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Abstract: In this paper, we have discussed the similarity-type solutions for a power-law fluid. We have derived similarity-type 

transformation that converts the partial differential equations governing the boundary-layer flow of a power-law fluid into an ordinary 

differential equation. The solution of the two-point boundary value problem was obtained by solving an equivalent initial value problem 

using a numerical scheme.                                                                      
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1. Introduction 
 

The equations describing the boundary-layer flow of a 

power-law fluid along a flat plate are non-linear in character. 

An exact solution cannot be easily found and numerical 

methods. However, important insights into the main physical 

features that may exist within the boundary layer are 

provided by self-similar solutions to the boundary-layer 

equations. Similarity-type solutions are known, and have 

been extensively studied, for flows such as the flat plate, 

Falkner-Skan, converging channel and Goldstein. 

Additionally, self-similar solutions often serve as the basis 

for other methods that are used to study more complex non-

similar flows. 

 

Investigations into self-similar solutions of the boundary-

layer flow of power-law fluids can be considered to have 

started with the work of Schowalter[1] and Acrivos et al[2]. 

Both investigators looked at flow along a flat plate and give 

the form of the similarity transformation as well as the 

ordinary differential equation from which a self-similar 

solution is obtained. Acrivos et al[2] presented some 

solutions to the governing Blasius-like differential equation 

for the case of zero mass transfer through the surface of the 

plate. The external flow is assumed to be uniform in these 

investigations. 

 

Lee and Ames[3] consider the form of the similarity 

transformation for a number of different non-Newtonian 

fluids. For power-law fluids they considered various external 

flow regimes and gave the form of the ordinary differential 

equations governing these flows. A Falkner-Skan-type 

equation for power-law fluids is derived therein using group-

theoretic methods. Self-similar velocity profiles are provided 

by the solutions of these differential equations. 

 

A self-similar solution for the boundary-layer flow of a 

power-law fluid with mass transfer through the surface is 

discussed by Nachman and Taliaferro[4]. They show that 

similarity is preserved when the function describing mass 

transfer through the surface is of a specific form that 

depends on the stream-wise location. They also show that 

the fluid injection rates need to lie in a critical range to 

ensure self-similar velocity profiles. 

 

In this paper, we derive a version of the Falkner-Skan-type 

equation for power-law fluids that is used in subsequent 

discussions. The derivation is in the style presented by 

Schlichting [5] rather than the group-theoretic approach used 

by Lee and Ames[3]. We focus specifically on the case of an 

external flow with a zero pressure gradient so that the 

Falkner-Skan-type differential equation reduces to a Blasius-

like form. We also look at the asymptotic form of the 

solution in the far-field. Some techniques for obtaining a 

numerical solution of the Blasius-like differential equation 

are discussed and the solutions found are shown.  We look at 

solutions of the Falkner-Skan-type differential equation for 

various non-zero values of the pressure gradient parameter.  

  

2. Derivation of Governing Equation 
 

The equations governing the boundary-layer flow of a 

power-law fluid are given as 

 
 

and the corresponding boundary conditions are 

 
 

These boundary conditions reflect the physical requirement 

that the fluid flow satisfies full viscous no-slip at the surface 

and mass transfer rate through the surface that may vary 

with stream-wise distance. We will take the normal flow 

through the surface to be constant, possibly zero. The 

stream-wise velocity within the boundary layer is required to 

match smoothly onto the free-stream at a large distance from 

the surface. The mass transfer taking place through the 

surface may be constant along the entire length being 

considered or it may vary with stream-wise location along 

the surface. Furthermore, this mass transfer may be either 

injection of fluid into, or suction of fluid from, the boundary 

layer. 

 

By considering the behaviour of the x-momentum equation 

at a large distance from the surface, or alternatively by 

making use of Bernoulli's equation, it is found that - 
𝑑𝑝

𝑑𝑥
= 𝑈𝑒   𝑥 

𝑑𝑈𝑒  

𝑑𝑥
,  where 𝑈𝑒   𝑥  describes the external flow 

as a function of distance along the surface. 

 

Prescribing a particular form for the external flow, 𝑈𝑒   𝑥 , 
results in a specific type of self-similar solution for the 

boundary-layer flow. If the external flow is of the form 

𝑈𝑒   𝑥 = C 𝑥𝑚  then the self-similar solutions are referred to 
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as being of Falkner-Skan-type. Flows over a flat plate are 

included in the family of Falkner-Skan solutions and are 

recovered by letting 𝑚=0. For Newtonian fluids the constant 

C depends only on the parameter m, while for the class of 

non-Newtonian fluids being considered here C will also 

depend on the fluid index n. 

 

We proceed to derive the differential equation governing the 

boundary-layer flow of a power-law fluid for which self-

similar solutions are to be found by introducing a similarity 

variable defined by 

 
 

We also make use of the stream 

 
Where f(s) is a dimensionless stream function. The stream 

function 𝜓 identically satisfies the continuity equation 

(1.1a), while the 𝑥-momentum equation (1.1b) is 

transformed into the Falkner-Skan-like ordinary differential 

equation. 

 
 

where primes denote differentiation with respect to the 

similarity variable s. The quantity 𝛽, referred to as the 

pressure gradient parameter, is given by 

 
and the velocity components u and v are given by 

 

 

 
We observe that setting 𝑛 = 1 for the fluid index, which 

corresponds to a Newtonian fluid, results in the similarity 

variable s, the stream function 𝜓, as well as equation (1.4) 

being reduced to the well-known forms associated with 

Falkner-Skan flows; see Schlichting[5]. 

 

We also note that this form of equation (1.5) is equivalent to 

that given by Lee and Ames[3], the main difference being in 

the choice of coefficients of the corresponding terms in the 

Falkner-Skan-like differential equation. The boundary 

conditions (1.1c) and (1.1d) are transformed into 

 
 

To find self-similar solutions we require that equation (1.4) 

and the accompanying boundary conditions are independent 

of the original variables x and y. The boundary condition 

(1.1c) that permits mass transfer through the surface has 

become (1.6a) as a result of introducing the similarity 

variable s. The presence of x in this boundary condition 

means that a self-similar solution for equation (1.4) cannot 

be obtained. However, the form of the function V(x) 

describing the mass transfer through the surface may be 

chosen so to ensure the existence of a self-similar solution. 

Letting V (𝑥) = 𝑉0𝑥 
 2𝑛−1 𝑚−𝑛

𝑛+1
 allows the boundary condition 

(1.6a) to be expressed as 

 
 

where both 𝑉0 and 𝐶   𝑚,𝑛  are constants. This form for V 

(𝑥) is not unlike that used by Nachman and Taliaferro[4] in 

their discussion of the boundary-layer flow of a power-law 

fluid along a flat plate in the presence of similarity-

preserving mass transfer.  Hence, a self-similar solution can 

be sought for equation (1.4) subject to boundary conditions 

(1.6b), (1.6c) and (1.7) 

 

The nature of the flow being considered determines the form 

that the boundary conditions that accompany equation (1.4) 

ultimately take. Even though the boundary-layer flow 

involved fluid injection at the surface, we will focus on 

flows with zero mass transfer through the surface as this 

case still provides useful insights into the structure of the 

boundary layer.  Hence, self-similar solutions to equation 

(1.4) will be sought subject to the following boundary 

conditions. 

 
Equation (1.4) and the boundary conditions (1.8) constitute a 

third-order non-linear two-point boundary value problem 

that has no known analytic solutions (except in the 

degenerate case when n = 2) and needs to be solved by a 

numerical scheme. Techniques for obtaining solutions to 

such boundary value problems are often based on simple 

shooting, finite-differences or collocation. The method of 

simple shooting is used to obtain solutions to equation (1.4), 

these solutions are discussed in the following sections. We 

proceed by firstly finding solutions to equation (1.4) when 

𝛽 =  0, which describes the boundary-layer flow along a flat 

plate. These solutions will, hopefully, provide an intuitive 

understanding of the structure in the boundary-layer for this 

simple flow geometry. 

  

Zero Pressure Gradient (𝜷 = 0): The choice of 𝛽 = 0 has 

the geometric interpretation of corresponding to a potential 

flow over a flat plate, for which u → 𝑈𝑒  (constant) as s →  ∞. 

Hence, without loss of generality, we set 𝑈𝑒  (𝑥) = 1. For this 

choice of 𝛽, equation (1.4) simplifies to the following form 

 
subject to the boundary conditions (1.8). 

 

We note that, equation (1.9) is essentially of the same form 

as that given by Acrivos et al.[4], where a different 

coefficient appears due to a slight difference in the choice of 

the similarity variable. This equation is a third-order non-

linear two-point boundary value problem that can only be 

solved by a suitable numerical method. A number of 

different numerical methods are available for finding the 

numerical solution of equation (1.9) and we next provide a 

description of one such method. After the numerical method 

has been used to find solutions of equation (1.9), we shall 

also discuss the asymptotic behaviour of these solutions in 

the far-field. 
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3. Numerical Solution 
 

As indicated previously, the non-linear form of equation 

(1.9) means that a numerical technique needs to be 

employed to find a solution. Boundary value problems must 

be solved at all points in the solution domain 

simultaneously, often using methods based on finite - 

difference approximations. The presence of the (f ")
2-n

 term 

in equation (1.9) would make a method based on finite-

differences somewhat awkward, quite apart from the matter 

of the semi-infinite solution domain.  
 

In contrast, initial value problems can be solved by a 

stepwise, or ‘marching’, procedure. In this sense, initial 

value problems are easier to solve. This marching method 

for solving initial value problems may be adapted and used 

to solve boundary value problems. The resulting technique is 

known as the ‘shooting’ method and we use this method to 

numerically solve equation (1.9). 

 

The shooting method is based on the idea of converting a 

boundary value problem into an equivalent initial value 

problem and integrating by marching from the initial point 

to the terminal point. As part of the conversion step, it is 

necessary to specify extra initial conditions and iteratively 

adjust them until the required conditions at the terminal 

point are satisfied. To solve equation (1.9) with the shooting 

method, the asymptotic boundary condition is replaced by an 

initial condition for 𝑓′′(0) and integrated from s = 0 to a 

large value of s where 𝑓′(∞) = 1 is deemed to be satisfied. 

The selection of the correct value for 𝑓′′ (0) may be done 

with a trial-and-error approach or, as is more common, a 

Newton iteration scheme that converges to the correct value 

of 𝑓′′ (0) is used. Acrivos et al.[2] indicate, but give no 

details, that a method originally devised by To epfer for the 

Blasius equation that requires no guessing for 𝑓′′ (0) can also 

be used for solving equation (1.9). Rosenhead[6] provides 

details of how this method is used to solve the Blasius 

equation. Here we give a brief description of the method and 

discuss its suitability for finding numerical solutions to 

equation (1.9). 

 

It can be verified that equation (1.9) is scale-invariant to the 

transformation defined by 

 
where a is an arbitrary 'constant of homology'. When this 

transformation is applied to equation (1.9) the following 

associated ordinary differential equation is obtained 

 
Where the prime indicates differentiation with respect to 𝑠 . 
The boundary conditions given at s = 0 become 𝑓 (0) = 𝑓 ′(0) 

= 0, while the asymptotic boundary condition becomes 

 
 

Since 𝑓′(∞) = 1, the far-field boundary condition for 

equation (1.10) takes the form 

 
 

Hence, the associated differential equation (1.10) the same 

initial conditions as equation (1.9), but the asymptotic 

boundary condition requires the solution to converge to a 

different and unknown value, viz. 
1

𝑎𝑛+1 

 

It would seem that little benefit has been gained from the use 

of this transformation, as it is still necessary to specify either 

𝑓′′(0) or 𝑓 ′′(0) to solve equation (1.9) or equation (1.10) 

respectively. However, we note that 𝑓′′(0)= a
3𝑓 ′′(0), where 

with a specified 𝑓 ′′(0) and a known value of ‘a’ we can 

calculate the required 𝑓 ′′(0). Since 𝑓 ′′(0) is completely 

arbitrary we set it equal to unity. The value of a is 

determined from the far-field solution of equation (1.10). 

Hence, the additional initial condition for 𝑓′′(0) needed to 

solve equation (1.9) is given by 

 
The numerical method for finding the solution to equation 

(1.9) consists of two stages. First, solve the initial value 

problem posed by equation (1.10) for 𝑓 (s ) subject to the 

initial conditions 𝑓  0 = 𝑓 ′ 0 =  0 and 𝑓 ′′ 0 = 1. The 

integration is carried out to a suitably large 𝑠 ∞ at which the 

value of 𝑓 ′ is considered to have satisfied the asymptotic 

boundary condition. This is indicated by a plateau on the 

plot of 𝑓 ′, as well by meeting an appropriate stopping 

condition. The value of 𝑓 ′′(0) is then calculated with 

sufficient accuracy according to equation (1.11). Secondly, 

solve equation (1.9) for f(s) starting with initial values 𝑓(0) 

= 𝑓′(0) = 0, and the newly found value of 𝑓"(0). This two 

stage numerical process eliminates the iterative search for 

𝑓"(0) that is common in standard shooting methods. It is also 

described as being quite stable and as having no significant 

build-up of error. 

 

This numerical method was implemented as a Matlab script 

employing the Runge-Kutta solver ode45, essentially to 

rapidly prototype the method and check its effectiveness. It 

was also implemented as a Fortran program based on a 

standard fourth order Runge-Kutta single-step integrator. 

The method was tried for various values of 𝓃 and far-field 

locations 𝑠 ∞ to check the behaviour of the value of 𝑓 ′  in the 

far-field. The values of 𝑓 ′(𝑠 ∞) obtained are shown in Table 

1.1. 

 

The results in Table 1.1 indicate that for values of the fluid 

index slightly less than unity the solution to equation (1.10) 

in the far-field, 𝑓 ′(𝑠 ∞), has converged to a constant value. 

For fluid index values below 0.7 there is still some 

variability in the values of 𝑓 ′(𝑠 ∞). However, as 𝑠 ∞. takes 

progressively larger values it is seen that more digits in the 

value of 𝑓 ′(𝑠 ∞) remain unchanged. For example, for 𝓃 = 0.4 

we have 𝑓 ′(𝑠 ∞=50)- 𝑓 ′(𝑠 ∞=25)=0.000179, whereas 

𝑓 ′(𝑠 ∞=150)- 𝑓 ′(𝑠 ∞=125)=0.0000017. Hence, for small values 

of 𝓃 we can ensure that 𝑓 ′(𝑠 ∞) has converged to an 

appropriate accuracy by choosing a sufficiently large value 

of 𝑠 ∞. By calculating 𝑓 ′(𝑠 ∞) to a high level of accuracy, we 

are then able to ensure that the initial condition 𝑓 ′′(0) for the 

solution of equation 1.9 is also known to a high accuracy. 

 

 

Paper ID: ART20199757 10.21275/ART20199757 1072 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 7, July 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table 1.1: Far-field convergence values for solutions to equation (1.10) for a selection of fluid index values 𝑛 and ‘infinity’ 

𝑠 ∞  

𝓃 s ∞ = 25 s ∞ = 50 s ∞ = 75 s ∞ = 100 s ∞ = 125 s ∞ = 150  

0.1 1.0460786 1.0478182 1.0483143 1.0485413 1.0486691 1.0487502 

0.2 1.2581674 1.2593406 1.2596233 1.2597402 1.2598014 1.2598381 

0.3 1.3803195 1.3808658 1.3809717 1.3810102 1.3810286 1.3810388 

0.4 1.4609016 1.4610806 1.4611066 1.4611145 1.4611179 1.4611196 

0.5 1.5178824 1.5179191 1.5179227 1.5179236 1.5179240 1.5179242 

0.6 1.5600880 1.5600917 1.5600919 1.5600920 1.5600920 1.5600920 

0.7 1.5924359 1.5924360 1.5924360 1.5924360 1.5924360 1.5924360 

0.8 1.6179111 1.6179111 1.6179111 1.6179111 1.6179111 1.6179111 

0.9 1.6384072 1.6384072 1.6384072 1.6384072 1.6384072 1.6384072 

1.0 1.6552030 1.6552030 1.6552030 1.6552030 1.6552030 1.6552030 

1.1 1.6691869 1.6691869 1.6691869 1.6692706 1.6692722 1.6692737 

1.2 1.6809933 1.6809935 1.6809936 1.6810992 1.6811097 1.6811202 

1.3 1.6910838 1.6910839 1.6910840 1.6911653 1.6911753 1.6911852 

 

Alternatively, the solution of equation (1.10) can be found at 

a moderate value of 𝑠 ∞ and the initial condition 𝑓"(0) used in 

the second stage of the solution procedure can be refined by 

a Newton-Raphson iteration (akin to the usual shooting 

method). The slow convergence of 𝑓 ′ in the far-field for 

small values of ′𝓃′ is attributable to the asymptotic form of 

the solution in the far-field. 

 

Shear-thinning Fluids 

 

Power-law fluids having the fluid index in the range  

0 < 𝓃 < 1 are often referred to as shear-thinning or 

pseudoplastic. The numerical method described above was 

used to find solutions to equation (1.9) for this class of 

fluids. The fluid index values considered was 𝓃 =
1.0,0.8,… , 0.2 The results given in Table 1.1 were used to 

properly select values for 𝑠 ∞. The value 𝓃 = 1 corresponds 

to a Newtonian fluid for which the solution is obtained from 

the classical Blasius equation. This case served as a 

confidence check that the numerical technique being used 

was performing correctly. 
 

The self-similar solutions to equation (1.9) for different 

values of 𝓃 represent the stream-wise velocity in the 

boundary-layer flow of a shear-thinning fluid. Velocity 

profiles for the values of  ‘n’ considered . When compared 

with the Blasius solution, we see that for values of ‘n’ down 

to approximately 0.6 the velocity profiles do not show much 

variability in appearance. In the next section we will show 

that the solution to equation (1.9) possesses algebraic decay 

in the far-field and this can be observed for the velocity 

profiles plotted. This effect becomes more noticeable for 

lower values of 𝓃 where the velocity profiles exhibit a more 

gentle ‘shoulder’. These velocity profiles confirm that 

matching of the boundary-layer velocity with the far-field 

uniform free-stream takes place at greater distances from the 

surface as the fluid index 𝓃 decreases, corresponding to 

thickening of the boundary-layer. 

 

The two-stage numerical method for solving the two-point 

boundary value problem (1.9) along with boundary 

conditions (1.8) was modified to use a Newton-Raphson 

iteration to refine the value of 𝑓"(0). For shear-thinning 

fluids this numerical method was found to be generally quite 

robust and efficient. However, in using this numerical 

method some care must be taken to ensure that the solutions 

obtained exhibit the correct form of asymptotic decay in the 

far-field. Furthermore, by examining the nature of the 

asymptotic form of the numerical solutions in the far field 

we will gain a better understanding of the behaviour of the 

self-similar solutions of the boundary-layer flow of power-

law fluids. We will next examine the asymptotic form of the 

velocity profile for shear-thinning fluids in the far-field. 

 

Asymptotic form for Shear-thinning fluids 

 

We proceed by noting that the asymptotic boundary 

condition (1.8b) allows us to write the solution  𝑓 (s) in the 

far-field as: 

 
 

where a is a constant and 𝜑(𝑠) ≪ 1. To determine the large s 

structure we define 𝜍 = s + a so that the form for 𝑓 (s) 

becomes: 

 
with 𝜑 𝜍 ≪ 1 𝑎𝑠 𝜍 →  ∞. Substituting this expression into 

equation (1.9), and neglecting products of 𝜑 with its 

derivatives, yields, to leading order, 

 

 
 

where the primes denote differentiation with respect to 𝜍. 

Integrating this equation gives the large 𝜍 behaviour of 𝜑 as: 

 

where 𝛼1 =   
1−𝑛

2𝑛
 

𝑛

𝑛−1
  

1−𝑛

𝑛+1
 . Substituting this expression 

into equation (1.12) and differentiating with respect to 𝜍 

gives in the limit 𝜍 → ∞ (or equivalently s→ ∞) 

 
where the ellipsis denote lower-order terms and 

 
 

Hence, equation (1.13) is a first-order approximation to the 

solution of equation (1.9) in the far-field and its form 

predicts that the solution in the far-field will display 

algebraic decay, provided 𝓃 < 1. We note that for 𝓃 = 1 

the exponent in (1.13) possesses a singularity that indicates 

faster than algebraic decay in the far-field. However, the 

velocity in the far-field of the boundary layer of a 

Newtonian fluid is known to display exponential decay as it 
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approaches the free-stream velocity; see Rosenhead [6] for 

details. 

 

For shear-thinning fluids, with 0 < 𝓃 < 1, equation (1.13) 

predicts algebraic decay toward the free-stream velocity 

value from below. Letting n = 1−𝛿, so that 𝛿 represents the 

degree of shear-thinning in the fluid with 0 < 𝛿 <  1, we can 

express the exponent in equation (1.13) as 1−
2

𝛿
. For slightly 

shear-thinning fluids with small values of 𝛿, this exponent 

will be negative and of large magnitude.  

 

The velocity profile for such fluids will have very rapid 

algebraic decay in the far-field. For values of 𝛿 closer to 

unity, corresponding to a more shear-thinning fluid, this 

exponent is smaller in magnitude and is negative. Hence the 

velocity profile of power-law fluids with a higher degree of 

shear-thinning will exhibit slower algebraic decay in the far-

field. 

 

The algebraic decay of the velocity field for shear-thinning 

fluids poses some concerns with regard to matching such a 

solution to an inviscid outer (potential) flow. It is implicitly 

assumed that such matching is possible when the large 

Reynolds number limit is applied to the Cauchy equations. 

However, there is a parallel for this algebraic decay that 

occurs for Newtonian fluids. General similarity solutions of 

the Falkner-Skan equation possessing algebraic decay are 

known to exist. Brown and Stewartson considered the 

conditions under which such solutions can match onto an 

outer potential flow and whether they are of relevance in the 

context of such solutions being an asymptotic description of 

a real boundary layer. They demonstrated that solutions 

showing algebraic decay are not appropriate if such 

solutions are to be matched onto an outer potential flow and, 

consequently, should be disregarded. 

 

The boundary-layer flow being considered here is somewhat 

complicated by the additional non-linearity in the apparent 

viscosity. We will show that this term plays a crucial role in 

correctly describing the correct matching of the inner 

boundary layer with an outer potential flow. Now we turn to 

the matter of matching the boundary-layer solutions of 

equation 1.9 to an outer flow for fluid index values 0< 𝑛 <
1. 

 

The solutions presented above were derived from the 

boundary-layer equations on the assumption that they match 

smoothly onto an outer inviscid (i.e. potential) flow. To 

ensure that this is the case we first note that combining 

equations (1.5) and (1.13), when 𝑚= 0, gives 

 
where 𝛼 2 and 𝛾 are constants. Next, we recall that under the 

boundary-layer approximation the apparent viscosity 

𝜇𝑎𝑝𝑝  can be expressed as 

 

 

where 𝜖 = 𝑅𝑒−
1

𝑛+1 is the boundary-layer thickness. Thus, to 

leading order in powers of 𝜖, the apparent viscosity depends 

solely upon the horizontal shear within the boundary-layer 

flow. Referring to equation (1.15) for the apparent viscosity, 

we find that for large 𝒴 (i.e. in the outer region of the 

boundary layer) the terms that were previously excluded 

from our boundary layer analysis now become important. A 

simple dominant balance of the terms in equation (1.15) 

indicates that our boundary-layer expansion breaks down 

when 𝒴 = O  𝑅𝑒
1−𝑛

𝑛+1 . We also note that, on the boundary-

layer scale, the outer potential flow occurs when 𝒴=O 

 𝑅𝑒
1

𝑛+1 ≫ O 𝑅𝑒
1−𝑛

𝑛+1   (since 0< 𝑛 <1). Therefore, we 

define a new stretched co-ordinate by 

 
where 𝒴  is the non-dimensional form of the vertical co-

ordinate. The co-ordinate Y is large on the boundary-layer 

scale y but still small on the physical length-scale. 

 

The asymptotic form for the velocity components given by 

equation (1.14) now suggests that in the new outer, or 

viscous, region we write 

 
 

Substituting these expansions into the Cauchy equations 

gives, at leading order, 

 
where V𝜊(𝑥) is determined by matching with the inner 

boundary-layer solution. From equation (1.14) this gives 

 
 

Equation (1.16b) needs to be solved subject to the matching 

of 𝑈1with the inner boundary-layer solution, which from 

equation (1.14b) is 

 
and exponential decay as Y → ∞ which ensures a smooth 

transition between the new outer viscous layer and the 

uniform flow in the free stream. Having determined the form 

of 𝑈1, equation (1.14a) can now be integrated to give 𝑉1. 

However, the exact form of 𝑉1 is not needed in the 

subsequent analysis and so is not pursued here. The 

boundary condition (1.17) on U1 at 𝑌 = 0, together with the 

form for 𝑉0, precludes any similarity type solutions of the 

non-linear diffusion equation (1.14b). Nonetheless, it can 

readily be shown that this equation admits solutions that 

satisfy the prescribed (matching) boundary conditions. We 

proceed by noting that the singular nature of equation (1.17) 

gives 𝑈1𝑌 ≫ 𝑉0𝑥  in the limit 𝑌 →0.  Hence, letting 𝑈1  =  

𝑥−
1

𝑛+1𝑈 (𝑌) and ignoring the   𝑉0𝑥    term  in  equation (1.16 
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b) gives, to leading order, 

 
The solution of this equations gives the correct asymptotic 

form 𝑈  (Y)~ 𝑌
𝑛+1

𝑛−1  as 𝑌 →0.  

 

Next we examine the form of 𝑈1 in the limit 𝑌 → ∞. If we 

assume that 𝑈1 →0 then, upon retaining the dominant terms 

in equation (1.16 b), we find that 𝑈1, which by assumption is 

much smaller than unity, is governed by 

 

Making the substitution 𝜉 =
𝑌

𝜎
 , where 

 
gives 

 
The solution of this equation has the asymptotic form 

 
as. 𝜉 → ∞. Hence, we see that equation (1.16b) has solutions 

that provide a smooth match between the outer viscous layer 

and the free-stream potential flow. 

 

The analysis performed above demonstrates that equation 

(1.16b) possesses a solution that satisfies the appropriate 

matching conditions at 𝑌 = 0 and as 𝑌 → ∞. Though we 

have not provided numerical solutions of equation (1.16b), 

we note that since it is a parabolic partial differential 

equation in 𝑥 it should, in principle, be possible to develop a 

numerical scheme to march an initial velocity profile 

forward in 𝑥. However, to provide an appropriate initial 

velocity profile for such a procedure, we note that 𝑉0(𝑥) 

becomes unbounded as 𝑥 → 0 and this would require us to 

perform a small- 𝑥 asymptotic analysis of the full Cauchy 

equations. As 𝑥 = 0 corresponds to the leading edge of the 

flat plate, the small- 𝑥 analysis would need to take account 

of leading-edge effects. Such a study is outside the scope of 

the current work and will not be pursued further. 

 

Shear-thickening Fluids 
Power-law fluids having the fluid index in the range 1< 𝑛 < 

2 are referred to as shear-thickening or dilatant. The set of 

fluid index values 𝑛 considered for dilatant fluids was 

𝑛 = 1.0, 1.1,….,1.4. The numerical method described above 

is not readily applicable to this class of fluids. However, the 

results from Table 1.1 were used to determine an initial 

guess for 𝑓"(0) and then a standard shooting method was 

used to find solutions to equation (1.9). Velocity profiles for 

the values of  𝑛 considered. The features displayed by these 

velocity profiles are in agreement with profiles reported by 

Acrivos et al. and Lee and Ames. From the velocity profiles, 

it can be seen that as the fluid index 𝑛 increases, the velocity 

profile matches onto the free-stream velocity at 

progressively smaller values of 𝑠. Such thinning of the 

boundary-layer is common among shear-thickening fluids. 
 

During the numerical solution of equation (1.9) for values of 

𝑛 > 1  it was found that manual intervention was often 

required to monitor the convergence criteria, whereas for 

shear-thinning fluids the numerical scheme converged onto 

the solution quite readily. 

 

Asymptotic form for Shear-thickening fluids 
 
Using a numerical scheme based on the standard shooting 

method coupled with Newton-Raphson iteration to find the 

solution of equation (1.9) for shear-thickening fluids 

provides results of limited usefulness. However, a more 

promising approach that provides a better understanding of 

the nature of the boundary layer of a shear-thickening fluid 

is to regard the original problem as a free-boundary problem, 

where the outer limit of the 'boundary layer’ now becomes 

an unknown of the system. Thus we pose the problem for 

non-zero ‘m’ as 

 
to be solved subject to the usual no-slip conditions 

 
and the new boundary conditions 

 
We observe that equation (1.18a) is essentially identical to 

equation (1.4) along with the appropriate replacement for the 

pressure gradient parameter. Also the absolute value of 𝑓 has 

been introduced in the terms involving exponents which take 

negative values when 𝑛 >  1. 
 

The boundary condition (1.18c) ensures that the stream wise 

velocity does not overshoot its far-field value of unity at the 

‘outer’ edge of the boundary layer. Though this system 

appears to be over-specified, it can be seen that when 𝑠𝑐  is 

treated as an unknown we then obtain an eigen value 

problem for 𝑠𝑐  in the form of a two-point boundary-value 

problem which can be solved using standard methods. 

 

To make the computation of solutions more convenient, it is 

useful to take advantage of the autonomous nature of the 

system (1.18) and to make a shift of coordinates so as to 

define the origin to be at the critical point 𝓏 = 𝑠𝑐 − 𝑠. 

Applying this shift of coordinates gives the transformed 

equation 

 
along with the transformed boundary conditions 

 
In order to numerically integrate the transformed equation 

we employ the small- 𝓏 asymptotic form for 𝑓  to start the 

calculation at some suitably chosen Δ 𝓏 ≪ 1. This is given 

by 

 
where 𝛽  is an unknown that is to be determined, with 𝛼 and 

𝛾  being ‘constants’ that are dependent on the fluid and flow 

parameters. Making the appropriate substitutions into the 

transformed equation and simplifying results in 

𝑛𝛼 𝛼 −  1  𝛼 −  2 𝛾 𝓏𝛼−3

= 𝛽  𝛼  𝛼 −  1  
2−𝑛

 𝛾   2−𝑛𝓏𝑛 2−𝛼 +2𝛼−4 
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+  2  
𝑚 𝑛 + 1 

𝑚 2𝑛 − 1 + 1
 𝛼𝛾 

− 𝛼 𝛼

− 1  𝛾    𝛼  𝛼

−  1  
1−𝑛

 𝛾  1−𝑛𝓏𝑛 2−𝛼 +2𝛼−3 

−    
𝑚 𝑛 + 1 

𝑚 2𝑛 − 1 + 1
 𝛼2𝛾 

− 𝛼 𝛼

− 1  𝛾    𝛼  𝛼

−  1  
1−𝑛

 𝛾  1−𝑛𝛾 𝓏𝑛 2−𝛼 +3𝛼−4 
 

Performing a balance of the leading terms, we find that 

𝛼 =
2𝑛−1

𝑛−1
, while 𝛾  is given by the solution of 

 
 

This asymptotic form allows us to apply boundary 

conditions at some suitably small ∆ 𝓏 and then integrate out 

to the location at which the boundary condition 𝑓 = 𝑓𝓏 = 0 

is satisfied. This was accomplished using a fourth-order 

Runge-Kutta quadrature routine coupled with Newton-

Raphson iteration on the unknowns 𝛽  (or equivalently  𝛾 ) 
and 𝑠𝑐 .  
 

It is worth noting at this point that equation (1.9) can be 

solved analytically when 𝑛 = 2, with the pressure gradient 

parameter 𝛽 =  0, for then the non-linear ordinary 

differential equation reduces to the linear third-order 

ordinary differential equation 

 
Equation (1.20) has the general solution 

 
where 𝑎 =  1 2  4 3  and 𝐶𝑖  (𝑖 =  1,2,3) are constants of 

integration. Imposing the boundary condition 𝑓 0 = 0 

gives 𝐶3 = −𝐶1, while 𝑓′ 0 = 0 gives 𝐶2 =  3𝐶1. Hence, 

the general solution simplifies to the following form 

 
 

The constant of integration 𝐶1 and the critical position 𝑠𝑐  are 

then determined from the ‘far-field’ boundary conditions, 

namely that 𝑓 ′ = 1 and 𝑓 ′′ = 0 on  𝑠 = 𝑠𝑐 .  It is easiest to 

apply the second of these to first determine the position 𝑠𝑐 , 

which is readily shown to satisfy the transcendental equation 

 
With 𝑠𝑐  determined the value for the constant of integration 

𝐶1 appearing in equation (1.21) can finally be determined 

from the remaining boundary condition, namely 𝑓 ′ = 1 on 

𝑠 = 𝑠𝑐 . It is worth noting that the presence of the 

exponential terms in the general solution (1.21) indicates 

that it is not possible to satisfy the usual asymptotic 

boundary condition 𝑓 ′(∞) → 1. Hence, we conclude from 

this that a similarity-type solution with the required 

asymptotic behaviour in the far-field does not exist for 

𝑛 = 2. 
 

We note that the form of the exponential term appearing on 

the right hand side of equation (1.22) allows us to obtain 

estimates for 𝑠𝑐  by writing (1.22), to a first approximation, 

as     

 
 

This gives 𝑠𝑐 ≈  1 + 2𝑘 
𝜋

2  3𝑎
 𝑘 = 0,1,2,… . These 

approximate values were used as starting values for the 

numerical solution of the full system (1.20). The equations 

were solved using both a forward and backward shooting 

method. Typically, when the forward-shooting method failed 

to converge to a solution, the backward-shooting method 

was found to be successful. Only the first three modes are 

presented; however, the results for 𝑛 = 2 confirm that there 

is an infinite number of modal solutions of the system 

(1.20). This is supported by the observation that the 

transcendental equation (1.22) possesses an infinite number 

of solutions for sc. We note that for the first modal solution it 

appears that sc is finite for 𝑛 = 1. This is simply an artefact 

of our numerical scheme, which iterates on the values 

𝑓 ′ 𝑠𝑐 − 1 and 𝑓"(𝑠𝑐) until these quantities are less than a 

predefined tolerance, which in obtaining these results was 

set to 10−12 . At this tolerance level the numerical scheme 

cannot distinguish between a converged solution and the true 

solution, which for n = 1 is known to have exponential decay 

to the free-stream value of unity. 

 

Mode 1 appears to represent a ‘boundary layer’ with forward 

flow throughout the flow domain. However, this solution is 

non-physical as it lacks the asymptotic behaviour that is 

characteristic of boundary-layer flows. The higher modes 

exhibit regions with negative velocity, where 𝑓′ < 0 for 

some range of 𝑠. The solutions for higher mode numbers 

become increasingly oscillatory with alternating regions of 

positive and negative velocity. However, there is no physical 

mechanism whereby the laminar flow over a flat plate can 

have a region with negative velocity. Consequently, those 

eigenfunctions which exhibit regions in which 𝑓 ′ < 0 are 

not physically realisable and can be ignored. 

 

We now turn our attention to the question of matching the 

inner solution described above with the outer flow solution. 

 

The phenomenon of a finite-thickness boundary layer is also 

encountered in hypersonic boundary layers by Bush;  Lee 

and Cheng[7];  Mikhailov et al[8].  In such flows the abrupt 

termination of the boundary layer arises due to the 

vanishing nature of the temperature, and consequently 

the fluid viscosity (which is a function of temperature), 

in the outer regions of a hypersonic boundary layer. For 

the case of a fluid whose viscosity-temperature relation is 

described by Sutherland's law (with a non-linear 

dependence of viscosity upon temperature), Bush 

demonstrated that this singularity is smoothed out in a 

thin viscous transition layer which allows uniform 

matching with an outer inviscid shock layer. Lee and 

Cheng[7] extended this analysis to the case where the 

viscosity-temperature relation is given by Chapman’s 

law (with a linear dependence of viscosity upon 

temperature). Although there are some subtle differences 

between the two cases, both result in the need for a 

viscous transition layer at the outer extent of the finite-

width boundary layer. The parallels between the structure 
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of the hypersonic boundary-layer and that of the shear-

thickening boundary layer are obvious. In the latter case 

the underlying cause of the existence of the finite-width 

boundary layer is the vanishing of the leading-order 

viscosity as 𝑠 → ∞. The regularisation of the resulting 

singularity is accomplished through the re-introduction 

of lower-order terms in the viscosity function. A similar 

adjustment layer was also observed by Denier and 

Hewitt[9] in their study of the flow of a power-law fluid 

above a rotating disk. 

 

In order to determine the structure within this viscous 

adjustment layer, we first note that, as mentioned above, 

the underlying cause of the finite-width of the boundary 

layer is due to the vanishing of the leading-order 

viscosity as 𝑠 → 𝑠𝑐 . From our original scalings, the terms 

that were ignored in our leading-order approximation for 

𝜇  in the boundary layer are of the form 

 
With the expansion given above for 𝑢 as 𝑠 → 𝑠𝑐  we obtain 

 
Thus our somewhat naive truncation of the viscosity 

function breaks down when  

 
As a result of this observation, we define 

 
and write 

 
where the ellipsis denote lower-order terms that do not enter 

into the subsequent analysis. The leading-order term for v is 

determined through a trivial match with the ‘inner’ solution. 

This gives 

 

where the constants 𝐴1 =  
1

𝑛+1
 

1

𝑛+1
, 𝐴1 =

1−𝑚(2−𝑛)

𝑛+1
 and 𝛽  

was defined in previously. From the stream wise momentum 

equation we obtain, after some simplifications, 

 
where the viscosity function 𝜇 , is given by  

 
The boundary conditions appropriate to equation (1.23) are 

 
These ensure correct asymptotic decay of the streamwise 

velocity in the far-field  𝜉 → −∞  and matching to the 

algebraic terms in the ‘inner’ region  𝜉 → ∞ . It proves 

useful to rescale equation (1.23) by writing 𝑈 = 𝛼0F, 𝜉 =

𝛼1𝜍, where 𝛼0 =
 −𝑉 𝑥  

𝑛−1

𝑉 
 and 𝛼1 =  

 −𝑉 𝑥  
𝑛

𝑉 
.   

 

The equation for F (𝜍) is then 

 
The solutions which satisfy the asymptotic matching 

conditions are found in the lower-left quadrant, for which F" 

is strictly negative.   

 

4. Conclusion 
 

In this paper, we have derived a similarity-type 

transformation that converts the partial differential equations 

governing the boundary-layer flow of a power-law fluid into 

an equivalent ordinary differential equation. The solution of 

the two-point boundary value problem was obtained by 

solving an equivalent initial value problem using a 

numerical scheme consisting of a standard shooting method 

and coupled with  Newton iteration to find the unknown 

𝑓 ′′  0 . This numerical scheme was found to be satisfactory 

for shear-thinning fluids; however, for shear-thickening 

fluids the numerical scheme was less effective and the 

solutions needed to be interpreted with some care. 
 

An asymptotic analysis of the behaviour of the solution in 

the far-field was also performed. It was shown that, under 

the original boundary-layer scaling, the solution for shear-

thinning fluids exhibited algebraic decay. However, for 

shear-thickening fluids it was found that the derived 

asymptotic form did not predict decay in the far-field, hence, 

suggesting that the shear-thickening boundary layer is of 

‘finite-width’.  It was demonstrated for shear-thinning fluids 

that by introducing a transition layer between the boundary-

layer and the free-stream, via an appropriate rescaling, that a 

composite solution which matches with the boundary-layer 

solution as well as exhibiting exponential decay as 𝑠 → ∞ 

exists. For shear-thickening fluids we identified an infinite 

family of solutions. As was the case for shear-thinning 

flows, shear- thickening fluids require the presence of a 

viscous transition layer in which the singularity that arises as 

a result of the abrupt termination of the boundary layer is 

smoothed out, hence allowing matching with the outer 

potential flow. 

 

We also considered the relationship between the wall shear 

𝑓 ′′ (0) with the parameter 𝑚 that influences the pressure 

gradient in the free-stream flow. The numerical results 

indicate that for positive values of 𝑚 both shear-thinning 

and shear-thickening fluids possess a unique solution. When 

m takes negative values then both classes of fluid possess 

non-unique (or multiple) solutions. It was argued that-the 

non-unique solutions are members of a single family of 

solutions for shear-thickening flows. 

 

The similarity-type solutions described in this paper cannot 

be directly compared with the numerical results  due to 

differences in the underlying methods and flow scenarios as 

captured by the relevant boundary conditions. In particular, 

we focussed here on flows with zero mass transfer through 

the surface. Nonetheless, some qualitative agreement 

between the results obtained using similarity techniques with 

numerical results can be observed.  

 

The results presented here in this paper clearly demonstrate 

the significant issues that arise when a simple constitutive 

relation based on the power-law rheology is used tp model 
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the boundary-layer flow of either shear-thinning or shear-

thickening fluids. That the problem for shear-thinning fluids 

can be made mathematically consistent is perhaps gratifying, 

however, this does not hide the fact that the underlying 

model is fundamentally flawed. Interestingly, the 

mathematical 'fix' described in this paper has now been used 

in a wide variety of modeling problems. 
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