International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Calculation of Flash Point for Aqueous Binary Mixtures Using Closed Cup Tester

Ngo Trung Hoc^{*}

The University of Fire, 243 Khuat Duy Tien, Thanh Xuan, Ha Noi,10000, VietNam. trunghoct34[at]gmail.com

Abstract: Mixtures of water with alcohols are important in numerous engineering applications. A queous solution of various alcohols was selected for investigation in this study. The experimental data was obtained using the Pensky - Marten closed cup tester and calculated by approximation model. Activity coefficients were calculated by the Wilson equation.

Keywords: Aqueous solutions, Pensky - Marten, binary mixture, flash point, wilson equation

1. Introduction

Flash point is a major property used to identify the fire hazard of liquids in the safe practice of handling and storing liquid mixtures and to assess the exact level of risk. It is defined as the minimum temperature that vapor appears on the liquid in equilibrium to form a flammable mixture when mixed with air.

Flash point for aqueous binarry mixtures can be determined by experimental or estimated method by calculation method with available information. The information needed for the composite flash point prediction is the flash point of each component, the vapor pressure and activity coefficient as functions of temperature for each mixed component. The full test data is not available and other ways to identify basic information are needed. A flash point assessment procedure of a binary mixture using the Wilson equation is proposed, providing techniques that can be used to estimate a parameter necessary determination for aqueous binarry mixtures.

The basic assumption in Liaw et al [1-3] is that the liquid phase is in equilibrium with the vapor, and the vapor phase is The saturated vapor pressure of each pure component i varies behaving as an ideal gas:

$$\sum_{i=1}^{2} \frac{x_i \gamma_i P_i^{sat}}{P_{i,fp}^{sat}} = 1$$
⁽¹⁾

where $x_i, \; \gamma_i, \; P_i^{\; sat}$ and $P_{i,fp}^{\; sat}$ are the mole fraction, activity coefficient, vapour pressure at temperature T, and vapour pressure at the flash point temperature of the mixture.

For a mixture of water (component 1) and liquid (component 2) (aqueous mixtures) [4], water is a non-flammable substance and has no flash point temperature T_f. So the first quantity can be ignored:

$$P_2^{sat} = \frac{P_{2,fp}^{sat}}{x_2 \gamma_2} \tag{2}$$

with temperature according to the Antoine equation [5].

$$P_i^{sat} = \exp\left(A_i - \frac{B_i}{T + C_i}\right) \tag{3}$$

Formula	Component	T _b	A _i	Bi	Ci	T _{min} - T _{max}
Ar	Argon	87.3	9.31039	832.778	2.361	73–133
CCl_4	Tetrachloromethane	349.70	9.22001	2790.781	-46.741	287-350
CHCl ₃	Chloroform	334.40	9.39360	2696.249	-46.918	263-333
CH_2Cl_2	Dichloromethane	313.20	10.44014	3053.085	-20.53	233-313
CH ₂ O	Formaldehyde	254.00	9.94883	2234.878	-29.026	164-373
CH ₂ O ₂	Formic acid	373.70	9.37044	2982.446	-55.150	299-381
CH ₃ NO ₂	Nitromethane	374.30	10.14657	3331.696	-45.550	329-409
CH ₄ O	Methanol	337.80	11.98705	3643.314	-33.424	288-357
СО	Carbon monoxide	81.60	9.26679	769.935	1.637	52-121
CO_2	Carbon dioxide	185.50	10.77151	1956.255	-2.112	146-285
C_2H_3N	Acetonitrile	354.80	10.28058	3413.099	-22.627	246-355
C ₂ H ₄ O	Acetaldehyde	293.70	9.97724	2532.406	-39.205	191-293
$C_2H_4O_2$	Acetic acid	391.10	11.84896	4457.828	-14.699	291-391

Table 1: Antoine coefficients for the involved components

10.21275/ART20198319

Volume 8 Issue 6, June 2019 www.ijsr.net Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

C_2H_6	Ethane	184.50	9.27428	1582.178	-13.762	145-284
C_2H_6O	Ethanol	351.50	12.05896	3667.705	-46.966	293-366
C ₃ H ₆ O	Acetone	329.40	9.76775	2787.498	-43.486	260-328
C_3H_8	Propane	231.10	9.10434	1872.824	-25.101	192-331
C ₃ H ₈ O	1–propanol	370.40	11.21152	3310.394	-74.687	333-378
C ₃ H ₈ O	2–propanol	355.40	13.82295	4628.956	-20.514	247-356
$C_3H_8O_2$	2-methoxy-ethanol	397.60	11.45476	4130.796	-36.273	290-447
C_4H_8O	2-butanone	352.80	9.64438	2904.340	-51.181	316-361
C_4H_8O	Tetrahydrofuran	339.10	9.48686	2768.375	-46.896	296-373
C ₆ H ₆ O	Phenol	455.00	9.33802	3183.669	-113.657	336–455
$C_4H_{10}O$	Diethylether	307.70	9.91763	2847.722	-20.110	308-432

The activity coefficient γ_2 in Eq. (2) can be estimated using the Wilson equation [6].

$$\ln \gamma_{2} = -\ln(x_{1}\Lambda_{21} + x_{2}) - x_{1} \left(\frac{\Lambda_{12}}{x_{1} + x_{2}\Lambda_{12}} - \frac{\Lambda_{21}}{x_{1}\Lambda_{21} + x_{2}} \right)$$
$$\Lambda_{12} = \frac{v_{2}}{v_{1}} \exp\left(\frac{-A_{12}}{RT}\right) \Lambda_{12} = \frac{v_{1}}{v_{2}} \exp\left(\frac{-A_{21}}{RT}\right)$$

(4)

2. Materials and Methods

All chemicals were purchased as reagent grade and used without further purification. Solvents were distilled and/or dried according to standard methods. PM-93 Pensky-Martens Flash Point Tester (Stanhope-Seta, London Street, Chertsey, Surrey, KT16 8AP, UK). Measure of flash point in - 5°C to 400°C, fast heating rate (>10 °C/min) and standard; 5.5 °C/min, 3 °C/min, 1.3 °C/min, 1 °C/min. Results are recorded in accordance with ASTM D6299 (Standard Practice for Applying Statistical Quality Assurance and Control Charting Techniques to Evaluate Analytical Measurement System Performance).

3. Results and Discussion

Following the activity coefficients of wilson equation more effective for other [7-8], the author chose to use the Wilson equation as the main factor. The parameters were used in the Wilson equations for the calculation of activity coefficients needed for the flash point predictions are presented in Table 2.

Table 2: Parameters for Wilson equations

System	A12	A21
Water - Methanol	908.46	-359.74
Water - Ethanol	481.44	179.66
Water - 1-propanol	597.52	527.50
Water - 2-propanol	650.35	380.59

The predictions for water-alcohol mixtures are presented in Fig. 1-4.

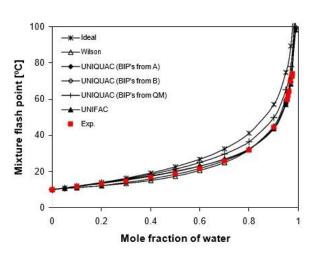


Figure 1: Prediction of the water - methanol mixture flash point

Figure 2: Prediction of the water - ethanol mixture flash point

Volume 8 Issue 6, June 2019

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

10.21275/ART20198319

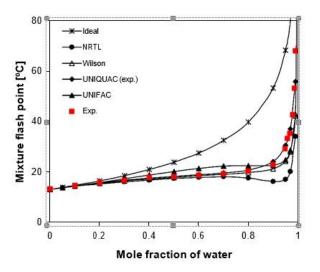


Figure 3: Prediction of the water - 1- propanol mixture flash point

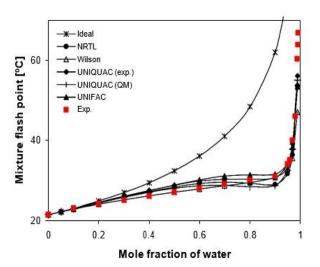


Figure 4: Prediction of the water - 2 - propanol mixture flash point

4. Conclusions

The calculated flash points of aqueous mixtures are in good agreement with experimental data. It opens a new direction in solving the problem of applying experimental replacement calculations.

References

- H.-J. Liaw, Y.-Y. Chiu, "The prediction of the flash point for binary aqueous-organic solutions," J. Hazard. Mater., vol.101, no.2, pp.83-106, 2003.
- [2] H.-J. Liaw, Y.-H. Lee, Ch-L. Tang, H.-H. Hsu,J.-H.Liu,"A mathematical model for predicting the flash point of binary solutions," J. Loss. Prevent. Proc., vol. 15, no. 6, pp. 429-438, 2002
- [3] H.-J. Liaw, C.-T. Chen, V. Gerbaud, "Flash-point prediction for binary partially miscible aqueous–organic mixtures,"Chem. Eng. Sci., vol. 63,no. 18, pp. 4543-4554, 2008.
 - 4545-4554,

- [4] M. Hristova, D. Damgaliev, "Flash point of organic binary mixtures containing alcohols: experiment and prediction,"Cent.Eur.J.Chemistry, vol. 11, no.3, pp. 388-393, 2013.
- [5] J.Gmehling, U.Onken, Vapor–Liquid Equilibrium Data Collection, vol.1, part 2a, Dechema, Frankfurt, 1977, pp. 328, 617
- [6] G. M. Wilson, Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing, J. Am. Chem. Soc., 86, (1964), 127-130.
- [7] S. Y. Kim and B. A. Lee, "A Prediction Model for Flash Point of Binary Liquid Mixtures", J. of Loss Prevention in the Process Industries, Vol. 23, No. 1, pp.166-169 (2010).
- [8] L. Y. Phoon, A. A. Mustaffa, H. Hashim and R. Mat, "A Review of Flash Point Prediction Models for Flammable Liquid Mixtures", Ind. Eng. Chem. Res., Vol. 53, pp.12523-12565 (2014).

Author Profile

Ngo Trung Hoc is lecturer, The University of Fire, 243 Khuat Duy Tien, Thanh Xuan, Ha Noi, 10000, VietNam