Formulation and Evaluation Pharmaceutical
Aqueous Gel of Powdered Guava, Aloe Vera and Acacia Leaves for Treatment of Mouth Ulcer

Suraj T Jadhav

Department of Pharmaceuticals Shree Santkrupa Collage of Pharmacy, Ghogaon, Maharashtra, India 415111

Abstract: The objectives of present investigation were to formulate and evaluate herbal gel for mouth ulcer treatment of dried powdered guava, Aloe vera and Acacia leaves. The mouth ulcer often causes pain and discomfort and may alter the person choice of food while healing occurs. The two most common oral ulceration are Local trauma and Aphthous stomatitis. Herbal gel was prepared by using different concentration of powdered guava, Aloe vera, Acacia leaves and Carbopol 934, Propylene glycol as a gel base. Formulations were evaluated for various parameters. The physicochemical parameters of formulations (pH, viscosity, spreadability etc.) were determined. Stability studies have carried out as per ICH guidelines for 3 months at different temperatures and humidity. Developed herbal formulation was stable, safe and effective over to synthetic formulations for the treatment of mouth ulcer.

Keywords: Oral ulceration, Guava, Aloe vera, Acacia Leaves Powder, Gel

1. Introduction

Throughout the world, the interest in the study of medicinal plants as a source of medicinal compounds has increased. In developing countries like India, it is recognized that plants are the main medicinal source to treat number of infectious diseases. The World Health Organization has estimated that 80% of the earth and 6 million inhabitants rely only upon traditional medicines for their primary health care needs. Major part of the treatment involves the use of plant extracts or their active principles. The effective use of herbal medicine was proved by number of scientists in many parts of the world have proven to humanity by carrying out an extensive research work. India has rich tradition of plant based knowledge of healthcare. The use of the plant based medication is gradually becoming popular throughout the world. Approximately, half of the world’s twenty-five best selling pharmaceutical agents are derived from natural products. The Commercially available gels containing synthetic and semi synthetic active agents which have several disadvantages like staining on the teeth, irritation, and burning sensation only because presence of high degree of alcohol content and some organic compounds. The present investigation deals with use of herbal powdered Guava, Aloe vera, Acacia Leaves in the treatment of mouth ulcer in pharmaceutical gel. Commonly known as guava, Peru, Ambrud. A biological source is Psidium guajava belongings to family Myrtaceae. Chemical composition contains Flavonoids, Triterpinoids, Steroids, Carbohydrates, Oils, Lipids, Glycosides, Alkaloids, Tannins and Saponins. Used as Antioxidant, Antibacterial activity, Anti-inflammatory activity, Anticancer activity (Wang, 2014). When the Acacia arabica (family Mimosaceae), is common all over India in dry and sandy localities. It is commonly known as “babul tree” and locally called as “karuvelam.” Chemical constituents reported in this plant are gum containing arabinose acid combined with calcium, magnesium, and potassium and also small quantity of malic acid, sugar, moisture 14%, and ash 3-4%. Bark contains a large quantity of tannin; pods contain about 22.44% tannin. Aloe vera belonging to the family Liliaceae is commonly known as “aloe gel.” It is locally called “kattalai” which is found all over India. Chemical constituents in this plant are aloin, isobarbaloin, and emodin In Ayurvedic. Leaves are being used successfully in America in the local treatment of chronic ulcers. First the pain diminishes and after a few weeks the ulcers heal.

In Recent Studies. Aloe vera powder was mixed with gum acacia; the solution was administered orally in rats at dose of 200 mg/kg against indomethacin induced gastric ulcer. The extract showed significant antiulcer activity comparable to control. Importance of herbal medicine has both medicinal and economical. Although herbal medicines has benefits to increased, their safety, efficiency, quality and importance of industrialized and developing countries. Herbal medicines are getting increasing patient compliance as they are avoiding typical side effects of allopathic medicines. It is no wonder that the world’s one-fourth population i.e. 1.42 billion people, are dependent on traditional medicines for the treatment of various diseases. Medicinal plants have been a major source of cure for human diseases since time immemorial.

Recently considerable attention has been paid to utilize bio-friendly and eco-friendly plant based products for the cure and prevention of different diseases, so it is documented that most of the World’s population has taken in traditional medicine. The India offers a variety of plants having medicinal properties. Medicinal plants can be used to find out effective alternative to synthetic drugs (Jadhav, 2015). The use of the medicinal plant based medication is gradually becoming popular throughout the world. Near about half of the world’s, twenty five bestselling pharmaceutical innovator agents are derived from natural products (Das, 2011). The use of medicinal plants as raw materials in the preparation of new drugs is ever increasing because of their potentials and the problem of drug resistance in microorganisms. Demand for medicinal plants is increasing in both developed and developing countries. Research on herbal medicinal plants is one of the leading areas of research globally (Dwivedi, 2012).
2. Materials and Methods

Collection of Plant Materials
The fresh plant materials of *Psidium guajava*, *Aloe vera*, and *acacia leaf* were collected from local area from Agricultural farmhouse (Karad, Satara district). Fresh plant leaves were washed under running distilled water as well as tap water and shade drying was carried out. The collected plant was authenticated at Department of Botany, Yashwantrao Chavan College of Science Karad. All other ingredients of analytical grade purchased from Loba Chemicals Mumbai.

Preparation of herbal Gel
Specified amount of Carbopol 934 was dispersed in required amount of distilled water with continuous stirring. 5 ml of distilled water was taken and required quantity of methyl paraben and propyl paraben were dissolved by heating on water bath after cooling propylene glycol was added. Further varying concentration of *Psidium guajava* powder was mixed to the above mixture and volume was made up to 20 ml with distilled water. Finally full mixed ingredients were mixed properly to the Carbopol 934 gel with continuous stirring and triethanolamine was added drop wise to the formulation for adjustment of required pH (6.8-7) (Das, 2010). The composition of herbal gel prepared from the powdered guava leaves coded as F1, F2, and F3 is tabulated in Table 1.

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guava leaves powder</td>
<td>2%</td>
<td>1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Aloe vera leaves powder</td>
<td>2%</td>
<td>1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Acacia Leaves Powder</td>
<td>2%</td>
<td>1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Carbopol 934</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Methyl Paraben</td>
<td>0.0015%</td>
<td>0.0015%</td>
<td>0.0015%</td>
</tr>
<tr>
<td>Propyl Paraben</td>
<td>0.01%</td>
<td>0.01%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Triethanolamine</td>
<td>q.s + pH</td>
<td>6.5-7</td>
<td>q.s + pH</td>
</tr>
<tr>
<td>Distilled water</td>
<td>Up to 20ml</td>
<td>Up to 20ml</td>
<td>Up to 20ml</td>
</tr>
</tbody>
</table>

Table 1: Composition of various gel formulations

Evaluation of Herbal Gel:

Physical Appearance:
Physical parameters such as appearance and colour were checked.

Measurement of pH
The pH of herbal gel formulations were determined by using digital pH meter. 1 gm of gel was taken and dispersed in 10 ml of distilled water and keep aside for two hours. The measurement of pH of formulation was carried out in three times and the average values are reported (Sanghavi, 1989). pH of gel formulation was reported in table no 2.

Homogeneity
All developed gel formulations were tested for homogeneity by visual inspection after the gels have been set in to the container. They were tested for their presence and appearance of any aggregates (Gupta, 2010). Homogeneity of gel formulation was reported in table no 2.

Spreadability
Spreadability was determined by glass slide and wooden block apparatus. Weights about 20 gm were added to the pan and the time were noted for upper slide to move to separate completely from the fixed slide (Shivhare, 2009). A excess amount of gel 2 gm under study was placed on this ground slide. The gel was then sandwiched between this slide and another glass slide having the fixed ground slide and there is provided with the hook. A 1 kg weighted was placed on the top of the slides for 5 minutes to provide a uniform film of the gel and remove air between the slides. Excess of the gel was removed off from the edges. The top plate was then subjected to pull with the help of string attached to the hook and the time in seconds required by the top slide to cover adistance of 7.5 cm be noted. A shorter or less interval indicates better Spreadability. Spreadability of gel was calculated using the following formula Spreadability of gel was reported in table no 2.

\[S = M \times L / T \]

Volume 8 Issue 5, May 2019
www.ijsr.net
Licensed Under Creative Commons Attribution CC BY
Detachment stress = m·g/A
Where,
m = Weight required to detach two glass slides from each other (gm).
g = Acceleration due to gravity i.e 980 cm/s².
A = Area of membrane exposed (cm²).

Stability study:
Stability studies were done with open and close container. Here, by subjecting the product to room temperature for 1 month Stability study was reported in table no 3.

Antifungal activity
The antifungal activity of all developed batches of formulation and without drug containing gel formulation i.e. blank formulation were carried out by Cup-plate method in comparison with marketed antifungal formulation (Zolef cream). There are two different bacteria cultures used were Aspargillus aureus & Candida Albicans.

The antifungal test was performed using the agar well diffusion Prepared nutrient brought and poured in to sterile petri plates and kept for drying and cooling. After that each bacterial culture were spread by micron wire loop. A sterile cork borer 6 mm diameter was used to drill holes 4 mm deep. Then 0.5 gm of gel from each batches add in to this holes. Plates were then incubated at 270C for 48 hr. The zone of inhibition (diameter in mm) developed, if any, was then measured for the particular compound with each fungal strength. Antifungal studies were reported in table no. 4.

Figure 1: IR spectra of powders mixture of Leaves

Figure 2: IR spectra of powders mixture of Leaves and Carbopol 934.

Table 2: In vitro evaluation parameters

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Physical Appearance</th>
<th>pH</th>
<th>Homogeneity</th>
<th>Spreadability (gm.cm/sec)</th>
<th>Viscosity (Pa·S)</th>
<th>Extrudability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 (2%)</td>
<td>Greenish</td>
<td>6.8±0.9</td>
<td>Good</td>
<td>5.70 ± 0.1</td>
<td>3.173 ± 0.004</td>
<td>Good</td>
</tr>
<tr>
<td>F2 (1%)</td>
<td>Greenish</td>
<td>7±0.09</td>
<td>Good</td>
<td>5.86 ± 0.15</td>
<td>3.073 ± 0.049</td>
<td>Good</td>
</tr>
<tr>
<td>F3 (0.5%)</td>
<td>Greenish</td>
<td>6.9±0.5</td>
<td>Good</td>
<td>6.52 ± 0.057</td>
<td>2.334± 0.012</td>
<td>Good</td>
</tr>
</tbody>
</table>

Table 3: In vitro evaluation parameters

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Bioadhesive strength (dyne/cm²)</th>
<th>Gelling Strength (Sec)</th>
<th>Open Container</th>
<th>Closed Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1 (2%)</td>
<td>4422.22 ± 18.82</td>
<td>42±0.75</td>
<td>Not Stable</td>
<td>Stable</td>
</tr>
<tr>
<td>F2 (1%)</td>
<td>3525.31 ± 31.09</td>
<td>36±0.07</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F3 (0.5%)</td>
<td>2873.48 ± 18.25</td>
<td>27±0.5</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 4: In vitro Anti Fungal study:

<table>
<thead>
<tr>
<th>Formulation of Fungal Strength</th>
<th>Aspargillus & aspargillus (mm)</th>
<th>Candida Albicans (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>F1</td>
<td>22±0.4</td>
<td>20±0.4</td>
</tr>
<tr>
<td>F2</td>
<td>20±0.6</td>
<td>19±0.6</td>
</tr>
<tr>
<td>F3</td>
<td>19±0.4</td>
<td>18±0.5</td>
</tr>
<tr>
<td>Marketed Formulation</td>
<td>26±0.2</td>
<td>28±0.4</td>
</tr>
</tbody>
</table>
Infrared spectra have shown groups 2925.48 cm⁻¹ was no interaction between powdered Guava leaves and polymer means polymeric molecules (Allen L). Infrared phase is occur only because of the elastic contraction of the aqueous gels. In syneresis system separation of a solvent gel shrinks. Syneresis it means the form of instability in dispersing medium is squeezed out in droplets fo dispersed phase becomes so great that on standing. In that occurs when the interaction between particles of the means liquid exudates separating (Kaur, 2013). Syneresis Formulated gel containing open container when expose to was not stable and close container gel was stable. container and it's showed that open container containing gel the batches was found in the suitable range easily extendable. The gelling & bioadhesive strength of all Extrudability study was done by pressing thumb and it's Spreadability decreases and vice versa (Shivhare, 2009). The study of Spreadability shows that with increasing the viscosity of formulation Spreadability decreases and vice versa (Shivhare, 2009). Extrudability study was done by pressing thumb and it’s easily extendable. The gelling & bioadhesive strength of all the batches was found in the suitable range (Jaiswal, 2012). 1 Month stability study was done with open and close container and it’s showed that open container containing gel was not stable and close container gel was stable. Formulated gel containing open container when expose to ambient room temperature then syneresis was observed it means liquid exudates separating (Kaur, 2013). Syneresis occurs when the interaction between particles of the dispersed phase becomes so great that on standing. In that dispersing medium is squeezed out in droplets forms and the gel shrinks. Syneresis it means the form of instability in aqueous gels. In syneresis system separation of a solvent phase is occur only because of the elastic contraction of the polymer means polymeric molecules (Allen L). Infrared spectra of gel formulations did not show the presence of any additional peaks so infrared spectroscopy revealed that there was no interaction between powdered Guava leaves and polymer. Infrared spectra have shown groups 2925.48- CH, 476.93- Hematite, 1717.3- C=O, 1187.46, 1187.72- C-O.

3. Conclusion

The data presented in this study, it was demonstrated that the developed herbal gel formulation possess significant, therapeutically efficacious, suitable vehicle for drug delivery in low cost but definitely with high potential. Developed new herbal gel formulation is suitable for mouth ulcer treatment.

References

