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Abstract: The phenomenon of vibration can be applied to identify the crack size and location. In particular, cracks decrease the 

stiffness and the natural frequency thus, causing specimens to fail under normal working conditions. This paper presents the 

application of the vibration-based technique for detecting the location and the size of a crack in structures. The crack is modelled by a 

rotational spring. The predicted crack depth and location are compared with the actual data obtained from finite element models. 
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1. Introduction 
 

Cracks are one of the main causes of structural failure. In 

order to reduce or eliminate the sudden failure of structures, 

they should be regularly checked for cracks. The crack 

present in the component imparts local flexibility to the 

element, which leads to reduction in natural frequencies and 

mode shapes. It is possible to estimate the location and the 

size of a crack by measuring changes in the vibration 

parameters. Crack is modelled as rotational spring having 

stiffness ks and is added to global stiffness matrix where 

rotational degrees of freedom are there. And no change in 

mass matrix is assumed because of small size of crack. 

 

2. Literature Review 
 

The formation of cracks in a structure affects the local 

stiffness and flexibility of the structure. This problem has 

been a subject of investigation in many papers. In the 

present study an attempt has been made to the reviews on 

the isotropic cracked cantilever beam. 

 

Adams et al [1] have presented a method for damage 

detection in a one-dimensional component using the natural 

frequencies of longitudinal vibrations. They modelled the 

damage by a linear spring. Petroski [2] has proposed a tech-

nique by which the section modulus is appropriately reduced 

to model a crack. Chondros and Dimarogonas [3] have used 

the concept of a rotational spring to model the crack and 

proposed a method to identify cracks in welded joints. Rizos 

et al [4] have applied this technique to a cantilever beam and 

detected the crack location through the measurement of 

amplitudes at two points of component vibrating at one of its 

natural modes. Liang et al [5] have proposed a similar 

method, but it required measurements of the three 

fundamental fre- quencies of the beam. Dimarogonas and 

Paipetis [6] calculated the rotational spring constant of a 

beam of a rectangular cross section from the crack strain 

energy function. Ostachowicz and Krawczuk [7] obtained 

the relationships between the reduced stiffness of the 

cracked section and the crack size of a beam of rectangular 

cross section from the decrease in the elastic deformation 

energy of the crack expressed in terms of the stress intensity 

factor. Barad et al [8] used relations between the rotational 

spring constant, crack size and location and proposed a 

method for detecting a crack in a cantilever beam. In most 

cases, the proposed methods are applied to a cantilever beam 

although the simply supported beam is commonly used. 

 

3. Theory 
 

For free vibration the equation can be written as, 

 
 

The equation (1) represents an Eigen value problem and the 

roots of the equation gives rise to square of the natural 

frequency given by the equation, 

 
 

Where  

I=moment of inertia of the section with respect to z-axis 

E = Young’s modulus of elasticity 

ks=stiffness of rotational spring=ks=0.70*((h/dcr).^1.2 -

1)*E*I/h 

and dcr = depth of crack and  

h = total height of beam 

Crack is modelled as rotational spring having stiffness ks 

and is added to global stiffness matrix where rotational 

degrees of freedom is there. No changes in mass matrix is 

assumed due to crack. And the mass matrix is where L is the 

crack location from fixed end and L1 is the remaining length 

of beam after crack. 
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rho = mass density of the material 

A = cross sectional area of the beam element 

 
Figure 1: A beam with a crack and representation of crack with a rotational spring 

 

4. Numerical Examples 
 

The numerical analysis is carried out for a simply supported 

beam of rectangular cross section with a single crack. The 

natural frequencies of transverse vibration at different crack 

location and size are calculated by the finite element 

method, using a computer program (ANSYS). The beam is 

discretized by 8-node solid185 elements. The line is divided 

into 20 parts. Rectangular area is created first to the length 

and height of beam and crack area is subtracted. Remaining 

area is extruded to the required width of the beam. Boundary 

conditions are taken as one end fixed all degrees of freedom 

and the other end only rotation about x-axis is constrained. 

 

The dimensions of the beam are: Length, L =0.7 m, height, h 

= 0.01 m, width, b = 0.05 m. The material properties are: 

Modulus of elasticity, E = 2.1×1011 N/m2, density, rho= 

7850 kg/m3, Poisson’s 

Coefficient, μ= 0.3. The natural frequencies for the studied 

cases are shown in Table 10. 

 

The corresponding results with beam theory are shown in 

Table 11. 

 

5. Results 
 

 
Figure 2: Crack at 0.1m location where depth of crack 

dc=0.001mm 

 

 

 
Figure 3: Crack at 0.2 m location where depth of crack 

dc=0.001mm 

 

 
Figure 4: Crack at 0.3 m location where depth of crack 

dc=0.001mm 

 

Table 1: Lc=0.1; dc=0.001; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 72.643 

2 188.28 

3 422.15 

 

Table 2: Lc=0.2; dc=0.001; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 68.136 

2 184.16 

3 387.48 

   
Table 3: Lc=0.3; dc=0.001; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 66.977 

2 184.65 

3 359.28 
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Table 4: Lc=0.1; dc=0.002; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 71.198 

2 185.46 

3 422.88 

 

Table 5: Lc=0.2; dc=0.002; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 67.962 

2 184.24 

3 386.61 

 

Table 6: Lc=0.3; dc=0.002; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 67.031 

2 184.11 

3 357.34 

 

Table 7: Lc=0.1; dc=0.003; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 69.800 

2 184.94 

3 420.15 

 

Table 8: Lc=0.2; dc=0.003; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 68.266 

2 184.85 

3 387.04 

 

Table 9: Lc=0.3; dc=0.003; L=0.7; rho=7850kg/m3; 

w=0.05m; h=0.01m 
Mode number Frequency (rad/sec) 

1 66.981 

2 184.65 

3 375.00 

 

Table 10 
ANSYS 

results in  

Tabular form 

cantilever 

ANSYS 

 

Radians/s Radians/s Radians/s 

Location crackSize w1 w2 w3 

uncracked 0 0 0 0 0 

1 0.1 0.1 72.643 188.28 422.15 

2 0.1 0.2 71.198 185.46 422.88 

3 0.1 0.3 69.8 184.94 420.15 

4 0.1 0 0 0 0 

5 0.2 0.1 68.136 184.16 387.48 

6 0.2 0.2 67.962 184.24 386.61 

7 0.2 0.3 68.266 184.85 387.04 

8 0.2 0 0 0 0 

9 0.3 0.1 66.977 184.65 359.28 

10 0.3 0.2 67.031 184.11 357.34 

11 0.3 0.3 66.981 184.65 375 

 

Frequencies and mode shapes are obtained by solving the 

Eigen Value Problem (EVP) [K] – ω2 [M] = 0. 

 

By this method the natural frequencies are 

 

Table 11: Theoretical results for different crack location and 

size 

cantilever 
Theory 

(values)  
Radians/s Radians/s Radians/s 

 
Location crackSize w1 w2 w3 

uncracked 0 0 
   

1 0.1 0.1 69.62 122.56 935.87 

2 0.1 0.2 68.54 120.48 630.52 

3 0.1 0.3 67.14 118.06 495.26 

4 0.1 0 0 0 0 

5 0.2 0.1 70.48 110.59 685.85 

6 0.2 0.2 68.69 105.63 564.22 

7 0.2 0.3 68.53 100.39 483.78 

8 0.2 0 0 0 0 

9 0.3 0.1 73.89 110.96 432.96 

10 0.3 0.2 73.27 101.07 414.18 

11 0.3 0.3 72.08 92.17 398.67 

12 0.3 0 0 0 0 

 

Table 12: Comparison of analytical /Theoretical results with ANSYS results 

Location Size 

Radians/s Radians/s Radians/s Radians/s Radians/s Radians/s 

w1(Th) w1(ANSYS) w2(Th) w2(ANSYS) w3(Th) w3(ANSYS) 

  

0 0 

 

0 

 

0 

0.1 0.1 69.62 72.643 122.56 188.28 935.87 422.15 

0.1 0.2 68.54 71.198 120.48 185.46 630.52 422.88 

0.1 0.3 67.14 69.8 118.06 184.94 495.26 420.15 

0.1 0 0 0 0 0 0 0 

0.2 0.1 70.48 68.136 110.59 184.16 685.85 387.48 

0.2 0.2 68.69 67.962 105.63 184.24 564.22 386.61 

0.2 0.3 68.53 68.266 100.39 184.85 483.78 387.04 

0.2 0 0 0 0 0 0 0 

0.3 0.1 73.89 66.977 110.96 184.65 432.96 359.28 

0.3 0.2 73.27 67.031 101.07 184.11 414.18 357.34 

0.3 0.3 72.08 66.981 92.17 184.65 398.67 375 
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Figure 5: First natural frequency for different crack locations on x-axis 

 

 
Figure 6: Second natural frequency for different crack locations Lc on x-axis 

 

 
Figure 7: Third natural frequency for different crack locations on x-axis 

 

 
Figure 8: First natural frequency for different crack sizes on x-axis 

 

 
Figure 9: Second natural frequency for different crack sizes on x-axis 
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Figure 10: Third natural frequencies for different crack sizes on x-axis 

 

6. Conclusion 
 

The frequency of the cracked cantilever beam decreases with 

increase in the crack depth for  all modes of vibration. When 

the crack location shifts towards the fixed end of the 

cantilever beam the natural frequency decreases in first 

mode of vibration. But for second and third modes of 

vibrations the frequency of the cracked beams for the same 

crack depth varies differently. The effect of crack is more 

near the fixed end than at far free end. The exact approx 

location of the crack and the depth can be computed by the 

natural frequencies of the beam,1st three natural frequencies 

are taken into consideration. 
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Appendix – A 

MATLAB program for calculating Eigen values: 

%cantileverbeam-compliance matrix-ks 

E=210E9; 

L=0.700;%total length of beam 

L1=0.300;%crack location from fixed end 

Lc=L1; 

L2=L-Lc;%remaining length after crack 

b=0.050;% width of beam 

h=0.010;% height of beam 

I=b*h*h*h/12;% moment of inertia of beam 

%Ic=266; 

%z=300; 

rho=7850;%density of material 

A=b*h;% cross sectional area of beam 

dcr=0.001;% depth of crack 

%Elements of stiffness matrix for first element 

K111=12*E*I/L1^3; 

K112=6*E*I/L1^2; 

K113=-12*E*I/L1^3; 

K114=6*E*I/L1^2; 

  

K121=6*E*I/L1^2; 

K122=4*E*I/L1; 

K123=-6*E*I/L1^2; 

K124=2*E*I/L1; 

  

K131=-12*E*I/L1^3; 

K132=-6*E*I/L1^2; 

K133=12*E*I/L1^3; 

K134=-6*E*I/L1^2; 

  

K141=6*E*I/L1^2; 

K142=2*E*I/L1; 

K143=-6*E*I/L1^2; 

K144=4*E*I/L1; 

%Elements of stiffness matrix for second element 

K211=12*E*I/L2^3; 

K212=6*E*I/L2^2; 

K213=-12*E*I/L2^3; 

K214=6*E*I/L2^2; 

K221 =6*E*I/L2^2; 

K222 =4*E*I/L2; 

K223=-6*E*I/L2^2; 

K224 =2*E*I/L2; 
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K231 =-12*E*I/L2^3; 

K232 =-6*E*I/L2^2; 

K233=12*E*I/L2^3; 

K234=-6*E*I/L2^2; 

  

K241=6*E*I/L2^2; 

K242=2*E*I/L2; 

K243=-6*E*I/L2^2; 

K244=4*E*I/L2; 

ks=0.70*((h/dcr).^1.2 -1)*E*I/h %rotational stiffness due to 

crack 

omgnc1=3.56*sqrt(E*I/(A*rho*L^4))%First natural 

frequency based on beam theory without crack 

  

KG=[    0   0   0       0       0   0; 

        0   0   0       0       0   0; 

        0   0   K133+K211+ks    K134+K212   K213-ks K214; 

        0   0   K143+K221   K144+K222   K223    K224; 

        0   0       K231-ks     K232        K233+ks K234; 

        0   0       K241        K242    K243    K244]; 

  

MG=rho*A/420*[0     0   0   0   0   0; 

        0   0   0   0   0   0; 

        0   0   156*L1+156*L2   -22*L1*L1+22*L2 54*L2   -

13*L2; 

        0   0   -22*L1*L1+22*L2     4*L1*L1*L1+4*L2*L2  

13*L2   -3*L2*L2; 

        0   0   54*L2       13*L2*L2        156*L2  -22*L2*L2; 

        0   0   -13*L2*L2       -3*L2*L2*L2     -22*L2*L2   

4*L2*L2*L2];     

EIG=eig(KG-MG);%Eigen values 

omegan=sqrt(EIG);%Natural frequencies rad/sec 

fprintf('omgn%24.18f\n',omegan) 
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