Decontamination of Profenophos, Acephate, Triazophos and Ethion in Okra at Field Level

Vaneet Yadav¹, Dr. P. G. Shah²

¹Department of Soil Science & Agricultural Chemistry, Anand Agriculture University, Anand, Gujarat, India
²Head of AINP- Pesticide Residue, Anand, Gujarat, India

Abstract: The aim of the study was to find the most effective method which can reduce the residues of pesticides in okra at the maximum level. The magnitude of reduction of profenophos, acephate, triazophos and ethion was observed in the range of 22.99-67.09, 30.14-74.72, 27.00-70.41 and 15.02-73.75 percent respectively. The treatment T₁ (washing under running tap water for 10 min resulted in the maximum removal than rest of the treatments in decontamination of profenophos, triazophos and ethion showing 67.09, 70.41 and 73.75 % respectively. Acephate was reduced in maximum amount i.e. 74.72% by T₁ treatment (dipping in 0.5% acetic acid) which was at par with T₁. Moreover, T₈ (microwave treatment for 2 min) resulted in increase in ethion residues upto 10.81%.

1. Introduction

India is the largest producer of Okra and it is widely grown in Bihar, Gujarat, Odisha, Jharkhand, Andhra Pradesh, Chhattisgarh, Madhya Pradesh, Haryana, and Assam. Okra (Abelmoschus esculentus), is one of the important vegetable crops grown during spring-summer and rainy season in India. It occupies 5.28 thousand ha area and its production is 61.46 thousand metric ton in India (Anon. 2017). It has high nutrition as well as medicinal and industrial value, also it is very common in all sections of people.

Okra suffers heavily at fruiting stage due to attack of shoot and fruit borer causing 70 % damage to the crop making it totally unfit for human consumption (Misra and Singh, 1996; Duara et al., 2003) Leafhopper, Amrasca biguttula biguttula (Ishida) and shoot and fruit borer (Earias spp.) are the major pests of okra. In spite of constant efforts made by the Government and SAU’s in advocating IPM and culturbed practices of pest control, most farmers rely on use of chemical pesticides. Among different vegetable crops, the maximum pesticide usage is found in chilli (5.13 kg a.i /ha) followed by brinjal (4.60 kg a.i /ha), cole crops (3.73 kg a.i /ha) and okra (2-3 kg a.i /ha) (Kodandaram et al., 2013). Indiscriminate use of pesticides particularly at fruiting stage and non adoption of safe waiting period lead to accumulation of pesticide residues in consumable vegetables. Organophosphate group of pesticides contributes more than 50 % of these toxic residues. Among these, profenophos, acephate, triazophos and ethion are most commonly used. Hence, a study entitled ‘Decontamination of profenophos, acephate, triazophos and ethion in okra at field level’ was conducted at AINP on pesticide residue laboratory, AAU, Anand to find out the most effective treatment in decontamination.

2. Materials and Methods

The particulars of materials used during the course of investigation and methods adopted in conducting the present study entitled ‘Decontamination of profenophos, acephate, triazophos and ethion in okra at field level.'

2.1 Decontamination study of organophosphate pesticides by different household processing methods (washing, dipping, cooking and ozone treatment) in okra

2.1.1 Experimental details

An experiment was conducted during 2016-17 at AINP on Pesticide Residue laboratory, AAU, Anand (Gujarat) to study the decontamination of profenophos, acephate, triazophos, and ethion in vegetable samples. Vegetable samples were collected from the plot treated with pesticides, followed by various decontamination treatments. The samples were then analyzed at Pesticide Residue Laboratory for the possible losses of pesticides. The experiment was carried with three replications along with an absolute control treatment.

2.1.2. Line of work

<table>
<thead>
<tr>
<th>Design</th>
<th>: Completely Randomized Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>AINP on pesticide residues, AAU, Anand</td>
</tr>
<tr>
<td>Year</td>
<td>2016-2017</td>
</tr>
</tbody>
</table>
| Pesticides sprayed | 1) Profenophos 50 EC (0.2 % a.i based)
 | 2) Acephate 75 SP (0.25 % a.i based)
 | 3)Triazophos 40 EC (0.1 % a.i based)
 | 4) Ethion 50 EC (0.3 % a.i based) |
| Commodity under study | Okra |
| Number of repetitions | : 3 |
| No. of treatments | : 9 |

Treatment details:

No. of treatments: 9
T₁ treatment: Treated control
T₂ treatment: Washing under running tap water for two minutes.
T₃ treatment: Dipping in tap water for 10 min + T₁
T₄ treatment: Dipping in 2% brine solution for 10 min+T₁
T₅ treatment: Dipping in 0.5 % acetic acid solution for 10 min + T₁
T₆ treatment: Dipping in 0.1 % KMnO₄ solution for 10 min + T₁
T₇ treatment: Ozonation for 15 min
T₈ treatment: Dipping in 0.1 % KMnO₄ and ozonation for 15 min + T₁
T₉ treatment: Microwave treatment for 2 min

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
2.1.3 Experimental setup

Suitable vegetable plants were sprayed with double the recommended dose of the following pesticide profenofos 50 EC (0.2 % a.i. based), acephate 75 SP (0.25 % a.i. based), triazophos 40 EC (0.1 % a.i. based) and ethion 50 EC (0.3 % a.i. based) in the field at Main Vegetable Research Station A.AU, Anand. The fruit samples were collected from field after 24 hrs of the spray. The samples were kept at room temperature for further 24 hrs. Experiment was carried out at AINP on pesticide residue laboratory, AAU, Anand.

Insecticide application

Required spray solution of four organophosphate pesticides viz., profenofos (50 EC), acephate (75 SP), triazophos (40 EC) and ethion (50 EC) were prepared. The required quantity of organophosphate pesticides application was calculated using the following formula:

\[N_1V_1 = N_2V_2 \]

Where, \(N_1 = \) Pesticide available trade formulation, \(V_1 = \) Volume of pesticide to be required (mL or g), \(N_2 = \) Double recommended solution, \(V_2 = \) Volume of water (10 L).

Accordingly, the required quantity of organophosphate formulation was determined by the formula for organophosphate treatments. The calculation of different doses is as under.

Table A: Technical name, trade name and quantity of insecticide required

<table>
<thead>
<tr>
<th>S. No</th>
<th>Insecticide</th>
<th>Trade name & formulation of insecticide</th>
<th>Application rate</th>
<th>Quantity of insecticide required in g or ML</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Profenofos</td>
<td>Curacen (50 % EC)</td>
<td>0.2 % a.i.</td>
<td>10L 40</td>
</tr>
<tr>
<td>2</td>
<td>Acephate</td>
<td>Orkum (75 % SP)</td>
<td>0.25 % a.i.</td>
<td>10L 30</td>
</tr>
<tr>
<td>3</td>
<td>Ethion</td>
<td>Fosmite (50 % EC)</td>
<td>0.3 % a.i.</td>
<td>10L 60</td>
</tr>
<tr>
<td>4</td>
<td>Triazophos</td>
<td>Trizocel (40 %) EC</td>
<td>0.1 % a.i.</td>
<td>10L 25</td>
</tr>
</tbody>
</table>

Collection of vegetable samples

For residue analysis okra samples (2 kg) were collected from field after 24 hrs of the spray. Samples were kept at room temperature for further 24 hrs, after that it was taken for treatments.

2.1.4 Decontamination treatments

Decontamination treatment was carried out in laboratory by different treatments followed by drying at room temperature. Procedures were accomplished either by different washing solution, ozonation and microwave exposure to evaluate their effectiveness on removing such residues.

Methodology

Required solution of all the four organophosphate pesticides at double the recommended dose (a.i. based) was prepared, and sprayed over the vegetable crops. The vegetables samples were collected from field after 24 hrs of spray and kept at room temperature for further 24 hrs. For treated control i.e. \(T_0 \), 250 g of each commodity was taken immediately for the determination of residue level of pesticides before the treatments. The remaining commodity was divided into eight parts, each containing 250 g of the vegetable.

Washing treatment

The vegetable samples were dipped in a jar for 10 minutes filled with aqueous solutions, 0.1 % \(\text{KMnO}_4 \), 0.5 % acetic acid, 2% brine and tap water individually as separate treatment. This was followed by running tap water treatment for 10 min with gentle rotation by hands. The samples were allowed to dry on the blotting paper at room temperature under fan.

Ozonation

Commercial available ozonator was used for ozonation of pesticides treated vegetable samples for the period of 15 minutes as suggested by manufacturer. This ozone treatment was given at concentration of 400 mg h\(^{-1}\) in 2 liters water.

\(\text{KMnO}_4 \) cum Ozonation treatment

Vegetable samples were dipped in 2 L of 0.1 % \(\text{KMnO}_4 \) solution for 15 min along with ozonation treatment.

Microwave treatment

The selected vegetable samples were subjected to microwave oven treatment for 2 min to study the pesticide losses.

2.1.5 Method of Analysis

<table>
<thead>
<tr>
<th>Tests</th>
<th>Instruments</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesticides</td>
<td>GLC-FPD</td>
<td>QuEChERS AOAC (2007)</td>
</tr>
</tbody>
</table>

3. Result & Discussion

The magnitude of reduction of different OP’s are given below in table B and graphically represented by Fig 1. Acephate residues reduction in okra fruits due to different treatments ranged from 30.14 to 74.72 percent. The maximum reduction (74.72 %) of acephate residues was found in treatment \(T_4 \) (dipping in 0.5 % acetic acid solution followed by \(T_1 \)). Treatment \(T_1 \) (washing under running tap water) resulted in 72.37 % loss and was found at par with \(T_1 \) - \(T_5 \) treatment (dipping in 0.1 % \(\text{KMnO}_4 \), followed by \(T_1 \)) was found at par with \(T_1 \) treatment (ozonation for 15 min) and \(T_2 \) treatment (dipping in tap water). \(T_1 \) (dipping in 2 % brine solution followed by \(T_1 \)) and \(T_4 \) (microwave treatment) resulted in moderate reduction of acephate (39.14- 46.03 %) Minimal reduction 30.31 % was found in \(T_7 \) treatment (dipping in 0.1 % \(\text{KMnO}_4 \) and ozonation for 15 min followed by \(T_1 \)). Methamidophos was not detected in any of the treatments.

The magnitude of reduction of profenofos residues ranged from 22.99 to 67.09 percent. The maximum reduction (67.09 %) of profenofos residues was found in \(T_1 \) treatment (washing under running tap water) followed by \(T_4 \) treatment (dipping in 0.5 % acetic acid solution followed by \(T_1 \)) showing 64.96 % reduction of residues and were found at par with each other. \(T_4 \) treatment (dipping in tap water) was found at par with \(T_6 \) treatment (ozonation for 15 min) and showed reduction to the tune of 52.73 – 54.44 percent.
Dipping in 2% brine solution followed by T₁ resulted in 38.72% reduction whereas dipping in 0.1% KMnO₄ along with ozonation followed by T₁ revealed 34.36% reduction. Microwave treatment showed only 24.36% reduction and T₃ (dipping in 0.1% KMnO₄ solution followed by T₃) treatment resulted in minimal removal (22.99%) of residues.

The magnitude of reduction of ethion residues ranged from 15.02 to 73.75 percent. The data revealed that the treatment T₁ (washing under running tap water) resulted in maximum reduction (73.75%) of ethion followed by T₃ treatment (dipping in 0.5% acetic acid for 10 min followed by T₁) revealing 59.30% reduction. T₂ (dipping in tap water treatment) was found to be the next best treatment reducing upto 52.08% of residues. Dipping in 2% brine solution and 0.1% KMnO₄ along with ozonation showed moderate reduction ranging (34.85 – 37.05%). T₃ treatment revealed the minimum reduction of 15.02 percent. Due to T₈ treatment (microwave treatment) there was an increase of the minimum reduction ranging (34.85 to 52.08% of residues. Dipping in 2% brine solution and revealing 59.30% reduction. T₂ (dipping in 0.5% acetic acid for 10 min followed by T₁) resulted in maximum reduction (73.75%) of ethion followed by T₃ treatment showing 46.87% removal of residues.

The reason for dislodging of acephate by 0.5% acetic acid treatment from okra depends upon many factors such as solubility of acephate in different solvents, adherence and adsorption activity in okra, abiotic conditions etc.

Solubility of acephate in different organic solvents ranges from (292.90 to 327.60 mg/mL) K (Wang et al. 2007) which could be the reason for maximum removal by 0.5% acetic acid solution as it is the only organic solvent among all the given treatments. Moreover, morphological attributes of okra fruit also supports this phenomenon. Due to presence of hairy structure & waxy layer, the entry of insecticide inside its deeper tissues is restricted as acephate is slightly systemic.

Furthermore, active entrapping of acephate by waxy layer of okra fruit to most of residues were present over the fruit and as like dissolves like, maximum dislodging of acephate was observed by dipping in 0.5% acetic acid followed by washing under running tap water for 2 min.

Table B: Data of residue reduction in different commodities

<table>
<thead>
<tr>
<th>S.No</th>
<th>Residue (µg g<sup>-1</sup>)</th>
<th>Acphate</th>
<th>Profenophos</th>
<th>Ethion</th>
<th>Triazophos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treatments</td>
<td>X</td>
<td>Y</td>
<td>Z</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>T<sub>0</sub> Control</td>
<td>1.234</td>
<td>-</td>
<td>-</td>
<td>1.170</td>
</tr>
<tr>
<td>2</td>
<td>T<sub>1</sub>: Washing under running tap water for two min</td>
<td>0.341</td>
<td>0.893</td>
<td>72.37</td>
<td>0.385</td>
</tr>
<tr>
<td>3</td>
<td>T<sub>2</sub>: Dipping in tap water for 10 min followed by T<sub>1</sub></td>
<td>0.533</td>
<td>0.701</td>
<td>56.81</td>
<td>0.533</td>
</tr>
<tr>
<td>4</td>
<td>T<sub>3</sub>: Dipping in 2% brine solution for 10 min followed by T<sub>1</sub></td>
<td>0.751</td>
<td>0.483</td>
<td>39.14</td>
<td>0.717</td>
</tr>
<tr>
<td>5</td>
<td>T<sub>4</sub>: Dipping in 0.5% acetic acid solution for 10 min followed by T<sub>1</sub></td>
<td>0.312</td>
<td>0.922</td>
<td>74.72</td>
<td>0.410</td>
</tr>
<tr>
<td>6</td>
<td>T<sub>5</sub>: Dipping in 0.1% KMnO<sub>4</sub> solution for 10 min followed by T<sub>1</sub></td>
<td>0.496</td>
<td>0.738</td>
<td>59.80</td>
<td>0.901</td>
</tr>
<tr>
<td>7</td>
<td>T<sub>6</sub>: Ozonation for 15 min</td>
<td>0.519</td>
<td>0.715</td>
<td>57.94</td>
<td>0.553</td>
</tr>
<tr>
<td>8</td>
<td>T<sub>7</sub>: Dipping in 0.1% KMnO<sub>4</sub> solution for 10 min followed by T<sub>1</sub></td>
<td>0.862</td>
<td>0.372</td>
<td>30.14</td>
<td>0.768</td>
</tr>
<tr>
<td>9</td>
<td>T<sub>8</sub>: Microwave treatment for 2 min</td>
<td>0.666</td>
<td>0.568</td>
<td>46.03</td>
<td>0.885</td>
</tr>
<tr>
<td>10</td>
<td>S.Em.±</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>11</td>
<td>CD</td>
<td>0.03</td>
<td>0.03</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>12</td>
<td>CV(%)</td>
<td>3.78</td>
<td>3.47</td>
<td>3.94</td>
<td>5.62</td>
</tr>
</tbody>
</table>
4. Conclusion

Decontamination of acephate, profenophos, ethion and triazophos was observed in the range of 30.14-74.72, 22.99-67.09, 15.02-73.75 and 27.00-70.42 percent, respectively. Treatment T_1 (washing under running tap water for 10 min) was resulted in maximum removal than rest of the treatments in decontamination of profenophos, ethion and triazophos showing 67.09, 73.75 and 70.42 %, respectively. Acephate was reduced in maximum amount i.e. 74.72 % by T_4 treatment (dipping in 0.5 % acetic acid) which was at par with T_1. The next best treatment was found T_4 (dipping in 0.5 % acetic acid) which resulted in 64.96, 59.30 and 52.17 % reduction of profenophos, ethion and triazophos, respectively. T_1 treatment (washing under running tap water for 10 min) was the second best treatment for removal of acephate upto 72.37 percent. Among all the treatments, T_3 (dipping in 0.1% KMnO₄ followed by T_1) treatment was found to show a minimal effect in reduction of profenophos and ethion. Similarly T_6 (ozonation for 15 min) was least effective in reducing acephate and triazophos residues. Moreover, T_8 (microwave treatment for 2 min) treatment resulted in increase in ethion residues upto 10.81 percent.

5. Acknowledgement

I would like to express my heartfelt thanks to my guide Dr. P.G.Shah for his able guidance and support in this research work. And thanks to parents and all friends who supported me and kept me motivated while I was working on it.

References
