 

path with the least load and forwards traffic on that path. 

Store the paths in path dictionary with key as switch IDs. 

 After fetching route information, access the REST API 

and retrieve transmission rate and add it to the cost 

variable. This will give link costs for all the links for the 

switches in the shortest paths. 

 Find the minimum cost path from source to destination and 

add a flow rule based on these link costs. 

 After load balancing: Use jperf command and ping from 

h1 to h4 and observe the increase in bandwidth, which 

verifies that the load balancer is working. Estimate the 

ping time from source to destination and verify that ping 

time decreases after running the load balancer script. 

 

5. Result and discussion 
 

The SDN Load Balancing is achieved using Dijkstra’s 

algorithm to find the shortest path based on the 

number of hop and using networkx package python for 

graphs, which can be shown by using four different 

methods: 

1) Ping statistics of hosts between which load balancing is 

done  

2) Bandwidth of the path using iPerf and jperf 

3) The best path using Wireshark 

4) Total link costs and the shortest paths are calculated for 

all these paths among the hosts. 

 

Figure 8: Results for ping statistics before and after load 

balancing algorithm. 

 

Figure 8 shows the results of the run of the ping command, 

where h1 and h4 are chosen to test RTT before and after 

using the load balancing algorithm. The average ping time 

before Load Balancing was (15.247) ms, but after Load 

Balancing the average time reduced to (3.1462) ms, as 

shown in the figure above. 

 

The path bandwidth was checked before and after load 

balancing. Iperf and jperf tools are used to measurement 

bandwidth for TCP or UDP. In TCP measurements, the 

results show that the bandwidth of the path before load 

balancing was much less than the bandwidth of the best path 

selected after load balancing as shown in Figure 9 and Figure 

10. 

Paper ID: ART2020164 10.21275/ART2020164 159 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Figure 9: Bandwidth of the Path before Load Balancing 

 
Figure 10: Bandwidth of the Path after Load Balancing 

 

In UDP measurements, the bandwidth and jitter tests using 

jperf tool. The results show that the bandwidth before and 

after running load balancing is (0) Gbits/second, since the 

SDN controller acts as a load balancing and in the UDP no 

transmission was used to checked jitter and packet loss. The 

results of jitter measurement show that the jitter before load 

balancing is (1.18) ms and was decreased after load 

balancing to become (0.05) ms, therefore the path before 

load balancing was much higher than the jitter of the best 

path selected after load balancing as shown in Figure 11 and 

Figure 12.   

 

 
Figure 11: UDP before Load Balancing. 

 

 
Figure 12: UDP after Load Balancing. 

 

6. Conclusion  
 

The load balancers are successfully implemented in 

the SDN controller under the fat tree datacenter 

topology. In this paper we implemented Dijkstra’s 

algorithm with OF switch in SDN environment using 

Mininet emulation tools and floodlight controller. The 

network performance was tested before and after 

running the load balancing algorithm. As the results 

show, implementing a load balancer algorithm with 

SDN controller do perform better throughput and 

decreacing the latency of the network, to accomplish a 

much better performance of the network. 

 

References 
 

 

[1] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, "A 

survey on software-defined networking," IEEE 

Communications Surveys & Tutorials, vol. 17, pp. 27-

51, 2015. 

[2] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. 

Rothenberg, S. Azodolmolky, and S. Uhlig, "Software-

defined networking: A comprehensive survey," 

Proceedings of the IEEE, vol. 103, pp. 14-76, 2015. 

[3] J.-R. Jiang, W. Yahya, and M. T. Ananta, "Load 

Balancing and Multicasting Using the Extended 

Dijkstra's Algorithm in Software Defined Networking," 

in ICS, 2014, pp. 2123-2132. 

[4] G. Senthil  and S. Ranjani, "Dynamic Load Balancing 

using Software Defined Networks," International 

Journal of Computer Applications, 2015. 

[5] Y.-L. Lan, K. Wang, and Y.-H. Hsu, "Dynamic load-

balanced path optimization in SDN-based data center 

networks," in 2016 10th International Symposium on 

Communication Systems, Networks and Digital Signal 

Processing (CSNDSP), 2016, pp. 1-6. 

[6] M. Beshley, M. Seliuchenko, O. Panchenko, and A. 

Polishuk, "Adaptive flow routing model in SDN," in 

2017 14th International Conference The Experience of 

Designing and Application of CAD Systems in 

Microelectronics (CADSM), 2017, pp. 298-302. 

[7] S. CN, "A Proactive Flow Admission and Re-Routing 

Scheme for Load Balancing and Mitigation of 

Paper ID: ART2020164 10.21275/ART2020164 160 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 8, August 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Congestion Propagation in SDN Data Plane," 

International Journal of Computer Networks & 

Communications (IJCNC) Vol, vol. 10, 2019. 

[8] R. Wallner and R. Cannistra, "An SDN approach: 

quality of service using big switch’s floodlight open-

source controller," Proceedings of the Asia-Pacific 

Advanced Network, vol. 35, pp. 14-19, 2013. 

[9] Mininet: An Instant Virtual Network on your Laptop (or 

other PC), available online: http://mininet.org/ ,access 

on april 2019. 

[10] Introduction to Mininet - mininet/ mininet wiki – 

GitHub, available online: 

https://github.com/mininet/mininet/wiki/Introduction-to-

Mininet ,April 2019.  

[11] K. Kaur, J. Singh, and N. S. Ghumman, "Mininet as 

software defined networking testing platform," in 

International Conference on Communication, 

Computing & Systems (ICCCS), 2014, pp. 139-42. 

[12] Iperf - The TCP/UDP bandwidth measurement tool. 

[Online]. Available at: http://iperf.sourceforge.net ,April 

2019. 

[13] L. Mazalan, S. S. S. Hamdan, N. Masudi, H. Hashim, R. 

A. Rahman, N. M. Tahir, et al., "Throughput analysis of 

LAN and WAN network based on socket buffer length 

using JPerf," in 2013 IEEE International Conference on 

Control System, Computing and Engineering, 2013, pp. 

621-625. 

[14] Jperf installation 

https://code.google.com/archive/p/xjperf/downloads , 

last visited May 2019. 

[15] K. Suzuki, K. Sonoda, N. Tomizawa, Y. Yakuwa, T. 

Uchida, Y. Higuchi, et al., "A survey on OpenFlow 

technologies," IEICE Transactions on Communications, 

vol. 97, pp. 375-386, 2014. 

[16] A. Lara, A. Kolasani, and B. Ramamurthy, "Network 

innovation using openflow: A survey," IEEE 

communications surveys & tutorials, vol. 16, pp. 493-

512, 2014. 

[17] R. Masoudi and A. Ghaffari, "Software defined 

networks: A survey," Journal of Network and Computer 

Applications, vol. 67, pp. 1-25, 2016. 

[18] NetworkX, 2019. Available in: 

http://networkx.readthedocs.io/en/networkx-1.11/. Last 

visited on May 2019 
 

Paper ID: ART2020164 10.21275/ART2020164 161 

http://mininet.org/
http://iperf.sourceforge.net/
http://networkx.readthedocs.io/en/networkx-1.11/



