
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Advancements in Logging for Container

Orchestration: Navigating the Complexities of

Modern Infrastructure

Dinesh Reddy Chittibala

Email: reddydinesh163[at]gmail.com

Abstract: Container orchestration has changed significantly in the last few years, especially in the dynamic world of Kubernetes and

other containerization systems. The growing dependence of enterprises on containers for application deployment and management

highlights the critical need for strong logging methods to diagnose problems, understand system performance, and guarantee overall

system stability. This academic paper explores the most recent developments in container orchestration environment-specific logging

techniques. The paper examines the challenges posed by the distributed and transient nature of containerized systems to traditional

logging techniques. We examine new developments in technology and trends that tackle these issues, providing real-time log data capture

and analysis solutions. The integration of logging with observability tools, centralized log management, and organized logging are

important subjects. This research provides a significant resource for IT professionals, DevOps practitioners, and researchers who want

to stay on the cutting edge of container orchestration logging practices by combining industry improvements, real-world experiences, and

future considerations. The information in this article gives organizations the ability to use state-of-the-art logging techniques, which

promotes improved insights, proactive problem-solving, and the success of containerized applications in contemporary IT

infrastructures.

Keywords: Kubernetes, DevOps, ElasticSearch, Kibana, MetricBeat, microservices architectures

1. Introduction

In recent years, the paradigm of containerization has

revolutionized the way organizations deploy, manage, and

scale their applications. Container technologies, such as

Docker, have become instrumental in achieving consistent

and reproducible software delivery across various

environments. However, as the adoption of containers has

soared, the complexities associated with orchestrating these

dynamic and distributed applications have brought forth the

critical need for robust logging mechanisms.

1.1 Rise of Containerization

The rise of containerization can be attributed to its ability to

encapsulate applications and their dependencies, enabling

seamless deployment across diverse computing

environments. This agility has empowered development

teams to embrace microservice architectures and deploy

applications at scale. Container orchestration platforms, with

Kubernetes at the forefront, have emerged as indispensable

tools for automating the deployment, scaling, and

management of containerized applications.

1.2 The Role of Container Orchestration:

While containerization provides isolation and consistency,

effective management at scale necessitates sophisticated

orchestration. Container orchestrators, such as Kubernetes,

enable the dynamic scheduling of containers, automatic

scaling, and efficient resource utilization. However, as these

orchestrators manage an ever-growing number of containers

across distributed clusters, the ability to gain insights into

application behavior becomes paramount.

1.3 The Critical Need for Logging:

Logging plays a pivotal role in understanding the inner

workings of containerized applications. In the dynamic

landscape of container orchestration, traditional logging

approaches fall short due to the ephemeral nature of

containers, rapid scaling, and intricate interactions within

microservices. Without effective logging, developers face

challenges in diagnosing issues, monitoring performance,

and ensuring the reliability of their applications.

1.4 Objectives of the Paper:

The primary objective of this paper is to delve into recent

advancements in logging practices tailored specifically for

container orchestration environments. We explore emerging

trends, innovative solutions, and best practices that address

the unique challenges posed by the dynamic and distributed

nature of containerized applications. This paper seeks to

provide valuable insights for IT professionals, DevOps

practitioners, and researchers striving to optimize logging

strategies within the context of modern container

orchestration platforms. Through a comprehensive

exploration of recent advancements, we aim to contribute to

the evolving landscape of observability in containerized

environments and empower DevOps teams to achieve overall

system reliability, efficient troubleshooting, and enhanced

performance.

2. Background

a) Overview of Traditional Logging Methods:

Traditional logging methods, honed in monolithic

architectures, were ill-suited for the dynamic nature of

containerized environments. Conventional logging often

relied on writing logs to local files, making it challenging to

Paper ID: SR24203231802 DOI: https://dx.doi.org/10.21275/SR24203231802 2217

mailto:reddydinesh163@gmail.com

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

track container instances as they scaled up or down. This

approach lacked the flexibility needed to adapt to the

ephemeral nature of containers, leading to gaps in log data

visibility and hindering comprehensive analysis.

Furthermore, centralized log management was often an

afterthought, resulting in disparate log sources across

distributed clusters. A unified logging strategy could have

improved effective troubleshooting and root cause analysis,

impinging on the overall observability of containerized

applications.

b) Unique Challenges Posed by Containers:

Containers introduce a shift in application deployment,

posing distinctive challenges for logging. The transitory

nature of containers means that they can be created,

terminated, and replaced rapidly. Traditional logging

struggles to keep pace with this dynamic environment,

necessitating logging mechanisms that seamlessly adapt to

the transient life cycle of containers. Scaling exacerbates

these challenges. As containerized applications scale

horizontally to meet varying workloads, maintaining

coherent and accessible logs becomes complex.

c) Container orchestration platforms:

Container orchestration platforms have emerged as

indispensable tools to manage the complexities of

containerized environments. At the forefront of these

orchestrators is Kubernetes, an open-source container

orchestration platform that automates the deployment,

scaling, and management of containerized applications.

Kubernetes abstracts the underlying infrastructure, providing

a unified API for deploying and managing applications

across clusters of machines.

Within the context of logging, Kubernetes introduces

features such as the ability to collect container logs, manage

log streams, and integrate with external logging solutions.

Understanding how container orchestration platforms

facilitate logging is crucial for devising effective strategies to

harness log data in large-scale containerized deployments.

3. Advancements in Logging

a) Structured Logging:

Structured logging stands at the forefront of advancements,

offering a systematic approach to log message formatting.

By organizing log entries into key-value pairs or JSON

format, structured logging enhances the readability and

analyzability of logs. This section explores the benefits of

structured logging, such as improved searchability,

correlation, and ease of parsing. Practical implementation

techniques and coding practices for incorporating structured

logging into containerized applications are discussed to

empower engineering teams to leverage this powerful

advancement.

b) Centralized Log Management and Integration with

Observability Tools:

Effective logging extends beyond individual containers to

centralized log management, providing a unified repository

for log data. We also look into the significance of

centralizing logs, exploring tools like Elasticsearch,

Logstash, and Kibana (ELK stack), and strategies for

seamless log aggregation. Additionally, we explore the

intersection of logging with monitoring and tracing within

the broader observability context. Understanding how

logging integrates with monitoring tools (e.g., Prometheus)

and tracing solutions (e.g., Jaeger) forms a crucial aspect of

achieving comprehensive observability in containerized

environments.

4. Implementation Strategies

Container Runtimes: Container runtimes play a pivotal role

in the logging ecosystem by serving as the execution

environment for containers. Traditional container runtimes

like Docker have managed the basic logging functionalities,

capturing stdout and stderr streams from containers. Recent

advancements have expanded the capabilities of container

runtimes, enhancing their contribution to logging. Newer

container runtimes, such as containerd and CRI-O, provide

more flexibility in logging configurations. They allow users

to customize log drivers, enabling the redirection of

container logs to different endpoints or formats. This

flexibility is crucial in adapting logging strategies to the

specific requirements of containerized applications.

Additionally, container runtimes contribute to the

standardization of logging interfaces, facilitating seamless

integration with broader logging frameworks and solutions.

Orchestrators: Container orchestrators, like Kubernetes, play

a central role in facilitating logging in large-scale

containerized environments. Kubernetes introduces features

and functionalities that streamline the collection and

management of logs. The orchestration platform ensures that

logs from individual containers are captured centrally,

making them accessible for analysis and troubleshooting.

Kubernetes supports various logging mechanisms, including

direct access to container logs, API-based log retrieval, and

integration with external logging solutions. The orchestration

platform's architecture promotes scalability, ensuring that

logging remains efficient even as the number of containers

and services scales up or down dynamically. By leveraging

Kubernetes' logging features, organizations can establish a

robust logging infrastructure that aligns with the dynamic

nature of their containerized applications.

Sidecar Containers: The concept of sidecar containers has

emerged as a powerful strategy for enhancing logging

capabilities in containerized environments. Sidecar

containers are auxiliary containers deployed alongside the

primary application container, sharing the same lifecycle and

resources. In the context of logging, sidecar containers are

equipped with logging agents or specialized tools to capture,

process, and transmit log data.

This approach decouples logging concerns from the

application logic, allowing organizations to adopt diverse

logging solutions without modifying the application code.

Sidecar containers can implement log forwarding,

aggregation, and filtering, offering a modular and extensible

architecture for managing log data. This strategy is

particularly beneficial in microservice architectures, where

each service can have its own dedicated logging sidecar,

contributing to the overall observability of the system.

Paper ID: SR24203231802 DOI: https://dx.doi.org/10.21275/SR24203231802 2218

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Practical Insights

a) Case Studies:

Real-world examples of organizations implementing

advanced logging in container orchestration environments

offer valuable insights into successful strategies and

outcomes. One notable case is using Amazon Elastic

Kubernetes Service (EKS) in conjunction with the Elastic

Stack (ELK) for comprehensive logging solutions. We will

have logs ingested to ElasticSearch/Kibana from all the pods

running in the Kubernetes cluster using MetriBeats.

b) Case Study: EKS and ELK Integration:

Organizations leveraging Amazon EKS benefit from the

managed Kubernetes service provided by AWS. In this case

study, an enterprise deploys a containerized application on

EKS and utilizes ELK for centralized log management and

analysis.

c) Architecture:

 Metricbeat DaemonSet in Kubernetes: Metricbeat is

deployed as a DaemonSet in your Kubernetes cluster.

A DaemonSet ensures that an instance of Metricbeat

runs on each node in the cluster. Metricbeat is a

lightweight shipper that collects metrics and logs from

various sources, including containerized applications.

 Metricbeat and Container Logs: Metricbeat, running as

a DaemonSet, collects logs directly from the containers

within each node. It leverages the Docker or container

runtime API to access container logs. The logs

collected by Metricbeat include standard output

(stdout) and standard error (stderr) streams from the

containers.

 Ship Logs to ElasticSearch: Metricbeat ships the

collected logs to Elasticsearch. It uses the Elasticsearch

output specified in its configuration to send the logs to

the Elasticsearch cluster. The Elasticsearch cluster is

responsible for storing and indexing the log data.

 Elasticsearch Cluster: Elasticsearch is deployed as a

cluster to ensure high availability and scalability. It

consists of multiple nodes that work together to

manage and index the incoming log data. The logs sent

by Metricbeat are indexed in Elasticsearch, allowing

for efficient storage and retrieval.

 Kibana Visualization: Kibana acts as the visualization

and exploration tool for logs and metrics. It connects to

the Elasticsearch cluster as its data source. Users can

use Kibana to create dashboards and visualizations and

perform searches on the log and metric data stored in

Elasticsearch.

 Monitoring and Alerting: Metricbeat can be configured

to monitor various system-level metrics from the nodes

and containers, providing insights into the health and

performance of the Kubernetes cluster. Alerts can be

set up within Kibana or external monitoring systems

based on predefined thresholds or conditions.

Figure 1: Architecture Diagram

d) Implementation Steps:

● EKS Cluster Setup: Establish a Kubernetes cluster on

EKS, configuring worker nodes to run containerized

applications.

Figure 2: EKS configuration file, use ekctl create cluster -f config.yaml for building the cluster.

● We will build our Elastic stack in Kubernetes via helm.

Paper ID: SR24203231802 DOI: https://dx.doi.org/10.21275/SR24203231802 2219

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Installation of ElasticSearch, Kibana, and MetricBeat via Helm

e) Observations:

● Logs and alerting can be configured in Kibana, as MetricBeat ships all logs to ElasticSearch.

Figure 4: Kibana dashboard where all the logs are published to an Index

● MetricBeat ingests the logs in JSON format, so logs can be filtered depending on various keys like container Id, Pod Id,

Namespace and so forth.

Paper ID: SR24203231802 DOI: https://dx.doi.org/10.21275/SR24203231802 2220

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Figure 5: JSON formatted log

f) Lessons Learned:

 Understanding Log Formats: Gain a deep understanding

of log formats produced by applications running on

Kubernetes to ensure effective parsing and processing in

Elastic Stack. Also, all logs from the applications

running in Kubernetes must log to Stdout so MetricBeat

can collect and ingest to ElasticSearch. Having

applications log in JSON puts less load on MetricBeats

as it doesn't need to do regex to parse the logs while

ingesting to ElasticSearch.

 Resource Optimization: Optimize resource usage on

Kubernetes nodes and Elastic components to strike a

balance between efficient log processing and cost-

effectiveness.

 Monitoring and Alerting: Implement proactive

monitoring and alerting within the ELK stack to detect

and address issues promptly, ensuring the reliability of

the logging infrastructure.

 Scalability Planning: Anticipate the scalability

requirements of both EKS and ELK to accommodate

growing workloads while maintaining optimal

performance. As the number of pods increases, the

ingestion of logs also increases at ElasticSearch by

MetricBeats. To accommodate the large ingestion,

introducing streaming services like Kafka or RabbitMq

will help in the ingestion of logs to ElasticSearch, and

that ensures that the logs are flowing in real-time.

 For secure ingestion of logs to ElasticSearch, create

certificates at ElasticSearch and add them to

MetricBeats, so all logs are encrypted in transit.

By sharing these practical insights, organizations embarking

on similar endeavors can benefit from the experiences of

others, accelerating the implementation of advanced logging

strategies in their container orchestration environments.

6. Future Considerations

 The integration of distributed tracing with logging is

expected to become more prevalent. This approach

allows platform engineering teams to correlate logs

across microservices and gain a holistic view of

application transactions. Tools like OpenTelemetry are

likely to play a significant role in standardizing and

promoting distributed tracing practices.

 Machine learning and anomaly detection algorithms are

anticipated to become integral to logging systems. By

leveraging AI-driven techniques, organizations can

automatically identify patterns, detect anomalies, and

proactively address issues before they impact the

system. This can enhance the efficiency of

troubleshooting and reduce downtime.

 With the rise of serverless architectures, logging

solutions are expected to adapt to the unique challenges

posed by serverless functions. Tailoring logging

strategies to effectively capture and analyze logs in

serverless environments, such as AWS Lambda or

Azure Functions, will be crucial for maintaining

observability.

 With the continuous evolution of container security

practices, logging solutions must align with the evolving

security and compliance landscape. Addressing issues

related to secure log transmission, encryption, and

adherence to regulatory requirements will be crucial.

 As containerized environments scale, resource

efficiency, and cost management become paramount.

Logging solutions should optimize resource usage,

explore cost-effective storage options, and offer

mechanisms to control the volume of logs generated

without sacrificing critical information.

7. Conclusion

In the ever-evolving landscape of container orchestration,

logging emerges as a fundamental pillar in ensuring the

Paper ID: SR24203231802 DOI: https://dx.doi.org/10.21275/SR24203231802 2221

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

reliability, performance, and security of modern applications.

The adoption of containers, coupled with the dynamic nature

of orchestration platforms like Kubernetes, has necessitated a

paradigm shift in logging practicesThis academic paper has

explored recent advancements in container orchestration-

specific logging techniques, addressing the unique

challenges posed by distributed, ephemeral, and scalable

containerized environments. Structured logging, centralized

log management, and integration with observability tools

have been highlighted as key strategies to overcome these

challenges.Moreover, the practical insights shared through

real-world case studies, such as the integration of Amazon

Elastic Kubernetes Service (EKS) with the Elastic Stack

(ELK), provide organizations with actionable guidance to

implement advanced logging solutions effectively.

In conclusion, this paper serves as a valuable resource for IT

professionals, DevOps practitioners, and researchers seeking

to navigate the complexities of modern infrastructure. By

embracing cutting-edge logging techniques and future

considerations, organizations can foster improved insights,

proactive problem-solving, and the successful deployment of

containerized applications in contemporary IT environments.

As containerization continues to shape the technological

landscape, robust logging practices remain pivotal in

ensuring the smooth sailing of applications in the dynamic

sea of container orchestration.

References

[1] Narkhede, N., Shapira, G. and Palino, T. Kafka: The

Definitive Guide. O’Reilly Media, Inc., Sebastopol

(2017)

[2] Clinton Formley, Zachary Tong Elasticsearch: The

Definitive Guide, Available: [Publisher Link] (2015)

[3] Bagnasco, S. and Berzano, D. Monitoring of IaaS and

Scientific Applications on the Cloud Using the

Elasticsearch Ecosystem. Journal of Physics:

Conference Series, 608, No. 1. [Publisher Link] (2015)

[4] JIA Zhanpei, SHEN Chao, YI Xiao, CHEN Yufei, YU

Tianwen, GUAN Xiaohong. "Big-Data Analysis of

Multi-Source Logs for Anomaly Detection on

Network-Based Systems" 2017: 13th IEEE Conference

on Automation Science and Engineering (CASE).

[5] Bai, J. and Guo, H.B. (2014) Software Integration

Research of Large-Scale Logs Real-Time Search Based

on ElasticSearch. Journal of Jilin Normal University

(Natural Science Edition), 2014, No. 2.

[6] Wei, Y. , Li, M. and Xu, B. “Research on Establish an

Efficient Log Analysis System with Kafka and Elastic

Search” Journal of Software Engineering and

Applications (2017)

[7] Satnam Singh “Cluster-level Logging of Containers

with Containers: Logging Challenges of Container-

Based Cloud Deployments”, ACM (2016)

[8] Kubernetes: Available: http://kubernetes.io/.

Paper ID: SR24203231802 DOI: https://dx.doi.org/10.21275/SR24203231802 2222

https://learning.oreilly.com/library/view/elasticsearch-the-definitive/9781449358532/
https://doi.org/10.1088/1742-6596/608/1/012016
http://kubernetes.io/

