
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

DUST Removal Framework Based on Improved

Multiple Sequence Alignment Technique

Pulagam Sai Nandana
1
, K N Brahmaji Rao

2

M. Tech Student, Department of CS&SE, Andhra University

Guide, Department of CS&SE, Andhra University

Abstract: A large number of URLs collected by web crawlers correspond to pages with duplicate or near-duplicate contents. These

duplicate URLs, generically known as DUST (Different URLs with Similar Text), adversely impact search engines since crawling,

storing and using such data imply waste of resources, the building of low quality rankings and poor user experiences. To deal with this

problem, several studies have been proposed to detect and remove duplicate documents without fetching their contents. To accomplish

this, the proposed methods learn normalization rules to transform all duplicate URLs into the same canonical form. This information

can be used by crawlers to avoid fetching DUST. A challenging aspect of this strategy is to efficiently derive the minimum set of rules

that achieve larger reductions with the smallest false positive rate. As most methods are based on pairwise analysis, the quality of the

rules is affected by the criterion used to select the examples and the availability of representative examples in the training sets. To avoid

processing large numbers of URLs, they employ techniques such as random sampling or by looking for DUST only within sites,

preventing the generation of rules involving multiple DNS names. As a consequence of these issues, current methods are very

susceptible to noise and, in many cases, derive rules that are very specific. In this thesis, we present a new approach to derive quality

rules that take advantage of a multi-sequence alignment strategy. We demonstrate that a full multi-sequence alignment of URLs with

duplicated content, before the generation of the rules, can lead to the deployment of very effective rules. Experimental results

demonstrate that our approach achieved larger reductions in the number of duplicate URLs than our best baseline in two different web

collections, in spite of being much faster. We also present a distributed version of our method, using the MapReduce framework, and

demonstrate its scalability by evaluating it using a set of 7.37 million URLs.

Keywords: Search engines, Crawling, De-duplication, URL Normalization, Rewrite rules.

1. Introduction

Syntactically different URLs that have similar content is a

common phenomenon on the Web. Besides plagiarism, these

duplicate URLs, generically known as DUST (Duplicate

URLs with Similar Text [3]), occur for many reasons. For

instance, in order to facilitate the user‟s navigation, many

web sites define links or redirections as alternative paths to

reach a document. In addition, webmasters usually mirror

content to balance load and ensure fault tolerance. Other

common reasons for the occurrence of duplicate content are

the use of parameters placed in distinct positions in the

URLs and the use of parameters that have no impact on the

page content, such as the session_id attribute, used to

identify a user connection. Detecting DUST is an extremely

important task for search engines since crawling this

redundant content leads to several drawbacks such as waste

of resources (bandwidth and disk storage, for example);

disturbance in results of link analysis algorithms; and poor

user experience due to duplicate results. To overcome these

problems, several authors have proposed methods for

detecting and removing DUST from search engines.

Whereas first efforts focused on comparing document

content, more recent studies propose strategies that inspect

only the URLs without fetching the corresponding page

content [1],[3], [6], [9], [11]. These methods, known as

URL-based de-duping, mine crawl logs and use clusters of

URLs referring to (near) duplicate content1 to learn

normalization rules that transform duplicate URLs into a

unified canonical form. This information can be then used by

a web crawler to avoid fetching DUST, including ones that

are found for the first time during the crawling. The main

challenge for these methods is to derive general rules with a

reasonable cost from the available training sets.

Thus, in this paper, we show that a full multi-sequence

alignment of duplicate URLs, performed before rules are

generated, can make the learning process more robust and

less susceptible to noise when compared to previous work in

the literature.

Objectives
The general objective of the research described in this work

is to propose a method for web-scale DUST detection to

obtain a small and general set of normalization rules when

compared with state-of-the-art methods. This objective

translates into the following specific objectives:

 Development of a DUST detection method based on

multiple sequence alignment.

 DUST detection problem to induce rules faster than (i) a

method based on traditional multiple sequence alignment

and (ii) other state-of-the-art DUST detection approaches.

 Development of a parallel version of the training

algorithm which takes advantage of the cluster of

computers normally used in the environments where large

scale crawlings are performed.

2. Literature Survey

Our focus in this paper is on efficient and large-scale de

duplication of documents on the WWW [1]. Web pages

which have the same content but are referenced by different

URLs, are known to cause a host of problems[1]. Crawler

resources are wasted in fetching duplicate pages, indexing

Paper ID: 3081902 10.21275/3081902 975

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

requires larger storage and relevance of results are diluted

for a query [1].

The dust problem is that: The web is abundant with dust,

different URLs with Similar Text[2]. For example, the URLs

http://google.com/news and http://news.google.-com return

similar content[2]. A single web server often has multiple

DNS names, and any can be typed in the URL[2]. Many are

artifacts of a particular web server implementation. For

example, URLs of dynamically generated pages often

include parameters; which parameters impact the page‟s

content is up to the software that generates the pages[2].

Some sites use their own conventions; for example, a forum

site we studied allows accessing story number “num” both

via the URL http://domain/story?id=num and via

http://domain/story num. Our study of the CNN web site has

discovered that URLs of the form

http://cnn.com/money/whatever get redirected to

http://money.cnn.com/whatever [2].

Universal rules, such as adding http:// or removing a trailing

slash are used, in order to obtain some level of canonization

[2]. By knowing dust rules, one can dramatically reduce the

overhead of this process. But how can one learn about site-

specific dust rules? Detecting dust from a URL lis[2]t. Most

of our work therefore focuses on substring substitution rules,

which are similar to the “replace” function in many

editors[2].The results which comes after the crawling the

corresponding pages, contains the duplicate or nearduplicate

contents[6]. Hence these duplicate URLs commonly known

as DUST (Duplicate URLs with Similar Text)[6]. It can be

effectively explained using following example, the URLs

http://google.com/news and http://news.google.com return

the same content[6]. That means while searching for the

news using any of above URL result the same content[6].

This DUST can be created for many reasons[6]. For

instance, to facilitate theuser‟s navigation, many web site

developers define links or redirection as alternative path to

find or search a document [6].

The main challenge for these methods is to derive general

rules from available training sets. Some methods make use

of derive rules from pairs of duplicate URLs[6]. The quality

of rules is affected by the criterion used to select these

pairs[6]. Current methods are less affected by noise and

derive rules that are very specific[6]. Thus, an ideal method

should learn general rules from few training examples,

taking maximum advantage, without sacrificing the

detection of DUST across different sites[6]. The DUSTER is

introduced, motived by these issues. DUSTER takes

advantages of multiple sequence alignment (MSA) in order

to obtain a smaller and more general set of normalization

rules[6]. Traditionally the multiple sequence alignment is

used in molecular biology as a tool[6]. The tool, find out the

similar pattern in sequences[6]. By applying these we are

able to identify similarities and differences among strings[6].

As the methods find patterns involving all the available

strings, the method is able to find more general rules

avoiding problems related to pairwise rule generation and

problem related to finding rules across sites [6].

3. Proposed Methodology

In this section, we review the problem of sequence

alignment, show how to apply sequence alignment to URLs

and discuss why to apply URL alignment in URL de-

duplication.

Sequence Alignment
A sequence alignment is a way of arranging n sequences in

order to identify similar regions between them. The

alignment process aims at inserting spaces into the

sequences so that similar symbols (based on some criteria)

are aligned in the same position. In our specific case, the

alignment of similar tokens facilitates the process of

inferring the rules to transform DUST into a canonical form.

Pairwise Sequence Alignment:

The alignment of two sequences, called pair wise sequence

alignment, is the basic step for aligning an arbitrary number

of sequences. This problem can typically be solved using

dynamic programming to calculate all the sub problems

involved in the process [13].

We formally define this concept as given in Definition 5.

Given the sequences X and Y with m and n characters

respectively, the alignment process can be described by

using a matrix S of size (m+1)×(n+1) so that S cells are

filled as follows:

where sf(Xi,Yj) is a scoring function that defines a similarity

between the pairs of symbols (Xi,Yj). This function gives

points for matching tokens and penalties for any gap. When

the value of cell Si,j is computed, a pointer from Si,j is set to

the cell (a) Si,j−1 if Si,j = Si,j−1; (b) Si−1,j if Si,j = Si−1,j;

or (c) Si−1,j−1 if Si,j = Si−1,j−1 + sf(Xi,Yj). Figure 3

presents the scoring/traceback matrix resulting from the

alignment of the URL strings

“www.IRS.gov/foia/index.html” and

www.irs.ustreas.gov/foia.

Multiple sequence alignment
Given k > 2 sequences S = {S1,S2,...,Sk}, a Multiple

Sequence Alignment of S can be considered a natural

generalization of the pairwise alignment problem. Spaces are

inserted at arbitrary positions in any of the k sequences to be

aligned, so that the resulting sequences have the same size `.

The sequences can be arranged in k lines and ` columns,

such that element or gap of each sequence occurs in a single

column.

As the Multiple Sequence Alignment problem is know to be

NP-hard, several approaches have been developed to find a

heuristic solution for it. In this work, in particular, we

adopted a method know as Progressive Alignment [7] to

align clusters of duplicate URLs (dupclusters with a size

greater than two). In general lines, the method first performs

the alignment between two previously selected sequences.

Then a new sequence is chosen and aligned with the first

alignment obtained or another pair of sequences is selected

and aligned. This process is repeated until all sequences

have been aligned, giving rise to the final multiple

alignment.

Paper ID: 3081902 10.21275/3081902 976

http://www.irs.ustreas.gov/foia

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

The progressive alignment method uses a greedy policy in

which once a space is inserted, it can not be removed for any

subsequent alignment. Thus, all spaces are preserved until

the final solution. The error rate introduced by the

progressive alignment at each step tends to decrease if the

most similar sequences are chosen, and increase if the most

divergent sequences are chosen. Thus, determining the best

order for the alignments is crucial. Ideally, the most similar

sequences are aligned first, leaving the most divergent ones

until the end, in order to reduce the error introduced by this

heuristic solution.

URL Alignment
In order to obtain a smaller and more general set of

normalization rules, our method takes advantage of multiple

sequence alignment. The strategy is to create the so called

consensus sequence for each dup-cluster in the training set

and extract the rules from them. We perform this task by

aligning the URLs in each cluster and then generating the

consensus sequences as a result of this alignment. In the

following subsections, we show how to align two or more

URLs and how to generate a consensus sequence for these

dup-clusters. Before presenting our URL alignment

approach, we first show how we represent URLs.

URL Tokenization

Unlike previous works that treat URLs as strings generated

according to W3C grammar4, we adopt a simpler

representation. We consider a URL as a sequence of three

types of tokens (URL tokens), as described by the

EBNFbased5 grammar G described below:

(URL) ::= (tokeni) { (token) }

(token) ::= (alphabetic) | (number) | (punctuation)

(alphabetic) ::= (alpha) { (alpha) }

(alpha) ::= „a‟..„z‟ | „A‟..„Z‟

(number) ::= (digit) { (digit) }

(digit) ::= „0‟..„9‟

(punctuation) = All remaining characters such as „/‟, „:‟, and

„.‟

Each URL to be aligned is initially parsed according to

grammar G. This process, referred to as tokenization,

decomposes the URL into a sequence of URL tokens. To

facilitate URL alignment, each token extracted from a URL

is represented as a singleton set. For example, URL u =

http://ex.com/1.htm is represented by the following sequence

of 11 token sets:

S = h{http},{:},{/},{/},{ex},{.},{com},{/},{1},{.},{htm}i

Pair-wise URL Alignment

The output of our alignment process is a sequence of sets,

referred to as the consensus sequence, which is a way of

representing the result of the alignment. The consensus

sequence of n sequences is composed by the union of the

tokens in the corresponding positions of the n aligned

sequences. To help readers better understand the complete

process, we illustrate it with an example. To obtain a

consensus sequence for two URLs u1 = http://www.ex/ and

u2 = http://www.un/home, we first obtain the token set

sequences X and Y, associated with u1 and u2 respectively,

with m and n tokens. X and Y are given by:

 X = ({http},{:},{/},{/},{www},{.},{ex},{/})

Y = ({http},{:},{/},{/},{www},{.},{un},{/},{home})

Sequences X and Y are then aligned by inserting gaps, either

into or at the ends of them. To determine where gaps should

be inserted, matrix S in Equation 1 has to be calculated. To

accomplish this, a score function SF is defined to measure

the distance between the URL token sets. The scoring

function we adopt, given by Equation 2, is the Jaccard

similarity coefficient [15] which is commonly used to

measure the overlap between two sets. For two sets, it is

denoted as the cardinality of their intersection divided by the

cardinality of their union.

where τ : T →{a,n,p}is a function which maps a token set to

its token type, T is the token space and{a,n,p}are the token

types (a for alphabetic, n for numeric, and p for

punctuation). Suppose we have two token sets Xi = {default,

index, start} and Yj = {default, index}. The union between

them is Xi ∪Yj = {default,index, start} and the intersection

Xi ∩Yj = {default, index}. Jaccard similarity coefficient can

be computed based on the number of elements in the

intersection set divided by the number of elements in the

union set:

sf(Xi,Yj) = |Xi∩Yj| |Xi∪Yj| = 2 3 = 0.66

At the end of the alignment, X and Y are transformed into

sequences X‟ and Y‟ given by:

 X‟ = h{http},{:},{/},{/},{www},{.},{ex},{/},{λ}i

Y‟ = h{http},{:},{/},{/},{www},{.},{un},{/},{home}i

where λ indicates a gap. X‟ and Y‟ have the same length so

that every token is either a unique token or a gap in the other

sequence. The final consensus sequenceC12 for URLs u1

and u2 is given by uniting the token sets of X‟ and Y‟:

4. Results

In this section we present the results obtained. In particular,

we compare the methods according to the number of rules

they detected, the number of valid rules they selected, and

their performance in DUST detection. We also study the

results of applying the rules to better understand the methods

that derive them.

Evaluation Metrics and Methodology

To evaluate the effectiveness of our method and the

baselines, we adopted some metrics used in [9] which

estimate the quality of the normalization rules generated.

The metrics used in our experiments were:

 Reduction Ratio: this metric measures the reduction ratio

of the number of URLs after the removal of duplicates. It

is defined as jUorigj�jUnormj jUorigj , where Uorig is

the original URL set and Unorm is the normalized URL

set; Avg Reduction PerRule: average UR reduction

achieved per rule. It is defined as jUorigj_Compression

jRj where R is the set of rules;

 Cluster-Reduction Rate: this metric measures the

reduction ratio of the number of clusters after the

normalization process. It is defined as

jCorigj�jCnormjjCorigj ,where Corig is the number of

clusters before normalization and Cnorm is the number of

clusters after normalization. In the experiments, we

randomly divided the duplicate clusters into three sets:

Paper ID: 3081902 10.21275/3081902 977

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

10% of the clusters were retained as a training set, 10% as

a validation set, and the remaining 80%, as a test set. We

used the training set to generate the rules, the validation

set to filter them, and the test set to evaluate them. We

adopted this strategy for our method and all the baselines

because it better represents a real application where only a

small fraction of DUST is provided as training data6.

Parameter settings

These were the parameters used in our experiments: K = 10,

minfreq = 10, Cardset = 5 and minsupp = 10.

Table 4.3: Number of candidates and valid rules generated

by different methods in GOV2 and WBR10 (fprmax = 0).
Data Set Method £Candidates £Valid Rate

GOV2 𝑅𝑓𝑎𝑛𝑜𝑢𝑡 −10 7,0942 2,242 31.60%

𝑅𝑡𝑟𝑒𝑒 2,458 718 29.21%

DUSTER 1,685 1,332 79.05%

WBR10 𝑅𝑓𝑎𝑛𝑜𝑢𝑡 −10 31,565 1,985 6.29%

𝑅𝑡𝑟𝑒𝑒 6,974 1,575 22.58%

DUSTER 786 577 85.48%

Candidate Rules vs. Valid Rules

In Table 3 we present the total number of rules learned by

the three methods after the training (candidate rules) and the

number of the rules ready to be used in the test (valid rules).

Note that a small number of valid rules is desirable since the

crawler should have a small footprint.

For Rfanout-10 and DUSTER, the valid rules consist of the

rules that were not discarded in the validation. The rules

considered invalid are automatically removed from the 6. In

experiments with larger training sets, all the methods

improved their absolute performance because much more

test cases were observed in the training. Due to space

constraints, we do not include results for such larger training

sets but it is worthy note that, when using a 50% training

size, the relative performance of the methods was similar to

the observed with a 10% training size.

DUST Detection

Table 5 shows a comparison between DUSTER and the

baseline methods regarding the task of DUST detection for

the GOV2 and WBR10 datasets. These tables show, for each

fprmax level and method, the number of applied/valid rules,

along with its respective reduction ratio achieved, i.e., the

reduction in the amount of URL scrawled, obtained by

applying these rules. The performance of DUSTER was far

superior when compared to the baselines at all fprmax levels

experimented. We consider fprmax = 0 level the most

important one, since it includes rules that did not fail in any

of the test URLs in the validation set. At this level,

DUSTER was able to reduce the amount of URLs crawled in

20.73% in GOV2, while the best baseline (Rfanout10)

achieved only 11.39%. In WBR10, DUSTER was able to

reduce 22.87%, while the best baseline (Rfanout10)

achieved only 9.50%. These results show that DUSTER

obtained a gain in the process of identifying duplicate URLs

of 82% in GOV2 and 140.74% in WBR10, by applying

almost two times less rules than Rfanout10.

Thus, besides achieving a higher compression rate, the rules

generated by DUSTER are more effective than the ones

generated by Rfanout10.

We also note that Rtree presented the worst performance

among the methods we implemented. Such a weak

performance was due to (a) the fact that it was designed to

conduct normalization within websites, it is unable to find

rules involving multiple domains and (b) it needs more

training examples than we were able to provide in our

collections.

In general, DUSTER was quite effective and is a viable

alternative for solving the DUST detection problem. When

considering other false-positive levels experimented, again

DUSTER was able to outperform the baselines. For instance,

when considering a fprmax _ 20% on GOV2 dataset,

DUSTER reduced the number of crawled URLs in 30.71%

of the original set of URLs, almost one third more than the

best baseline, that reduced only11.94%. In WBR10, for

fprmax _ 20%, DUSTER reduced 29.75% of URLs, while

the best baseline Rtree reduced only 9.67%.

5. Conclusion and Future Work

In this work, we presented DUSTER, a new method to

address the DUST problem, that is, the detection of distinct

URLs that correspond to pages with duplicate or near-

duplicate content. DUSTER learns normalization rules that

are very precise in converting distinct URLs which refer the

same content to a common canonical form, making it easy to

detect them. To achieve this DUSTER applies a novel

strategy based on a full multi sequence alignment of training

URLs with duplicate content. By analyzing the alignments

obtained, accurate and general normalization rules can be

generated, as demonstrated in our experiments. We

evaluated the method in a set of duplicate URLs extracted

from the TREC GOV2 collection and found a reduction in

the number of duplicate URLs that is 82% larger than the

one achieved by our best baseline. When evaluating a

Brazilian web sample, we obtained a gain of 140.74% over

the same baseline.

As future work, we intend to improve the scalability and

precision of our method, as well as to evaluate it using other

datasets. For its scalability, we intend to provide a

comprehensive comparison among strategies to cope with

very large dup-clusters, including (a) to better understand

the impact of using split dup-clusters instead of the original

ones, (b) to propose distributed algorithms for the task and

(c) to use more efficient multiple sequence alignment

algorithms. In particular, regarding this last item, we intend

to use algorithms recently proposed for gene alignment such

as the one presented in [4] which is able to align n gene

sequences in time proportional to O(n log n).

References

[1] A. Agarwal, H. S. Koppula, K. P. Leela, K. P.

Chitrapura, S. Garg, P. K. GM, C. Haty, A. Roy, and A.

Sasturkar. Url normalization for de-duplication of web

pages. In Proceedings of the 18th ACM conference on

Paper ID: 3081902 10.21275/3081902 978

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 8, August 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Information and knowledge management, CIKM ‟09,

pages 1987–1990, New York, NY, USA, 2009. ACM.

[2] B. S. Alsulami, M. F. Abulkhair, and F. E. Eassa. Near

duplicate document detection survey. the Proceedings of

International Journal of Computer Science and

Communications Networks, 2(2):147–151,2012.

[3] Z. Bar-Yossef, I. Keidar, and U. Schonfeld. Do not

crawl in the dust: Different urls with similar text. ACM

Trans. Web, 3(1):3:1– 3:31, jan 2009.

[4] G. Blackshields, F. Sievers, W. Shi, A. Wilm, and D. G.

Higgins. Sequence embedding for fast construction of

guide trees for multiple sequence alignment. Algorithms

Mol Biol, 5:21, 2010.

[5] C. L. A. Clarke, N. Craswell, and I. Soboroff. Overview

of the trec 2004 terabyte track. In E. M. Voorhees and

L. P. Buckland, editors, TREC, volume Special

Publication 500-261. National Institute of Standards and

Technology (NIST), 2004.

[6] A. Dasgupta, R. Kumar, and A. Sasturkar. De-duping

urls via rewrite rules. In Proceedings of the 14th ACM

SIGKDD international conference on Knowledge

discovery and data mining, KDD ‟08, pages 186–194,

New York, NY, USA, 2008. ACM.

[7] D. F. Feng and R. F. Doolittle. Progressive sequence

alignment as a prerequisite to correct phylogenetic trees.

Journal of molecular evolution, 25(4):351–360, 1987.

[8] K. Katoh, K. Misawa, K. Kuma, and T. Miyata.

MAFFT: a novel method for rapid multiple sequence

alignment based on fast Fourier transform. Nucleic

Acids Research, 30(14):3059–3066, 2002.

[9] H. S. Koppula, K. P. Leela, A. Agarwal, K. P.

Chitrapura, S. Garg, and A. Sasturkar. Learning url

patterns for webpage deduplication.In Proceedings of

the third ACM international conference on Web search

and data mining, WSDM ‟10, pages 381–390, New

York, NY, USA, 2010. ACM.

[10] J. P. Kumar and P. Govindarajulu. Duplicate and near

duplicate documents detection: A review. European

Journal of Scientific Research, 32:514–527, 2009.

[11] T. Lei, R. Cai, J.-M. Yang, Y. Ke, X. Fan, and L.

Zhang. A pattern tree-based approach to learning url

normalization rules. In Proceedings of the 19th

international conference on World wide web,WWW

‟10, pages 611–620, New York, NY, USA, 2010. ACM.

[12] X. Mao, X. Liu, N. Di, X. Li, and H. Yan. Sizespotsigs:

an effective deduplicate algorithm considering the size

of page content. In Proceedings of the 15th Pacific-Asia

conference on Advances in knowledge discovery and

data mining - Volume Part I, PAKDD‟11, pages 537–

548, Berlin, Heidelberg, 2011. Springer-Verlag.

[13] S. B. Needleman and C. D. Wunsch. A general method

applicable to the search for similarities in the amino

acid sequence of two proteins. Journal of Molecular

Biology, 48(3):443–453, 1970.

[14] K. W. L. Rodrigues, M. Cristo, E. S. de Moura, and A.

S. da Silva. Learning url normalization rules using

multiple alignment of sequences. In O. Kurland, M.

Lewenstein, and E. Porat, editors, SPIRE, volume 8214

of Lecture Notes in Computer Science, pages 197–205.

Springer, 2013.

[15] M.Theobald, J. Siddharth, and A. Paepcke. Spotsigs:

robust and efficient near duplicate detection in large

web collections. In In SIGIR08: Proceedings of the 31st

annual international ACM SIGIR conference on

Research and development in information retrieval,

pages563–570. ACM, 2008.

Paper ID: 3081902 10.21275/3081902 979

