International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

$\tilde{\mu}_{(m,n)}$ –Open and Closed Sets in Bigeneralized Topological Spaces

Decie Marie M. Castellano¹, Josephine B. Nalzaro²

¹Haguilanan High School, Department of Education-Division of Bohol, Haguilanan, Catigbian, Bohol, Philippines

²College of Technology and Allied Sciences, Bohol Island State University-Main Campus,CPG North Avenue, Tagbilaran City, Bohol, Philippines

Abstract: In this paper, the authors introduced the concept of $\tilde{\mu}_{(m,n)}$ –open (respectively $\tilde{\mu}_{(m,n)}$ –closed) sets in bigeneralized topological spaces (briefly BGTS). Properties and characterization of these sets are also determined.

Keywords: $\tilde{\mu}_{(m,n)}$ -open sets, $\tilde{\mu}_{(m,n)}$ -closed sets, bigeneralized topological spaces

1. Introduction

The concepts of generalized topological spaces were first introduced by \hat{A} . *Csasźár*[3]. In [2], he obtained and investigated the notions of μ -semi-open sets, μ -pre-open sets, μ - α -open sets, and μ - β -open sets in generalized topological spaces. Moreover, the concepts of BGTS were introduced by C. Boonpok in [1] and studied (m, n)-closed sets and (m, n)-open sets.

The concepts of $\tilde{\mu}$ -open sets, which is analogous to μ -semiopen sets, were introduced by D. Saravanakumar, N. Kalaivani, and G. SaiSundra Krishnan [4]. They also introduced the class of all $\tilde{\mu}$ -open sets denoted by $\tilde{\mu}O(x)$, $\tilde{\mu}$ interior, $\tilde{\mu}$ -closure, $\tilde{\mu}$ -boundary and $\tilde{\mu}$ -exterior operators and studied their fundamental properties.

In this paper, the concepts of $\tilde{\mu}_{(m,n)}$ –open (respectively $\tilde{\mu}_{(m,n)}$ –closed) sets in bigeneralized topological spaces are introduced and characterized. Also, their properties and relationships are investigated.

2. Preliminaries

Definition 2.1 [3] Let X be a set. A collection μ of subsets of X is a generalized topology (briefly GT) on X if it satisfies the following: (O1) $\emptyset \in \mu$; and (O2) If $\{M_i : i \in I\} \subseteq \mu$, then $\bigcup_{i \in I} M_i \in \mu$.

If μ is a GT on X, then (X, μ) is called a generalized topological space (briefly GTS), and the elements of μ are called μ -open sets. The complement X\A of a μ -open set A is called μ -closed set. A generalized topology μ is said to be a strong GT if X $\in \mu$. If μ is a strong GT then (X, μ) is said to be a strong GTS.

Definition 2.2 [2, 4] Let (X, μ) be a GTS and $A \subseteq X$. Then (i) μ -semi-closure of A denoted by $c_{s_u}(A)$, is the intersection of all μ -semi-closed sets containing A. That is, the smallest μ -semi-closed set containing A.

(ii) μ -semi-interior of A denoted by is $i_{s_u}(A)$, is the union of all μ -semi-open sets contained in A. That is, the largest μ -semi-open set contained in A.

Definition 2.3 [4] Let (X, μ) be a GTS. A subset A of X is said to be a $\tilde{\mu}$ -open set if there exists a μ -open set U such that $U \subseteq A \subseteq c_{s_u}(U)$. The family of all $\tilde{\mu}$ -open sets is denoted as $\tilde{\mu}O(X)$. A subset A of X is $\tilde{\mu}$ -closed if its complement X\A is $\tilde{\mu}$ -open.

Definition 2.4 [1] Let X be a nonempty set and let μ_1 and μ_2 be generalized topologies on X. The triple (X, μ_1, μ_2) is said to be a bigeneralized topological space (briefly BGTS). If both μ_1 and μ_2 are strong generalized topologies, then the BGTS (X, μ_1, μ_2) is said to be a strong bigeneralized topological space (briefly SBGTS). Let (X, μ_1, μ_2) be a BGTS and A, a subset of X. The μ -closure of A and the μ -interior of A with respect to μ_m are denoted by $c_{\mu_m}(A)$ and $i_{\mu_m}(A)$ respectively.

3. On $\widetilde{\mu}_{(m,n)}$ Open Sets

In [4], Saravanakumar, Kalaivani and SaiSundara Krishnan introduced and defined $\tilde{\mu}$ -open sets in GTS. In this section, $\tilde{\mu}$ -open (resp. $\tilde{\mu}$ -closed) sets are defined in a BGTS. Properties of these sets are introduced and studied. All throughout this section, (X, μ_1, μ_2) is a BGTS and m and n are elements of $\{1,2\}$ where m \neq n.

Definition 3.1 Let (X, μ_m, μ_n) be a BGTS. A subset A of X is said to be $\tilde{\mu}_{(m,n)}$ -open if there exists a μ_m -open set U of X such that $U \subseteq A \subseteq c_{s_{\mu_n}}(U)$, The complement X\A of $\tilde{\mu}_{(m,n)}$ -open is said to be $\tilde{\mu}_{(m,n)}$ -closed set.

To illustrate Definition 3.1, consider the next example.

Example 3.2 Let X = {a,b,c} with two GTs $\mu_1 = \{\emptyset, \{a\}, \{c\}, \{a,c\}\}$ and $\mu_2 = \{\emptyset, X, \{a\}, \{a,b\}\}$. Then the $\tilde{\mu}_{(1,2)}$ -open sets are \emptyset , X, {a}, {a,b}, {a,c} and {c}. And the $\tilde{\mu}_{(2,1)}$ -open sets are \emptyset , X, {a} and {a,b}. Also the $\tilde{\mu}_{(1,2)}$ -closed sets are \emptyset , X, {b,c}, {c} and {b} and the $\tilde{\mu}_{(2,1)}$ -closed sets are \emptyset , X, {b,c}, {c}.

Volume 8 Issue 7, July 2019

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

The following remark follows from Definition 3.1.

Remark 3.3 Let (X, μ_1, μ_2) be a BGTS.

(i) If a μ_m -open set U is equal to $c_{s_{\mu_n}}(U)$, then U is $\tilde{\mu}_{(m,n)}$ -open.

(ii) The empty set is $\tilde{\mu}_{(m,n)}$ open in (X, μ_1, μ_2). (iii) X is $\tilde{\mu}_{(m,n)}$ - closed.

Lemma 3.4 Let (X, μ_1, μ_2) be a BGTS. A and B are subsets of X. If A \subseteq B, then $c_{s_u}(A) \subseteq c_{s_u}(B)$.

Proof: Let $A \subseteq B$. Then, $A \subseteq B \subseteq c_{s_u}(B)$. This implies that $c_{s_u}(B)$ is a μ -semi closed set containing A. However, $A \subseteq c_{s_u}(A)$ and that $c_{s_u}(A)$ is the smallest semi-closed set containing A. Therefore, $c_{s_u}(A) \subseteq c_{s_u}(B)$.

Theorem 3.5 Let (X, μ_1, μ_2) be a BGTS and $A \subseteq X$. Then A is $\tilde{\mu}_{(m,n)}$ open if and only if $A \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$.

Proof: Let A be $\tilde{\mu}_{(m,n)}$ open in (X, μ_1, μ_2) . Then there exists a μ_m -open set U such that $U \subseteq A \subseteq c_{s_{\mu_n}}(U)$. Since U is μ_m open then U = $i_{\mu_m}(U) \subseteq i_{\mu_m}(A)$. Then $A \subseteq c_{s_{\mu_n}}(U) \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$. Thus $A \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$. Conversely, let $A \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$ and take U = $i_{\mu_m}(A)$. Then $i_{\mu_m}(A) \subseteq A \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$. Hence A is $\tilde{\mu}_{(m,n)}$ open in X, μ_1, μ_2).

Theorem 3.6 Every μ_m -open set in X is $\tilde{\mu}_{(m,n)}$ -open in a BGTS (X, μ_1, μ_2).

Proof : Let A be a μ_m -open set in X. Then $i_{\mu_m}(A) = A$. Since $A \subseteq c_{s_{\mu_n}}(A)$ then $A \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$. By Theorem 3.5, A is $\tilde{\mu}_{(m,n)}$ open in (X, μ_1, μ_2) .

Remark 3.7 The converse of Theorem 3.6 is not true.

To see this, consider Example 3.2. Note that X and $\{a,b\}$ are $\tilde{\mu}_{(1,2)}$ -open sets but not μ_1 -open sets.

Definition 3.8 [1] A subset A of a BGTS (X, μ_1, μ_2) is said to be $\mu_{(m,n)}$ -semi-open if A $\subseteq c_{\mu_n}(i_{\mu_m}(A))$.

Theorem 3.9 Every $\tilde{\mu}_{(m,n)}$ -open set is $\mu_{(m,n)}$ -semi-open.

Proof : Let A be a $\tilde{\mu}_{(m,n)}$ -open set. By Theorem 3.5, A $\subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$ where $c_{s_{\mu_n}}(i_{\mu_m}(A))$ is μ_n -closed. Since every μ_n -closed set is μ_n -semi-closed and that $c_{s_{\mu_n}}(i_{\mu_m}(A))$ is the smallest μ_n -semi-closed set containing $i_{\mu_m}(A)$, then $c_{s_{\mu_n}}(i_{\mu_m}(A)) \subseteq c_{\mu_n}(i_{\mu_m}(A))$ This implies that $A \subseteq c_{\mu_n}(i_{\mu_m}(A))$ Thus A is $\mu_{(m,n)}$ -semi-open.

Remark 3.10 The converse of the above theorem need not be true as shown in the following example.

Example 3.11 Consider the GTs in Example 3.2. Then the $\mu_{(2,1)}$ -semi-open sets are \emptyset , X, {a}, {b} and {a,b}. Notice that {b} is $\mu_{(2,1)}$ -semi-open but not $\tilde{\mu}_{(2,1)}$ -open.

Lemma 3.12 Let (X, μ) be a GTS and $\{A_{\alpha} : \alpha \in J\}$ be the collection of A \subseteq X. Then $\bigcup_{\alpha \in J} c_{s_{\mu}}(A_{\alpha}) \subseteq c_{s_{\mu}}(\bigcup_{\alpha \in J} A_{\alpha})$.

Proof: Let $x \in A_{\alpha}$. Since $A_{\alpha} \subseteq \bigcup_{\alpha \in J} (A_{\alpha})$, it follows that $x \in \bigcup_{\alpha \in J} (A_{\alpha})$. Note that $x \in c_{s_{\mu}}(A_{\alpha})$. Thus $x \in \bigcup_{\alpha \in J} c_{s_{\mu}}(A_{\alpha})$. By Lemma 3.4, $c_{s_{u}}(A_{\alpha}) \subseteq c_{s_{u}}(\bigcup_{\alpha \in J} (A_{\alpha}))$. This implies that $x \in c_{s_{u}}(\bigcup_{\alpha \in J} (A_{\alpha}))$. This shows that, $\bigcup_{\alpha \in J} c_{s_{\mu}}(A_{\alpha}) \subseteq c_{s_{\mu}}(\bigcup_{\alpha \in J} A_{\alpha})$.

Theorem 3.13 Let $\{A_{\alpha}: \alpha \in J\}$ be the collection of $\tilde{\mu}_{(m,n)}$ open sets in (X, μ_1, μ_2) . Then $\bigcup_{\alpha \in J} A_{\alpha}$ is also $\tilde{\mu}_{(m,n)}$ -open set
in (X, μ_1, μ_2) .

Proof: Since A_{α} is $\tilde{\mu}_{(m,n)}$ -open, there exists a μ_m -open set U_{α} of X such that $U_{\alpha} \subseteq A_{\alpha} \subseteq c_{s_{u_n}}(U_{\alpha})$. This implies that

$$\bigcup_{\alpha \in J} U_{\alpha} \subseteq \bigcup_{\alpha \in J} A_{\alpha} \subseteq c_{s_{u_n}}(U_{\alpha}) \subseteq c_{s_{u_n}}(\bigcup_{\alpha \in J} U_{\alpha}).$$

Since U_{α} is μ_m -open, $\bigcup_{\alpha \in J} U_{\alpha}$ is also μ_m -open. Then, $\bigcup_{\alpha \in J} A_{\alpha}$ is $\tilde{\mu}_{(m,n)}$ -open set in (X, μ_1, μ_2) .

Corollary 3.14 The family of $\tilde{\mu}_{(m,n)}$ -open sets forms a generalized topology on X.

Proof: Follows from Remark 3.3(ii) and Theorem 3.13

Remark 3.15 If A and B are two $\tilde{\mu}_{(m,n)}$ -open sets in (X, μ_1, μ_2), then A \cap B need not be $\tilde{\mu}_{(m,n)}$ -open in (X, μ_1, μ_2) as shown in the following example.

Example 3.16 Let X= {a,b,c} and consider the following GTs: $\mu_1 = \{\emptyset, X \{a,b\}, \{b,c\}\}$ and $\mu_2 = \{\emptyset, \{b\}, \{c\}, \{b,c\}\}$. Then the $\tilde{\mu}_{(1,2)}$ -open sets are $\emptyset, X, \{a,b\}$ and $\{b,c\}$. See that $\{a,b\} \cap \{b,c\} = \{b\}$ but $\{b\}$ is not $\tilde{\mu}_{(1,2)}$ -open in (X, μ_1, μ_2).

Theorem 3.17 Let A be a $\tilde{\mu}_{(m,n)}$ -open set and let B be any set such that $A \subseteq B \subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$. Then B is also $a\tilde{\mu}_{(m,n)}$ -open set in (X, μ_1, μ_2) .

Proof: If A is a $\tilde{\mu}_{(m,n)}$ -open set then by Theorem 3.5 A $\subseteq c_{s_{\mu_n}}(i_{\mu_m}(A))$. Since $A \subseteq B$, it implies that $c_{s_{\mu_n}}(i_{\mu_m}(A)) \subseteq c_{s_{\mu_n}}(i_{\mu_m}(B))$. This shows that B is $\tilde{\mu}_{(m,n)}$ -open.

Let the family of $\tilde{\mu}_{(m,n)}$ -open sets (resp. $\tilde{\mu}_{(m,n)}$ closed sets) of X be denoted as $\tilde{\mu}_{(m,n)}O(X)$ (resp. $\tilde{\mu}_{(m,n)}C(X)$).

Remark 3.18 $\tilde{\mu}_{(1,2)}$ O(X) is generally not equal to $\tilde{\mu}_{(2,1)}$ O(X).

To see this, consider Example 3.2. Then $\tilde{\mu}_{(1,2)}O(X) = \{\emptyset, X, \{a\}, \{a,b\}, \{a,c\}, \{c\}\}$ and $\tilde{\mu}_{(2,1)}O(X) = \{\emptyset, X, \{a\}, \{a,b\}\}$. Thus $\tilde{\mu}_{(1,2)}O(X) \neq \tilde{\mu}_{(2,1)}O(X)$.

Theorem 3.19 Let (X, μ_1, μ_2) be a BGTS and let $A \subseteq X$. A is $\tilde{\mu}_{(m,n)}$ -closed if and only if $i_{s_{\mu_n}}(c_{\mu_m}(A)) \subseteq A$.

Proof: If A is $\tilde{\mu}_{(m,n)}$ -closed then X\A is $\tilde{\mu}_{(m,n)}$ -open. By Theorem 3.5 it follows that X\A $\subseteq c_{s_{\mu_n}}(i_{\mu_m}(X \setminus A))$. Thus X\A $\subseteq c_{s_{\mu_n}}(i_{\mu_m}(X \setminus A)) = c_{s_{\mu_n}}(X \setminus c_{\mu_m}(A)) = X \setminus$

Volume 8 Issue 7, July 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

 $i_{s_{\mu_n}}(c_{\mu_m}(A))$. Hence, X\A \subseteq X\ $i_{s_{\mu_n}}(c_{\mu_m}(A))$, which implies that $i_{s_{\mu_m}}(c_{\mu_m}(\mathbf{A})) \subseteq \mathbf{A}.$ Conversely, suppose that $i_{s_{\mu_n}}(c_{\mu_m}(\mathbf{A})) \subseteq \mathbf{A}.$ Then $X \setminus A \subseteq X \setminus i_{s_{\mu_n}}(c_{\mu_m}(A))$ = $c_{s_{\mu_n}}(X \setminus c_{\mu_m}(A)) = c_{s_{\mu_n}}(i_{\mu_m}(X \setminus A)).$ Thus $X \setminus A$ \subseteq $c_{s_{\mu_n}}(i_{\mu_m}(X\setminus A))$. Therefore, X\A is $\tilde{\mu}_{(m,n)}$ -open implying that A is $\tilde{\mu}_{(m,n)}$ -closed in (X, μ_1, μ_2).

Theorem 3.20 Let (X, μ_1, μ_2) be a BGTS and let A \subseteq X. If $i_{s_{\mu_n}}(F) \subseteq A \subseteq F$, then A is $\tilde{\mu}_{(m,n)}$ -closed for any μ_m -closed set F in (X, μ_1, μ_2).

Proof: Let $i_{s_{\mu_n}}(F) \subseteq A \subseteq F$, where F is μ_m -closed. The $X \in X \setminus A \subseteq X \in C_{s_{\mu_n}}(F) \subseteq c_{s_{\mu_n}}(X \in U=X \in U$ is μ_m -open and $U \subseteq X \setminus A \subseteq c_{s_{\mu_n}}(U)$. Then $X \setminus A$ is $\tilde{\mu}_{(m,n)}$ -open. Hence, A is $\tilde{\mu}_{(m,n)}$ -closed.

Remark 3.21 The converse of the above theorem is not true as can be seen in the following example.

Example 3.22 Let $X = \{a,b,c,d\}$ with two generalized topologies $\mu_1 = \{\emptyset, \{a\}, \{a,b\}, \{a,c\}, \{a,b,c\}\}$ and $\mu_2 = \{\emptyset, \{a,b,c\}\}$ X, {a}, {b} {a,b}}. Then the $\tilde{\mu}_{(1,2)}$ -closed sets are \emptyset , X, $\{b,c,d\}, \{c,d\}, \{d\}, \{c\}, \{b,d\} \text{ and } \{b\}.$ See that the $\tilde{\mu}_{(1,2)}$ closed set {b} is contained in μ_1 -closed set {b,d} but the $i_{s_{\mu_2}}(\{b,d\})$ is not contained in $\{b\}$.

Theorem 3.23 Let $\{A_{\alpha}: \alpha \in J\}$ be the collection of $\tilde{\mu}_{(m,n)}$ closed sets in the BGTS (X, μ_1, μ_2). Then $\bigcap_{\alpha \in I} A_{\alpha}$ is also $\tilde{\mu}_{(m,n)}$ -closed in (X, μ_1, μ_2).

Proof: Let A_{α} be $\tilde{\mu}_{(m,n)}$ -closed in (X, μ_1, μ_2) . Then $X \setminus A_{\alpha}$ is $\tilde{\mu}_{(m,n)}$ -open. By Theorem 3.13, $\bigcup_{\alpha \in I} X \setminus A_{\alpha}$ is $\operatorname{also} \tilde{\mu}_{(m,n)}$ open. This goes to show that $\bigcup_{\alpha \in J} X \setminus A_{\alpha} = X \setminus \bigcap_{\alpha \in J} A_{\alpha}$ is $\tilde{\mu}_{(m,n)}$ -open. Hence $\bigcap_{\alpha \in I} A_{\alpha}$ is $\tilde{\mu}_{(m,n)}$ -closed in (X, μ_1, μ_2) .

Theorem 3.24 Let (X, μ_1, μ_2) be a BGTS and A \subseteq X. Then (i) $i_{s_{\mu_n}}(c_{\mu_m}(A))$ is $\tilde{\mu}_{(m,n)}$ -closed; (ii) $c_{s_{\mu_n}}(i_{\mu_m}(A))$ is $\tilde{\mu}_{(m,n)}$ -open.

e): 23⁽⁹⁾ Proof: Let $A \subseteq X$. (i) Then the $i_{s_{\mu_n}}(c_{\mu_m}(i_{s_{\mu_n}}(c_{\mu_m}(A)))) \subseteq i_{s_{\mu_n}}(c_{\mu_m}(c_{\mu_m}(A)))$ By Theorem 3.19 $i_{s_{\mu_n}}(c_{\mu_m}(A))$ is $\tilde{\mu}_{(m,n)}$ -closed. (ii) The $c_{s_{\mu_m}}(i_{\mu_m}(A)) = c_{s_{\mu_m}}(i_{\mu_m}(i_{\mu_m}A))$ $\subseteq c_{s_{\mu_n}}(i_{\mu_m}(c_{s_{\mu_n}}(i_{\mu_m}A)))).$ Thus by Theorem 3.5 $c_{s_{\mu_n}}(i_{\mu_m}(A))$ is $\tilde{\mu}_{(m,n)}$ -open.

References

- [1] Boonpok C., Weakly open functions on bigeneralized topological spaces. Int. Journal of Math. Analysis, Vol.4,2010, no. 18, 891-897
- [2] Császár, Á., Generalized open sets in generalized topologies. ActaMathematicaHungarica, 106, (2005), 53-66.
- [3] Császár, Á., Generalized topology, generalized continuity. ActaMathematicaHungarica, 96(2002), 351-357.

Kalaivani, [4] Saravanakumar, D., N., and SaiSundaraKrishnan.G., On $\tilde{\mu}$ -open sets in generalized topological spaces. Malaya Journal Mat. 3(3)(2015), 268-276.

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY