
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Analysis on Four Basic Types of Data Structure in

Searching on External Storage

Nang Noon Kham

University of Computer Studies (Lashio), Burma

Abstract: The idea behind this article is to give an overview of a simple approach to organizing data in external storage rather than

main memory and their search method with pseudo code. Searching is common fundamental operation and solve to searching problem

in a different fields .This paper is presents the basic type of searching pseudo code like sequential ordering, b-tree, indexing , hashing

for external storage and focus on how many disk access are necessary than on how many individual records they are.

Keywords: Sequential Ordering, B-tree, Indexing, Hashing, Hash function

1. Introduction

In many situations the amount of data to be processed is too

large to fit in main memory all at once. In this case a

different kind of storage is necessary. Disk files generally

have a much larger capacity then main memory. This is

made possible by their lower cost per byte of storage. In a

computer’s main memory, any byte can be accessed in a

fraction of a microsecond. Disk access times of around 10

millseconds are common. This is something like 10,000

times slower than main memory. This speed different means

that different techniques must be used to handle it

efficiently.The goal in external searching is to minimize the

number of disk accesses, since each access takes so long

compared to internal computation. Disk access is most

efficient when data is read or write one block at a time.

When the read- write head is correctly positioned and the

reading (or writing) process begins , the drive can

transfer a large amount of data to main memory fairly

quickly. For this reason, and to simplify the drive control

mechanism, data is stored on the disk in chunks called

blocks, pages, allocation units or some other name,

depending on the system. We’ll call them block. Block size

varies , depending on the operating system, the size of the

disk drive, and other factors, but it is usually a power of

2.The selection of a power of 2 as a block size makes the

translation of a logical address into a block number and

block offset particularly easy.

2. External storage in Data Structure

Assume we have a database of 500000 records , each record

is 512 bytes long , each block can store 16 records and a

block size of 8192 bytes .The database will require

256000000 bytes divided by 8192 bytes per blocks. Which is

31250 blocks .And also assume that on the target machines

this is too large to fit in main memory but small enough to fit

on disk drive. So we can structure for a large amount of data

on disk drive to provide the usual desirable characteristic,

quick search by fours kind of external storage in data

structure.

2.1 Sequential Ordering

The simple way to arrange the data in the disk file would be

to order all the records according to some key, say

alphabetically by last name.

Figure 1: Sequential ordering

2.1.1 Operation on Sequential ordering Searching

To search a sequentially ordered file for a particular key, we

could use a binary search. We would start by reading a block

of records from the middle of the file. If the key of those

records are equal to search key then return middle block. If

the key is greater than those records then go to ¾ point in

the file and read a block there. If the key is less than those

records then go to ¼ point in the file. By continually dividing

the range in half, we would eventually find the record you

were looking for. If the search key isn’t found and then

return null.

Pseudo code:

BINARY_SEARCH (A,beg,end,mid,block,K)

While (beg <=end)

mid = (beg+end)/2

block=A.mid

DISK_READ (block)

i=0

While (i<= n[block] and Keyi [block]

If (K == Keyi[Block]) then return block

Elseif (Key >Keyi[Block]) then beg= block+1

return BINARY_SEARCH (A, beg, end, mid,block, K)

Else end = block-1

return BINARY_SEARCH (A, begin, end, mid,block, K)

Return null

In this example there are 31250 blocks.Log2 of this number

is about 15, so we’ll need about 15 disk accesses to find the

record we want. In practice this number is reduced because

Paper ID: 3081904 10.21275/3081904 611

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

we read 16 records at once. In the beginning stages of a

binary search, it doesn’t help to have multiple records in

memory because the next access will be in a distant part of

the file. However, when we get close to the desired record,

the next record we want may already be in memory because

it’s part of the same block of 16.This may reduce the number

of comparisons by two or so. Thus, we’ll need about 13 disk

access (15-2),which at 10 milliseconds per access requires

about 130 milliseconds, or 1/7 second.

2.2 B-tree

B-tree is a tree data structure that keeps data sorted and to

provide fast searches, insertions and deletions times. B-tree

are balanced search tree especially designed to be stored on

disk based storage. It allows to keep both primary data

records and search tree structure, out on disk. Only a few

nodes from the tree and a single data record ever need be in

primary memory. The order of a B-tree is the number of

children each node can potentially have. B-tree is designed to

store data in block fashion as it’s efficient for operating

systems to read and write data in blocks instead of writing

individual bytes. B-tree nodes may have many children from

a hundreds to thousands nodes. That is the “branching

factor” of a B-tree. A large branching factor reduces the

height of the tree and the number of disk accesses required to

find any block and operations on B-tree are very fast.

B-tree of Order m has the following properties:

 All the leaf nodes must be at same level.

 All nodes except root must have at least [m/2]-1 keys and

maximum of m-1 keys.

 All non leaf nodes except root (i.e. all internal nodes)

must have at least m/2 children.

We assume, each node as one block and one block contains

16 records (1 record = 512 bytes) and in 16 records we

reduce the number of records to 15 to make room for the

links(which means links to other blocks).For more efficient

to have an even number of records per node we reduce the

record size to 507 bytes. There will be 17 child links so the

links will require 68 bytes(17*4).This leaves room for 16-

507 byte record with 12 bytes left over (507*16+68=8180).

Figure 2: A node in a B-tree of order 17

2.2.1 Operation on B-tree

Searching

Within each node the data is ordered sequentially by key, a

search for a record with a specified key is carried out .First,

the block containing the root is read into memory. The

search algorithm then starts examining each of the 15 record

starting at 0.

When search key k is in the B-tree,B-TREE_SEARCH

returns the ordered pair(x, i) consisting of a node root x and

an index i such that keyi[x]= k. If x is a leaf return the null

values or recur to search the appropriate subtree of x (if it

find a record with a greater key, it knows to go to the child

whose link lies between this record and the next one and if it

find a record with a less key, it knows to go to the child

whose link lies between this record and the previous one)

after performing the necessary DISK-READ on that child.

This process continues until the correct node is found.

Pseudo code:

B-TREE_SEARCH (x , k)

i=0

While i< n[x] and k >= key i[x]

Do i=i+1

If i<= n[x] and k = key i[x] then return (x , i)

If leaf [x] then return null

Else DISK-READ (childi[x])

return B-TREE_SEARCH(child i[x] , k)

Operations on B-tree are very fast, because there are so many

records per node and so many nodes per lever. All the nodes

in the B-tree are at least half full, so they contain at least 8

records and 9 links to children. The height of the tree is less

than log9N, where N is 500000.This is 5.972, so there will

be about 6 levels in the tree. Thus, using a B-tree, only six

disk accesses are necessary to find any record in a file of

500000 records. At 10 milliseconds per access, this takes

about 60 milliseconds, or 6/100 of a second .

2.3 Indexing

A different approach to speeding up file access is to store

records in sequential order but use a file index along with the

data itself. A file index is a list of key/block pairs, arranged

with the keys in order. Assuming our search keys is last

name, every entry in the index contains two items: The key,

and the number of the block where the last name record is

located within the file. These numbers run from 0 to

31249.Let’s say we use a string 28 bytes long for the key (bit

enough for most last names) and 4 bytes for the block

number. Each entry in our index requires 32 bytes. This is

only 1/16 the amount necessary for each record. The entry in

the index are arranged sequentially by last name. The

original records on the disk can be arranged in any

convenient order. This means that new records are simply

appended to the end of the file, so the records are ordered by

time of insertion.

Figure 3: A file index

Paper ID: 3081904 10.21275/3081904 612

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

2.3.1 Operation on Indexed file

Searching

Index file is a list of key/block# pairs, arranged with the keys

in order. We first compare to search with key with the mid

key of the Indexfile. If search key is greater than to mid key

then go to lower part of Index file. If search key is less than

to mid key then go to upper part of Index file .Otherwise we

get block# from Indexfile and read that block using Linear

Search. If search key is match then return that block. If do

not match return null.

Pseudocode:

IndexBinarySearch(index,beg,end,mid,sk,sr)

While(beg <= end)

Mid = (beg+end)/2

If (SK >index.mid.key) then beg = mid+1

Else if (SK <index.mid.key) then end = mid-1

Else block = index.mid.block#

DISK_READ(block)

i = 0

For(i = 0,i<n[block],i++)

If (SR == ri[block]) then return block

If (i == n[block] then return null

The index is much smaller than the file containing actual

records. It may even be small enough to fit entirely in main

memory. Operations on the index can take place in memory

and faster operations on the file . There is the time to read the

actual record from the file, once its block number has been

found in the index. This is only one disk access using

indexing.

2.4 Hashing

Hashing for disk files is called external hashing. One of the

main goals in External hashing is to reduce the number of

accesses(probes) to secondary storage. External hashing is a

hash table containing block number, which refer to blocks in

external storage. Each block may hold multiple records of

sequential order. All records with keys that hash to the same

value are located in the same block. The hash table can be

stored in main memory or, if it is too large, stored externally

on disk, with only part of it being read into main memory at

a time. The index (hash table) in main memory holds

pointers to the file blocks.

Figure 4: External Hashing

2.4.1 Operation on Hashing

Search

To find a record with a particular key, the search algorithm

hashes the key, uses the hash value as an index to the hash

table, gets the block number at that index and reads the

block. If item is not in that block , this situation can be

handled using linear probing method .In linear probing

method the step size is always 1 so if x is the array index

calculated by the hash function , the probe goes to

x,x+1,x+2,x+3 and so on. In external hashing full block are

undesirable because an additional disk access is necessary

for the second block: this doubles the access time. Only ¾

percent of block are full and 12 records are hold in one

block. Which is 23436 block for 500000 records and the

hash function compute a value in the range 0 to 23235.

A hash function

A hash function H(k)transforms a key into an a address /

hash index .The contents of index position is block number.If

keys are strings, get integers by converting the letters to their

numerical equivalents, multiply them by appropriate powers

of 27(because there are 27 possible characters, including the

blank, e.g. “a” = 1, “b” =2, “c” = 3, “d” = 4 etc.)

Pseudocode:

HASH_FUNCTION(char key)

HashIndex(key) = StringInt (key) mod ArraySize

HashBlock = HashArray[HashIndex]

Return HASHBLOCK_SEARCH(HashBlock,SKey)

HASHBLOCK_SEARCH(HashBlock,key)

{ i=0

if(i<n[HashBlock] and HashBlocki.key<= key)

{if(HashBlocki.key = = key) then return HashBlocki

Else ++ i

}

Else if (i>= n) then HashBlock = ++ HashBlock

 Disk_read(HashBlock)

 Return

HASHBLOCK_SEARCH(HashBlock,key)

Else return null

If ArrayIndex[HashBlock] = = ArraySize then ArrayIndex%

= ArraySize

}

This process is efficient because only one disk access is

necessary to locate a given item.

3. Conclusion

This paper discusses how to organize data in external storage

using four basis types of data structure and how many disk

accesses are used by each searching method .Sequential

storage might be satisfactory for a small amount of records,

not for access time .B-tree can work on very large files.The

larger the branching factor the smaller the height of the tree

and disk access is required to find any block and operations.

As a result, B-tree is very fast.External hashing has the same

access time as Index files, but can handle larger file and

might be a good choice.

Paper ID: 3081904 10.21275/3081904 613

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] ABRAHAM SILBERSCHATZ,PETER BAER

GALVIN,GREG GAGNE:OPERATING SYSTEM

PRINCIPLES,Seven Edition

[2] Robert Lafore:Data Structure and Algorithm in

JAVA
TM

,Second Edition

[3] SEYMOUR LIPSCHUTZ:THEORY AND PROBLEMS

OF DATA STRUCTURES

[4] Cormen T.H., Leiserson C.E., Rivest R.L.: Introduction

to algorithms, McGraw-Hill Book Company, New York,

USA, 2000

[5] KamleshkumarPamdey,NarendraPradhan:”A comparison

and selection on Basic Type of Searching Algorithm in

Data Structure”,International Journal of Computer

Science and Mobile Computing,Vol.3 Issue 7,July-2014

[6] Petra Koruga, Miroslav Baca:”Analysis of B-tree data

structure and its usage in computer forensics”,The 21
st

Central European Conference on Information and

Intelligent Systems,September 22-24 , 2010

Paper ID: 3081904 10.21275/3081904 614

