Study of Inter Molecular Interactions in Binary Liquid Mixtures of N, N - Dimethylacetamide with Chloroform using Scaled Particle Theory (SPT)

Tarun Pant Hema¹, Dr. Tara Bhatt², Dr. Charu Chandra Dhondiyal³

¹Reaseach Scholar, M.B. Government P.G. College, Haldwani, Nainital, Uttarakhand, India

²Assistant Professor, M.B. Government P.G. College, Haldwani, Nainital, Uttarakhand, India

³Associate Professor, M.B. Government P.G. College, Haldwani, Nainital, Uttarakhand, India

Abstract: Ultrasonic velocity and density have been measured in binary liquid mixture of N, N Dimethylacetamide (DMAc) with chloroform (CF) at 300K.Shape of the constituent molecules are considered as spherical, cubical, tetrahedral and six different discs with the application of scaled particle theory. To examine the intermolecular interactions in these liquid mixtures ultrasonic speeds are theoretically evaluated based on scaled particle theory. Theoretical velocities have been compared with observed velocities for each possible combination. To examine the intermolecular interactions in these liquid mixtures, ultrasonic speeds are theoretically evaluated based on scaled particle theory. An attempt has been made to predict the behavioural shape of N, N Dimethylacetamide (DMAc) and chloroform (CF).

Keywords: Ultrasonic velocities, Scaled Particle Theory (SPT); Molecular interactions.

1. Introduction

Liquid mixtures are indispensable in almost all industries and all biological sciences. There exists an imperative need to understand these systems and to be able to predict their behavior from the molecular point of view. The use of measurable macroscopic or global quantities to probe into the microscopic, or the local properties of the system has become an essential area of research. All theories of liquids developed so far make approximations at some stages of their development. Until the theory based on distribution function reaches a form in which precise limits on the errors can be specified, there will always be role for auxiliary models of liquid state. Such models are likely to be helpful for liquid with non-simple molecules. Quite a number of such model have been proposed. The mathematics of some of these models are relatively simple as compared to that of distribution function. The study of these models assists physical insight into the liquid state. Hard convex liquid molecules model is used by many researchers ^[1-4]. For hard spheres, it is only necessary to determine radial distribution function g (d).Reiss^[5] et al. developed a method given in Barker and Henderson^[6]called the scaled particle theory (SPT) for obtaining distribution function (d) and the pressure (p) leading to an equation of state for liquid consisting hard convex molecules. Scaled particle theory^[7-8]has been used my some researchers considering different shapes of liquid molecules viz. spherical, cubical and tetrahedral. Liquid molecules may be assumed to have different shapes other than spherical. Although, the chemical structure of a molecule is known, no definite shape has been attached to it in liquid state ^[9]. In the Barker & Henderson, it is proved that SPT works well with the equation of state for 1-D hard rods, 2-D hard discs along with 3-D hard sphere. In the present paper, using scaled particle theory, ultrasonic approach has been used for assigning a specific shape to particular liquid molecule by calculating theoretical ultrasonic velocities and comparing them with experimental velocities. If the intermolecular interactions in binary mixture are weak then molecules may retain the same shape in the mixture but for strong interactions, constituent liquid molecules may be distorted or deformed. The distortion is likely to occur in most of the cases hence the shape of liquid molecule may be called as behavioural shape in a particular mixture. The shape study of N, N Dimethylacetamide (DMAc) and chloroform (CF) liquid molecules is carried out in the present paper.

2. Material and Method

The liquid mixtures of various concentrations in mole fraction were prepared by taking N, N dimeyhyl acetamide and Chloroform with minimum assay (>99.9) of analytical grade (ARgrade), manufactured by Sisco Research Laboratory, Mumbai, India which were used as such without further purification. The velocity of ultrasonic waves in the liquid mixture have been measured by using a single crystal variable frequency ultrasonic interferometer supplied by Mittal Enterprises, New Delhi (M-81) working at four different frequencies (2, 4, 6 & 8MHz) with a tolerance of \pm 0.005%. There is a provision of maintaining constant temperature by temperature water bath supplied by Mittal Enterprises, New Delhi.

Scaled Particle theory (SPT)

The scaled-particle theory (SPT) offers a powerful conceptual and computational frame work within which molecular order and thermodynamic properties can be examined ^[10]. SPT links the microscopic parameters viz., radius, surface area and hard core volume of a molecule with the macroscopic parameters like ultrasonic speed. The ultrasonic speeds of pure liquids and their binary liquid mixtures can be estimated theoretically based on some, statistical, empirical and semi empirical models Nomoto's

Volume 8 Issue 6, June 2019

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY 10.21275/ART20198808

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

 $\eta = V_H$

relation, Impedance dependence relation, Schaaff's collision factor theory, Jacobson's free length theory, Ideal mixing relation, Zhang-Junjie relation Danusso model and Rao's specific velocity models. However, all these models have a common drawback that, the shapes of the participating species have not been taken into consideration while estimating ultrasonic speed. On the other hand, in scaled particle theory ^[11] participating components are considered to have different shapes (like sphere, cube, tetrahedral, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) and when the shape of the participating components match the actual shape of the species, then the theoretical ultrasonic speeds estimated based on this model will give values close to the experimental values. Although, the chemical structure of a molecule is known, no definite shape has been attached to it in liquid state. Recently, Ghosh et al.^[9] have used the scaled particle theory for the binary mixtures of 1, 1, 1trichloroethane with 1-alkanols by considering only three different shapes namely spherical, cubical and tetrahedral. However, Kalidoss et al. ^[12] have considered seven shapes (sphere, cube, tetrahedron, disc A, disc B, disc C and disc D) for each component while estimating the ultrasonic speeds of CCl₄ + benzene, CCl₄ + propanol using SPT. Chi-square fit determines the closeness between experimental and theoretical ultrasonic speeds when the assumed shape matches the actual shape of the components ^[12].

Many attempts have been made [13, 14, 15] to use Scaled Particle Theory to obtain an equation of state of hard sphere mixtures. The equation of state is described as,

$$\frac{P}{\rho k \tau} = \frac{1 + \zeta + \zeta^2}{(1 - \zeta)^3} - \frac{\pi}{2} \frac{\rho}{(1 - \rho)^3} \sum_{i < j = 1}^m X_i X_j (d_{ii} d_{jj})^2 [2d_{ij} + d_{ii} d_{jj} \chi] [1]$$

Where d_{ii} are the diameters of the m-components, and
 $\zeta = \frac{\pi}{6} \rho \sum_{k=1}^m X_k d_{kk}^3 \quad \chi = \frac{\pi}{6} \rho \sum_{k=1}^m X_k d_{kk}^2$
 $d_{ii} = \frac{(d_{ii} + d_{jj})}{2}$

$$d_{ij} = \frac{(d_{ii}+d_{jj})}{2}$$
$$X_i = \frac{N_i}{N}$$

Where

Where N_i is the number of hard spheres of species I and N is the total number of molecules in the mixture. Gibbons ^[16] and Boublik^[17] applied SPT to mixtures of hard convex molecules (not necessarily spheres) and obtained an equation of state as.

$$\frac{\beta P}{\rho_N} = \frac{1}{(1 - Y\rho_N)} + \frac{AB\rho_N}{(1 - Y\rho_N)^2} + \frac{1}{3} \frac{B^2 C \rho_N^2}{(1 - Y\rho_N)^3}$$
[2]

$$\frac{\rho P}{\rho_N} = \frac{1}{(1 - Y \rho_N)} + \frac{A \rho p_N}{(1 - Y \rho_N)^2} + \frac{1}{3} \frac{\rho c p_N}{(1 - Y \rho_N)^3}$$
[2]

$$A = \sum \phi_i R_i, B = \sum \phi_i S_i, C = \sum \phi_i R_i^2, Y = \sum \phi_i V_{H,i}$$
[2.1]

Where, R_i , S_i and $V_{H,i}$ are respectively the mean radius of curvature, surface area and volume of a molecule of species i and $\phi_i,$ the volume fraction of the i^{th} liquid in the mixture. W

Vith
$$\gamma = \frac{\sigma_P}{c_V}$$
, we have
 $\gamma(\left(\frac{dP}{d\rho}\right) = U^2$
[3]

Where ρ , is the molar density and U, ultrasonic velocity in the mixture. Then the eqns.[3] and [4] yield,

$$\frac{MU^2}{\gamma RT} = \frac{1}{(1-Y\rho_N)^2} \left[1 + 2AB \left(\frac{\rho_N}{1-Y\rho_N}\right) + B^2 C \left(\frac{\rho_N}{1-Y\rho_N}\right)^2 \right]$$
[4]

The above equation for pure liquids reduces to,

$$\frac{MU^2}{\gamma RT} = \frac{1}{(1 - V_H \rho_N)^2} \left[1 + RS \left(\frac{\rho_N}{1 - V_H \rho_N} \right)^2 \right]$$
[5]

Introducing the dimensionless shape parameter $X = \frac{RS}{V_{H}}$ and

$$\rho_N$$
, eqn[5] is rewritten as,
 $\frac{MU^2}{m^{p_T}} = \frac{[1+(X-1)\eta]^2}{(1-\eta)^4}$
[6]

γRT $(1-n)^4$ Solution of the above equation is obtained as,

$$\eta = K - \sqrt{K^2 + L - 1}$$
[7]

Where $K = 1 + L \frac{(X-1)}{2}$ and $L = \sqrt{\frac{\gamma RT}{MU^2}}$ Mean radius and surface area of a molecule can be written as,

$$R = Y \left(V_{H}^{\frac{1}{3}} \right)$$
 and $S = ZR^{2}$ [8]

Where Y and Z are the parameters related to the shape of the molecule. If the molecule is assigned different shapes (Table-1) then the corresponding values of X, Y and Z can be calculated (Table-2). Using the values of M and $\Upsilon^{[18]}$ from literature and the experimental ultrasonic velocity (U)^[19], the values of η can be calculated for pure liquids for different shapes of the molecules with the help of eqn, [7]. Table-3 contains the η values for the pure liquids.

SPT has been used to obtain an equation of state for perfectly aligned and isotropic hard spherocylinders. Many workers^[20] have used above equation of state for spherical or other type of molecules to study phenomena of phase change by Monte Carlo method.

Computational Aspect

Characteristics parameters while assigning different shapes to the molecules are given in the table-1. Using the values of molar mass (M), specific heat ratio (Y) from iterature ^[18-19] and the experimental values of ultrasonic velocity (U), the values of " η " can be calculated for pure N, N Dimethyl Acetamide (DMAc) and Chloroform (CF) by considering different shapes of the molecule with the help of eqn. (7).**Table-2** contains the shape parameters for pure liquids associated with different shapes. From the relation $\eta = V_H \rho_N$ hard core volume V_H of a molecule is calculated. This volume gives molecular radius (R) and surface area (S) of the liquid molecule for different shapes. With the knowledge of **R**, **S** and V_H of pure components, parameters **A**, **B**, **C** and Y for mixture are evaluated for different volume fractions (ϕ) using eqn. (2.1). From the relation $\rho_N = H / V_0$ (where H being Avogadro's number and V₀ an ideal volume of the mixture).number density of the present liquid mixture is calculated. These values on substitution in eqn. (4), give ultrasonic velocities in binary mixtures of different compositions by assigning nine different shapes to constituent species, thus forming different possible combinations of shapes. Table-3 gives the molecular dimensions of pure liquid molecule along with the value of "n". The results in terms of ultrasonic velocities in combination of shapes like Spherical-Spherical (SP-SP), Spherical-Cubical (SP-CU) etc. are presented in tables- (5-13). The best-fit combination of shapes of the participating component molecules is arrived at, using Chi-square test (χ^2) .

Volume 8 Issue 6, June 2019

10.21275/ART20198808

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

3. Results and Discussion

When the molecule present in the liquid mixture is assigned different shapes as described in **table 1**, then the corresponding values of X, Y and Z (also known as shape parameters) can be calculated as shown in **table 2**. The corresponding evaluated ' η ' values for the present mixtures at temperature 300K under study are given in **table 3**.Some related thermodynamic parameters for pure constituents are presented in **table-4**.

		0		
Shape	Size	R	S	V _H
Sphere	Radius=r	r	$4\pi r^2$	$(4/3) \pi r^3$
Cube	Side=r	(3/4)r	6r ²	r ³
Tetrahedron	Side=r	$3r (arc tan \sqrt{2})/2\pi$	$\sqrt{3}r^2$	$(\sqrt{2}) r^{3}/12$
	Discs: 1	Radius=r and Dep	th=l	
Disc 1	l=2r	$(\pi + 2)r/4$	$6\pi r^2$	$2 \pi r^3$
Disc2	l= (3/2)r	(π+1.5)r/4	$5\pi r^2$	$(3/2)r^3$
Disc3	l=r	$(\pi + 1)r/4$	$4\pi r^2$	πr^3
Disc4	l= (1/2)r	$(\pi + 0.50)r/4$	$3\pi r^2$	$(1/2) \pi r^3$
Disc5	l= (1/4)r	$(\pi + 0.25)r/4$	$(5/2)\pi r^2$	$(1/4) \pi r^3$
Disc6	l = (1/10)r	$(\pi + 0.10)r/4$	$(11/5)\pi r^2$	$(1/10) \pi r^3$

Table 1: Molecular assignment for different shapes

Table 2: Shape parameters						
Shape	X=RS/V _H	$Y = R V_{H}^{-1/3}$	Z=SR ⁻²			
Sphere	3.0000	0.6204	12.5664			
Cube	4.5000	0.7500	10.6666			
Tetrahedron	6.7035	0.9303	8.3247			
Disc 1	3.8562	0.6966	11.4084			
Disc2	3.8680	0.6921	11.6656			
Disc3	4.1416	0.7070	11.7218			
Disc4	5.4624	0.7832	11.3712			
Disc5	8.4790	0.9190	10.9244			
Disc6	17.8274	1.1920	10.5253			

Cable 2: Shape parameters

 Table 3: Microscopic dimensions of pure liquid molecule at 300K

Liquid	Shape	$R*10^{-10}$ (m)	$S*10^{-19} (m^2)$	$V_{\rm H} * 10^{-29} ({\rm m}^3)$	η
DMAc	Sphere	2.6492	8.8192	7.7860	0.4904
	Cube	3.0600	9.9881	6.7920	0.4278
	Tetrahedron	3.5987	10.7810	5.7885	0.3645
	Disc 1	2.8947	9.5594	7.1756	0.4519
	Disc2	2.8750	9.6423	7.1681	0.4514
	Disc3	2.9136	9.9507	6.9989	0.4408
	Disc4	3.1172	11.0496	6.3051	0.3970
	Disc5	3.4301	12.8532	5.1996	0.3275
	Disc6	3.8837	15.8756	3.4587	0.2178
	•			•	
CF	Sphere	2.4655	7.6388	6.2763	0.4514
	Cube	2.8361	8.5795	5.4072	0.3888
	Tetrahedron	3.3200	9.1759	4.5452	0.3269
	Disc 1	2.6873	8.2384	5.7409	0.4130
	Disc2	2.6689	8.3093	5.7343	0.4124
	Disc3	2.7028	8.5627	5.5868	0.4018
	Disc4	2.8828	9.4500	4.9868	0.3586
	Disc5	3.1553	10.8765	4.0475	0.2911
	Disc6	3.5388	13.1807	2.6165	0.1882

Table 4: Some related parameters for pure components

Liquid	$\rho_{\rm N} * 10^{27} ({\rm m}^{-3})$	Υ	L
DMAc	6.2979	1.2316	0.1311
CF	7.1919	1.1105	0.1582

The theoretical speeds based on SPT are computed for the DMAc + CF binary mixture by considering different shapes, viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3 disc 4, disc 5and disc 6 for both the participating components. At each temperature, for DMAc + CF binary mixture 9×9 combinations of the different shapes are possible. Of these 81 combinations the best-fit combination of shapes of the participating component molecules is arrived at, using Chisquare test (χ^2). At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations spherical + disc 5 (SP-D5), is found to have lowest χ^2 value. Therefore in **table** 5, the theoretical and experimental ultrasonic speeds for all possible shape combinations with spherical shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table 5

Table 5							
\mathbf{X}_2	φ ₂	U _(Exp)	U (SP-SP)	U (SP-CU)	U (SP-TH)		
0.1	0.0887	1378.2	1386.3144	1358.8031	1387.5261		
0.2	0.1796	1320	1340.5872	1339.5750	1342.3804		
0.3	0.2729	1272.4	1294.9225	1293.4600	1296.8147		
0.4	0.3686	1228.6	1249.1739	1247.3513	1250.8232		
0.5	0.4669	1159.7	1203.1950	1201.1407	1204.3922		
0.6	0.5678	1107.5	1156.8310	1154.7093	1157.4906		
0.7	0.6714	1073.4	1109.9061	1107.9140	1110.0553		
0.8	0.7779	1035.4	1062.2034	1060.5660	1061.9709		
0.9	0.8874	998.7	1013.4315	1012.3966	1013.0339		
	χ^2		6.8614	6.4052	7.1857		

Table 5: Continued...

U (SP-D1)	U (SP-D2)	U (SP-D3)	U (SP-D4)	U (SP-D5)	U (SP-D6)
1385.8382	1385.7641	1385.6651	1385.2571	1385.5833	1387.0276
1339.6781	1339.5429	1339.3583	1338.8384	1339.0334	1341.2990
1293.6479	1293.4647	1293.2140	1292.4538	1292.5633	1295.1685
1247.6245	1247.4067	1247.1153	1246.1614	1246.1288	1248.7159
1201.4845	1201.2458	1200.9444	1199.8659	1199.6775	1201.9969
1155.0949	1154.8487	1154.5733	1153.4595	1153.1388	1155.0329
1108.2994	1108.0593	1107.8498	1106.8076	1106.4099	1107.7982
1060.8980	1060.6773	1060.5772	1059.7271	1059.3337	1060.1989
1012.6124	1012.4241	1012.1377	1011.9514	1011.6632	1012.0383
χ^2 6.2874	6.2037	6.1129	5.7758	5.7011	6.3872

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations cubical+ disc 6 (CU-D6), is found to have lowest χ^2 value. Therefore in **table 6**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with cubical shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table 6						
U _(Exp)	U _(CU-SP)	U _(CU-CU)	U _(CU-TH)	U _(CU-D1)	U _(CU-D2)	
1378.2	1387.0697	1385.5232	1385.5241	1386.0018	1386.0008	
1320	1342.2945	1339.4137	1339.3180	1340.3039	1340.2990	
1272.4	1297.5618	1293.5038	1293.2508	1294.7241	1294.7123	
1228.6	1252.3685	1247.6383	1247.2039	1249.0924	1249.0706	
1159.7	1206.8086	1201.6611	1201.0577	1203.2374	1203.2027	
1107.5	1160.5653	1155.4067	1154.6818	1156.9787	1156.9281	
1073.4	1113.3993	1108.9873	1107.9221	1110.1141	1110.0446	
1035.4	1065.0312	1061.2723	1060.5795	1062.4001	1062.3087	
998.7	1015.1114	1012.8555	1012.3755	1013.5199	1013.4039	
χ^2	8.1580	6.3770	6.1413	6.8810	6.8606	

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Table 6: Continued							
U (CU-D3)	U	(CU-D4)	U _(CU-D5)	U (CU-D6)			
1385.829	1 138	5.1002	1384.4883	1384.6866			
1339.982	1 133	8.6237	1337.4604	1337.6721			
1294.283	2 129	2.4184	1290.7963	1290.9000			
1248.568	8 124	6.3448	1244.3865	1244.3188			
1202.674	5 120	0.2622	1198.1184	1197.8669			
1156.426	8 115	4.0198	1151.8664	1151.4632			
1109.629	7 110	7.4431	1105.4779	1104.9928			
1062.045	9 106	0.3136	1058.7516	1058.2850			
1013.363	5 101	2.3340	1011.4025	1011.0780			
χ^2 6.698	6 5.	9177	5.2651	5.1718			

. •

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations tetrahedral + disc 6 (TH-D6), is found to have lowest χ^2 value. Therefore in **table 7**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with tetrahedral shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table 7

U (Exp)	U (TH-SP)	U (TH-CU)	U _(TH-TH)	U _(TH-D1)	U (TH-D2)
1378.2	1389.1568	1386.6909	1384.9402	1387.5776	1387.6733
1320	1346.4262	1341.7748	1338.5256	1343.4370	1343.6135
1272.4	1303.3564	1296.8714	1292.4210	1299.1735	1299.4133
1228.6	1259.6509	1251.7691	1246.4635	1254.5466	1254.8297
1159.7	1131.3503	1206.2513	1200.4888	1209.3067	1209.6093
1107.5	1169.0326	1160.0875	1154.3219	1163.1862	1163.4803
1073.4	1121.3794	1113.0222	1107.7649	1115.8877	1116.1400
1035.4	1071.5759	1064.7560	1060.5760	1067.0655	1067.2364
998.7	1019.0704	1014.9147	1012.4366	1016.2960	1016.3381
χ^2	9.7362	7.9552	5.9905	9.1235	9.2347

Table 7: Continued.....

U (TH-D3)		U _(TH-D4)	U (TH-D5)	U (TH-D6)
13	87.4819	1386.4424	1385.2964	1384.6582
13	43.2533	1341.2934	1339.1320	1337.8507
12	98.9146	1296.1868	1293.1829	1291.3137
12	54.2312	1250.9263	1247.2976	1244.9535
12	08.9601	1205.3110	1201.3227	1198.6721
11	62.8405	1159.1277	1155.0942	1152.3568
11	15.5819	1112.1378	1108.4242	1105.8668
10	66.8455	1064.0589	1061.0810	1059.0117
10	16.2139	1014.5324	1012.7549	1011.5157
χ^2	8.9941	7.6158	6.2504	5.4153

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations disc 1 + disc 5 (D1-D5), is found to have lowest χ^2 value. Therefore in **table 8**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with disc 1 shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Ta	b	le	8	
	-	-		7

U (Exp)	U (D1-SP)	U (D1-CU)	U (D1-TH)	U (D1-D1)	U (D1-D2)
1378.2	1386.6142	1385.4433	1386.0862	1385.7598	1385.7302
1320	1341.3815	1339.1918	1340.1997	1339.7889	1339.7319
1272.4	1296.1570	1293.1398	1294.2874	1293.9682	1293.8866
1228.6	1250.7616	1247.1488	1248.2621	1248.1459	1248.0429
1159.7	1205.0152	1201.0794	1202.0345	1202.1695	1202.0485
1107.5	1158.7284	1154.7824	1155.5036	1155.8774	1155.7424
1073.4	1111.6912	1108.0857	1108.5432	1109.0860	1108.9413

1035.4	1063.6536	1060.7740	1060.9806	1061.5698	1061.4203
998.7	1014.2948	1012.5542	1012.5622	1013.0281	1012.8788
χ^2	7.4981	6.1652	6.4350	6.5202	6.4723

Table 8: Continued....

Table 0. Commuted						
U	(D1-D3)	U (D1-D4)	U (D1-D5)	U (D1-D6)		
13	85.5819	1385.0167	1384.6801	1385.3140		
13	39.4585	1338.3975	1337.7183	1338.6620		
12	93.5175	1292.0526	1291.0601	1292.0730		
124	47.6134	1245.8586	1244.6145	1245.5310		
120	01.6001	1199.6906	1198.2864	1199.0069		
11:	55.3222	1153.4124	1151.9659	1152.4484		
110	08.6018	1106.8637	1105.5147	1105.7658		
10	61.2183	1059.8382	1058.7442	1058.8108		
10	12.8747	1012.0493	1011.3799	1011.3407		
χ^2	6.3413	5.7363	5.3063	5.4910		

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations disc 2 + disc 5 (D2-D5), is found to have lowest χ^2 value. Therefore in **table 9**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with disc 2 shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table 9						
U (Exp)	U (D2-SP)	U (D2-CU)	U (D2-TH)	U (D2-D1)	U (D2-D2)	
1378.2	1386.3989	1385.2989	1386.0933	1385.5830	1385.5417	
1320	1341.1764	1339.1137	1340.3810	1339.6535	1339.5756	
1272.4	1295.9656	1293.1165	1294.5916	1293.8702	1293.7607	
1228.6	1250.5874	1247.1682	1248.6407	1248.0805	1247.9451	
1159.7	1204.8616	1201.1289	1202.4423	1202.1315	1201.9764	
1107.5	1158.5990	1154.8490	1155.8988	1155.8609	1155.6928	
1073.4	1111.5893	1108.1562	1108.8876	1109.0847	1108.9108	
1035.4	1063.5827	1060.8346	1061.2395	1061.5767	1061.4046	
998.7	1014.2578	1012.5913	1012.7047	1013.0355	1012.8735	
χ^2	7.4418	6.1782	6.5612	6.5056	6.4467	

U	(D2-D3)	U (D2-D4)	U (D2-D5)	U (D2-D6)
13	85.3885	1384.8309	1384.5065	1385.1502
13	39.2933	1338.2456	1337.5867	1338.5456
12	93.3797	1291.9318	1290.9645	1291.9944
124	47.5018	1245.7660	1244.5489	1245.4818
120	01.5133	1199.6229	1198.2450	1198.9796
11:	55.2582	1153.3662	1151.9430	1152.4364
110	08.5583	1106.8352	1105.5049	1105.7634
10	61.1926	1059.8234	1058.7424	1058.8132
10	12.8636	1012.0439	1011.3813	1011.3436
χ^2	6.3113	5.7137	5.2918	5.4798

Table 9: Continued.....

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations disc 3 + disc 5 (D3-D5), is found to have lowest χ^2 value. Therefore in **table 10**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with disc 3 shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Table 10						
U _(Exp)	U (D3-SP)	U (D3-CU)	U (D3-TH)	U (D3-D1)	U (D3-D2)	
1378.2	1386.9124	1385.7440	1386.4734	1386.0545	1386.0087	
1320	1341.7976	1339.6087	1340.7695	1340.1962	1340.1100	
1272.4	1296.6762	1293.6542	1294.9999	1294.4719	1294.3512	
1228.6	1251.3599	1247.7335	1249.0689	1248.7210	1248.5723	
1159.7	1205.6587	1201.6990	1202.8792	1202.7825	1202.6129	
1107.5	1159.3732	1155.3935	1156.3231	1156.4857	1156.3030	
1073.4	1112.2824	1108.6370	1109.2688	1109.6385	1109.4512	
1035.4	1064.1260	1061.2073	1061.5396	1062.0070	1061.8243	
998.7	1014.5729	1012.8052	1012.8792	1013.2830	1013.1148	
χ^2	7.7331	6.3678	6.7144	6.7274	6.6627	

Table 10: Continued.....

U	(D3-D3)	U (D3-D4)	U (D3-D5)	U (D3-D6)		
13	85.8370	1385.2143	1384.7805	1385.2397		
13	39.7938	1338.6286	1337.7785	1338.4278		
12	93.9242	1292.3193	1291.1044	1291.7507		
12	48.0747	1246.1557	1244.6588	1245.1772		
12	02.0910	1200.0054	1198.3388	1198.6648		
11	55.8099	1153.7258	1152.0276	1152.1493		
11	09.0455	1107.1499	1105.5806	1105.5307		
10	61.5701	1060.0660	1058.8040	1058.6516		
10	13.0803	1012.1828	1011.4189	1011.2620		
χ^2	6.5055	5.8373	5.3265	5.3975		

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations disc 4 + disc 6 (D4-D6), is found to have lowest χ^2 value. Therefore in **table 11**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with disc 4 shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table 11

U _(Exp)	U (D4-SP)	U (D4-CU)	U _(D4-TH)	U (D4-D1)	U (D4-D2)
1378.2	1387.6300	1386.0755	1386.2504	1386.5462	1386.5087
1320	1343.2760	1340.3681	1340.5820	1341.2482	1341.1764
1272.4	1298.8142	1294.8005	1294.9514	1296.0139	1295.9115
1228.6	1254.0153	1249.1942	1249.2154	1250.6489	1250.5203
1159.7	1208.6439	1203.3689	1203.2300	1204.9563	1204.8066
1107.5	1162.4507	1157.1344	1156.8420	1158.7283	1158.5635
1073.4	1115.1620	1110.2775	1109.8757	1111.7345	1111.5617
1035.4	1066.4623	1062.5432	1062.1131	1063.7033	1063.5306
998.7	1015.9658	1013.6028	1013.2610	1014.2909	1014.1276
χ^2	8.8614	6.9324	6.8549	7.4850	7.4232

Table 11: Continued....

U (D4-D3)	U (D4-D4)	U (D4-D5)	U (D4-D6)
1386.2813	1385.4111	1384.5597	1384.3275
1340.7563	1339.1376	1337.5465	1337.0221
1295.3407	1293.1203	1290.9319	1290.1051
1249.8487	1247.2003	1244.5875	1243.4933
1204.0927	1201.2171	1198.3822	1197.0966
1157.8745	1155.0007	1152.1732	1150.8084
1110.9738	1108.3579	1105.7923	1104.4910
1063.1288	1061.0526	1059.0247	1057.9542
1014.0049	1012.7722	1011.5737	1010.9192
χ^2 7.1892	6.2272	5.3512	4.9669

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations disc 5 + disc 6 (D5-D6), is found to have lowest χ^2 value. Therefore in **table 12**, the theoretical and experimental ultrasonic speeds for all

possible shape combinations with disc 5 shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table-12						
U _(Exp)	U (D5-SP)	U (D5-CU)	U (D5-TH)	U (D5-D1)	U (D5-D2)	
1378.2	1389.1242	1387.099	1386.5812	1387.7666	1387.7388	
1320	1346.2489	1342.4309	1341.4174	1343.6836	1343.6293	
1272.4	1303.0804	1297.7610	1296.3041	1299.4981	1299.4186	
1228.6	1259.3140	1252.8560	1251.0397	1254.9538	1254.8512	
1159.7	1214.6254	1207.4749	1205.4179	1209.7837	1209.6608	
1107.5	1168.6611	1161.3607	1159.2194	1163.7019	1163.5621	
1073.4	1121.0274	1114.2285	1112.1998	1116.3917	1116.2399	
1035.4	1071.2743	1065.7483	1064.0701	1067.4892	1067.3315	
998.7	1018.8713	1015.5149	1014.4660	1016.5550	1016.3993	
χ^2	11.37787	8.5449	7.6484	9.3234	9.2643	

Table 12:	Continued
------------------	-----------

U	(D5-D3)	U (D5-D4)	U (D5-D5)	U (D5-D6)
138	37.4424	1386.2664	1384.8928	1383.7848
134	43.0754	1340.8746	1338.3228	1336.2587
129	98.6555	1295.6144	1292.1169	1289.2867
125	53.9382	1250.2789	1246.1083	1242.7391
120	08.6700	1204.6568	1200.1280	1196.4829
110	52.5800	1158.5244	1153.9964	1150.3722
11	15.3690	1111.6333	1107.5099	1104.2339
100	56.6921	1063.6922	1060.4211	1057.8464
10	16.1297	1014.3354	1012.4049	1010.9044
χ^2	8.8906	7.3973	5.8918	4.8156

At 300 K, the theoretical ultrasonic speeds calculated using SPT for the combinations disc 6 + disc 6 (D6-D6), is found to have lowest χ^2 value. Therefore in **table 13**, the theoretical and experimental ultrasonic speeds for all possible shape combinations with disc 6 shape for DMAc and other possible shapes (viz., sphere, cube, tetrahedron, disc 1, disc 2, disc 3, disc 4, disc 5 and disc 6) for CF are presented.

Table 13						
U _(Exp)	U (D6-SP)	U (D6-CU)	U (D6-TH)	U (D6-D1)	U (D6-D2)	
1378.2	1391.8937	1389.4074	1388.1888	1390.2690	1390.2470	
1320	1351.6969	1346.9276	1344.6084	1348.5721	1348.52799	
1272.4	1310.9460	1304.1730	1300.9110	1306.4954	1306.42934	
1228.6	1269.2021	1260.8036	1256.8055	1263.6654	1263.5780	
1159.7	1225.9663	1216.4492	1211.9797	1219.6694	1219.5618	
1107.5	1180.6615	1170.6972	1166.0903	1174.0422	1173.9163	
1073.4	1132.6104	1123.0785	1118.7480	1126.2498	1126.1087	
1035.4	1081.0099	1073.0473	1069.4967	1075.6683	1075.5171	
998.7	1024.9050	1019.9526	1017.7806	1021.5578	1021.4044	
χ^2	17.1154	12.2455	10.2620	13.7919	13.7266	

Table	13:	Continued
-------	-----	-----------

U (D6-D3)	U (D6-D4)	U (D6-D5)	U (D6-D6)
1389.8754	1388.3775	1386.4427	1384.3674
1347.8199	1344.9702	1341.3280	1337.4724
1305.4320	1301.4213	1296.3535	1291.0651
1262.3541	1257.4293	1251.2826	1244.9676
1218.1940	1212.6718	1205.8704	1198.9992
1172.5124	1166.7959	1159.8547	1152.9675
1124.8075	1119.4052	1112.9437	1106.6553
1074.4959	1070.0414	1064.7980	1059.7999
1020.8856	1018.1567	1014.9996	1012.0601
χ^2 13.0783	10.5576	7.8513	5.5593

Volume 8 Issue 6, June 2019 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

4. Conclusion

The experimental values of ultrasonic speed, for the binary mixtures of N, N dimethylacetamide (DMAc) with chloroform (CF) at 300 K and at atmospheric pressure over the entire composition range of DMAc have been used to study the intermolecular interactions in the mixture. Theoretical ultrasonic speeds for the present binary mixtures are estimated using SPT and compared with experimental speeds. Close analysis of various combinational configurations with the help of χ^2 fit values, reveals that disc 5+disc-6 combination gives appropriate shape of constituent liquid molecules out of all possible configurations. The shapes of the participating molecules are analyzed using SPT at temperature 300K in the present binary system, and it was found that due to the presence of varying intermolecular interactions in the liquid mixtures the shapes of the constituent molecules change at any given temperature under study.

References

- [1] Khasare S B, Indian J Pure & Appl phys, 26 (1988)487.
- [2] Bhatti Surjeet singh, Indian J Pure & Appl phys, 20 (1982) 757.
- [3] Sharma B K, Chandrashekhar M A &Satish Kumar, *Indian J Pure &Appl phys*, 16 (1976)1068.
- [4] Sharma B K, Indian J Pure & Appl phys, 18 (1980)457.
- [5] Reiss H AdChem Phys, 9 (1965)1.
- [6] Barker & Handeson, *Rev Mod phys*, 48 (1976)618.
- [7] Ghosh S A, "Ultrasonic investigation of some heterocyclic compounds" PhD thesis, Amravati University (1991).
- [8] Pande K N, M Phil Thesis Amravati University (1991).
- [9] S Ghosh; KN Pande; YD Wankhade. Ind J Pure Appl Phys. 2004, 42, 729-734.
- [10] FH Stillinger. J Sol Chem. 1973, 2, 141-158.
- [11] H Reiss; HL Frisch; JL Lebowitz. J Chem Phys. 1959, 31, 369-380.
- [12] M Kalidoss; R Srinivasamoorthy; S Edwin Gladson. Acust Acta Acust. 1997, 83, 776-779..
- [13] Ghosh S A, "Ultrasonic investigation of some heterocyclic compounds"PhD thesis, Amravati University (1991).
- [14] Tabhane V A, "Ultrasonic studies in some binary liquid mixtures". PhD thesis.Nagpur University (1991).
- [15] Bhandakkar V D, "Investigation of ultrasonic wave propagation in some bio-liquids ".PhD thesis, Nagpur university (1993).
- [16] Gibbon R.M Molecular physics (USA), 17 (1969) 81;18 (1970) 809.
- [17] BoulickT, Molecular physics (USA), 27 (1974)1415
- [18] Ethermo Thermodynamic & Transport Properties Caculation Platform.
- [19] Tarun Pant, Hema, Dr. Tara Bhatt, Charu Chandra Dhondiyal International Journal for Research in Applied Science & Engineering Technology. Volume 6 Issue XI, Nov 2018.
- [20] Hefland E & Stillinger F H, J chem. Phys, 37 (1962)1646.