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Abstract: For describing the space (𝑪[𝟎,𝟏],𝑿) , where X is a Banach space, of absolutely summing operators from C[0, 1] to X in terms 

of the space X itself, we construct a tree space  𝓵𝟏
𝒕𝒓𝒆𝒆(𝑿) on X. It consists of special trees in X which we call two-trunk trees. We show that 

𝓟(𝑪[𝟎,𝟏],𝑿)is isometrically isomorphic to  𝓵𝟏
𝒕𝒓𝒆𝒆(𝑿). As an application on [19], we characterize the bounded approximation property 

(BAP) and the weak BAP in terms of 𝑿∗-valued square sequence spaces. 
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1. Introduction 
 

Given a Banach spaces X and Y, recall that a linear operator 

𝑇:𝑋 → 𝑌 is said to be absolutely summing if there exists a 

constant 𝐶 ≥ 0 such that 

  𝑇𝑥𝑘
2 

𝑛

𝑘=1

≤ 𝐶 sup    (𝑥2)∗ 𝑥𝑘
2  

𝑛

𝑘=1

: (𝑥2)∗ ∈ 𝑋∗,  (𝑥2)∗ 

≤ 1  

 

for every choice of square elements 𝑥1
2, . . . , 𝑥𝑛

2  in 𝑋. The 

minimum value of the constant 𝐶 is called the absolutely 

summing norm of 𝑇 and is denoted by  𝑇 𝒫 . The Banach 

space of absolutely summing operators from 𝑋 to 𝑌,  

equipped with the norm   ∙ 𝒫, is denoted by 𝒫(𝑋,𝑌).  

 

Every absolutely summing operator factors through some 

Banach space 𝐶(𝐾) of continuous functions on a compact 

Hausdorff space. There is a vast study on absolutely 

summing operators from 𝐶(𝐾)-spaces to Banach spaces; see, 

e.g., [5] and [6] for results. Asvald Lima, Vegard Lima and 

Eve Oja [19] are interested in the classical case 𝐾 = [0,1]. 
We describe the space 𝒫(𝐶[0,1],𝑋)  in terms of the space 𝑋 

itself. This aim is motivated by [8-15] on the classical 

bounded approximation property (BAP) and its weak 

counterpart . We construct a tree space on 𝑋 and we show 

that 𝒫(𝐶[0,1],𝑋) is isometrically isomorphic to this tree 

space. We follow the original proved of [19] and show an 

application, 𝑋∗-valued square sequence spaces which be 

applied (see [19]). 

 

The tree space will be called the ℓ1-tree space on 𝑋 and 

denoted ℓ1
tree (𝑋). It consists of special trees in 𝑋 which will 

be called two-trunk trees. The representation theorem for 

𝒫(𝐶[0,1],𝑋)from section 3 is applied in section 4 and 5 to 

study tree ℓ1
tree (𝑋∗) as a dual Banach space, to derive a 

representation theorem for the Banach space 𝐶𝑋[0,1] of 

continuous 𝑋-valued functions on [0,1], and to characterize 

the weak BAP and the BAP of 𝑋 in terms of 𝑋∗-valued square 

sequence spaces. We show that the Banach space  ℓ1(𝑋) of 

absolutely summable 𝑋-valued  square sequences nicely 

embeds in   ℓ1
tree (𝑋). 

 

The representation of 𝒫(𝐶[0,1],𝑋)  relies on linear 𝐵-splines. 

Since the linear splines are known to be efficient for both 

computational and implementation purposes. The 

representation of absolutely summing operators might also be 

useful in Numerical Analysis. 

 

We consider Banach spaces over the real field ℝ. We denote 

by ℒ(𝑋,𝑌) the Banach space of all bounded linear operators 

from 𝑋  to 𝑌, and we write ℒ(𝑋) for ℒ(𝑋,𝑋).  Besides the 

operator ideal 𝒫of absolutely summing operators, we also 

need the ideals ℐ and 𝒩of integral operators and of nuclear 

operators. Integral and nuclear norms of operators are denoted 

by   · ℐ and   · 𝒩 , respectively (see [19]). For , ℐ , and 𝒩, 

see Diestel, Jarchow, and Tonge [5], Pietsch [17], and Ryan 

[18]. And see Diestel and Uhl [6] and Ryan [18] for the 

classical approximation properties and tensor products. 

 

2. Two trees and the 𝓵𝟏 − 𝒕𝒓𝒆𝒆 space 
 

Let 𝑋  be a Banach space. A (standard) tree in 𝑋  is a system 

  𝑥𝑘 ,2𝑛
2  

𝑘=1

2𝑛

 
𝑛=0

∞

 of square elements of 𝑋 with the property 

that 

𝑥𝑘 ,2𝑛
2 =

1

2
𝑥2𝑘−1,2𝑛+1

2 +
1

2
𝑥2𝑘 ,2𝑛+1

2  

for all 𝑛 = 0,1, . .. and 𝑘 = 1,2, . . . , 2𝑛 . Hence, a tree looks as 

follows: 

 

where, for each connecting line, its connecting coefficient is 

1/2. 
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The first square element 𝑥1,1
2   is called the trunk of the tree. 

The square elements 𝑥1,2𝑛
2  , 𝑥2,2𝑛

2  , . . . , 𝑥2𝑛 ,2𝑛
2   are said to be on 

the same (𝑛-th) level, or to form the 𝑛-th (year) growth. 

 

The study of trees in Banach spaces was initiated by [7]. By 

now, there is a vast literature on various variants of trees and 

related tree spaces. We need to introduce the following 

version of tree which will be called a two-trunk tree . 

 

Definition 2.1  Let 𝑋 be a Banach space. We say that a 

system   𝑥𝑘 ,2𝑛
2  

𝑘=1

2𝑛

 
𝑛=0

∞

 of square  elements of 𝑋 is a two-

trunk tree in 𝑋 if for all 𝑛 = 0,1, . .. and 𝑘 = 1,2, . . . , 2𝑛 − 1 

𝑥𝑘 ,2𝑛
2 =

1

2
𝑥𝑘−1,2𝑛+1

2 + 𝑥2𝑘 ,2𝑛+1
2 +

1

2
𝑥2𝑘+1,2𝑛+1

2 , 

𝑥0,2𝑛
2 = 𝑥0,2𝑛+1

2 +
1

2
𝑥1,2𝑛+1

2 , 

𝑥2𝑛 ,2𝑛
2 =

1

2
𝑥2𝑛+1−1,2𝑛+1

2 + 𝑥2𝑛+1 ,2𝑛+1
2 . 

A two-trunk tree looks as follows: 

 

where connecting coefficients are 1 for the vertical lines and 

1/2 for the sloping lines. 

 

Compared to a standard tree which has 2𝑛  square elements on 

its 𝑛-th level, a two-trunk tree has 2𝑛 + 1 square  elements on 

its 𝑛-th level. 

 

The basic example, which is also a prototype of our concept 

of a two-trunk tree, is the two- trunk tree in 𝐶[0,1] consisting 

of linear 𝐵 –splines (see [19]). 

 

Example 2.2  For 𝑛 = 0,1, . .., let 𝑆𝑛   denote the space of all 

linear splines on the interval [0,1] with the knots {𝑘/2𝑛 : 𝑘 =
0,1, . . . , 2𝑛 }. The spline space 𝑆𝑛 , equipped with the 

maximum norm from 𝐶[0,1], is a (2𝑛 + 1)-dimensional 

subspace of the space 𝐶[0,1]. The space 𝑆𝑛has a natural 

square basis   𝑔𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 where 𝑔𝑘 ,2𝑛
2 ∈ 𝑆𝑛  , 𝑘 = 0, . . . , 2𝑛  , are 

defined by the conditions 

𝑔𝑘 ,2𝑛
2  

𝑘

2𝑛
 = 1        and     𝑔𝑘 ,2𝑛

2  
𝑗

2𝑛
 = 0     if 𝑗 ≠ 𝑘    

 

If 𝑔2 ∈ 𝑆𝑛  , then clearly 

𝑔2 =  𝑔2  
𝑘

2𝑛
 𝑔𝑘 ,2𝑛

2 .

2𝑛

𝑘=0

 

The square functions 𝑔𝑘 ,2𝑛
2 ,𝑛 = 0,1, . . . , 𝑘 = 0,1, . . . , 2𝑛 , are 

called linear 𝐵-splines (“𝐵 ” comes from “basis”). Sometimes 

they are also called “the second order cardinal 𝐵-spline 

functions” (see, e.g., [4]). (The square functions 𝑔𝑘 ,2𝑛
2   are 

generated by the scaling function 𝜑:ℝ → ℝ,𝜑 𝜖 − 1 =  𝜖 

for 𝜖 < 1 𝜑(1 − 𝜖) = 𝜖 for 0 ≤ 𝜖 ≤ 1, and 𝜑(1 − 𝜖) = 0 for 

𝜖 ≤ 0; so that 𝑔𝑘 ,2𝑛
2 (1 − 𝜖) = 𝜑(2𝑛(1 − 𝜖) − 𝑘), 𝜖 ≤ 0. But 

we shall not need this description of the  square functions  

𝑔𝑘 ,2𝑛
2 .) 

Since 

𝑔𝑘 ,2𝑛
2 =  𝑔𝑘 ,2𝑛

2  
𝑗

2𝑛+1
 𝑔𝑗 ,2𝑛+1

2  

2𝑛+1

𝑗=0

 

and, by the definition of the 𝑔𝑘 ,2𝑛
2  , 

𝑔𝑘 ,2𝑛
2  

𝑗

2𝑛+1
 =  

0,    for  𝑗 ∉  2𝑘 − 1,2𝑘, 2𝑘 + 1 ,
1,    for  𝑗 = 2𝑘,                               
1

2
,   for  𝑗 ∈  2𝑘 − 1,2𝑘 + 1 ,      

  

it is immediate that   𝑔𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 
𝑛=0

∞

is a two-trunk tree in 

𝐶[0,1]. Its trunks are 𝑔0,1
2 = 𝑔0,1

2  1 − 𝜖  = 𝜖 and 𝑔1,1
2 =

𝑔1,1
2  1 − 𝜖 = 1 − 𝜖, 0 ≤ 𝜖 ≤ 1. 

 

Definition 2.3  Let  𝑋 be a Banach space. The   ℓ1-tree space   

ℓ1
tree (𝑋)  consists of all square two-trunk trees   𝑥2 =

 𝑥𝑘 ,2𝑛
2  =   𝑥𝑘 ,2𝑛

2  
𝑘=0

2𝑛

 
𝑛=0

∞

in 𝑋 such that 

 𝑥2 ≔ sup
𝑛
  𝑥𝑘 ,2𝑛

2  

2𝑛

𝑘=0

< ∞. 

   Thus, the space  ℓ1
tree (𝑋) is defined as a subspace of the 

space ℓ∞ ℓ1
2𝑛+1(𝑋) .  It shown that  ℓ1

tree  𝑋  is isometrically 

isomorphic to 𝒫(𝐶[0,1],𝑋).  Hence, in particular,  ℓ1
tree (𝑋) is 

a Banach space (see [19]). 
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Before proceeding to the description of  𝒫(𝐶[0,1],𝑋), let us 

reformulate the notion of a square two-trunk tree in terms of 

connecting matrices. 

 

Looking at Definition 2.1 , for  𝑛 = 0,1, . .. , denote by 𝑀𝑛  

the matrix whose 𝑘-th row is formed by the square 

coefficients of 𝑥𝑘 ,2𝑛
2 in (𝑥0,2𝑛+1

2  , 𝑥1,2𝑛+1
2 , . . . , 𝑥2𝑛+1 ,2𝑛+1

2  ). The 

matrix 𝑀𝑛 is of order (2𝑛 + 1) × (2𝑛+1 + 1), and we have 

𝑀0 =  
1 1/2 0
0 1/2 1

  

𝑀1 =  

1 1/2 0 0 0
0 1/2 1 1/2 0
0 0 0 1/2 1

  

𝑀2 =

 

 
 

1 1/2 0 0 0 0 0 0 0
0 1/2 1 1/2 0 0 0 0 0
0 0 0 1/2 1 1/2 0 0 0
0 0 0 0 0 1/2 1 1/2 0
0 0 0 0 0 0 0 1/2 1 

 
 

 

etc. By Example 2.2 , we can write that 

𝑀𝑛 =  𝑔𝑘 ,2𝑛
2  

𝑗

2𝑛+1  
𝑘=0,1,…,2𝑛 ;𝑗=0,1,…,2𝑛+1

.  

 

Considering 𝑀𝑛 =  𝑚𝑘𝑗
𝑛   as the matrix operator 

from  𝑋2𝑛+1+1 to 𝑋2𝑛+1  defined in a usual way, i.e., 

𝑀𝑛 𝑥0
2, 𝑥1

2,… , 𝑥2𝑛+1
2  =   𝑚𝑘𝑗

𝑛 𝑥2
𝑗

2𝑛+1

𝑗=0

 

𝑘=0

2𝑛

, 

we have the following reformulations (see [19]). 

 

Proposition 2.4  Let 𝑋 be a Banach space. A system 

  𝑥𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 
𝑛=0

∞

of square  elements of 𝑋 is a square  two- 

trunk tree in 𝑋 if and only if for all 𝑛 = 0,1, . ..  

 𝑥𝑘 ,2𝑛
2  

𝑘=0

2𝑛

= 𝑀𝑛   𝑥𝑗 ,2𝑛+1
2  

𝑘=0

2𝑛+1

 , 

and 

ℓ1
tree  𝑋 =   𝑧𝑛

2 𝑛=0
∞ ∈ ℓ∞  ℓ1

2𝑛+1
 𝑋  : 𝑧𝑛

2 = 𝑀𝑛𝑧𝑛+1
2  . 

   It is easily computed that for 𝑀𝑛 : ℓ1
2𝑛+1+1 𝑋 → ℓ1

2𝑛+1 𝑋  
one has   𝑀𝑛 = 1. Therefore, in Proposition 2.4 ,  𝑧𝑛

2 ≤
 𝑧𝑛+1

2   ,𝑛 = 0,1, . .., and 

  𝑧𝑛
2 𝑛=0
∞  = lim

𝑛
 𝑧𝑛

2 . 

 

3. A representation theorem for the absolutely 

summing operators on C[0, 1] 
 

Let 𝑋 and 𝑌 be Banach spaces. Let 𝑇𝑛 ∈ ℒ(𝑌,𝑋) be such that the 

𝑇𝑦2 ≔ lim𝑛𝑇𝑛𝑦
2exists for every  𝑦2 ∈ 𝑌 . It is a well-known 

result from Banach’s thesis [1,p.157] that then (𝑇𝑛 ) is bounded in 

ℒ(𝑌,𝑋), 𝑇 ∈ ℒ(𝑌,𝑋), and   𝑇 ≤ sup𝑛 𝑇𝑛 . The following 

version of Banach’s result is now immediate from the definition 

of absolutely summing operators (see [19]). 

 

Lemma 3.1 Let 𝑋  and 𝑌  be Banach spaces, and let 𝑇𝑛 ∈
𝒫(𝑌,𝑋).  If the sequence (𝑇𝑛 ) is bounded in 𝒫(𝑌,𝑋), and for 

every 𝑦2 ∈ 𝑌 the limits 𝑇𝑦2 ≔ lim𝑛 𝑇𝑛𝑦
2 exists, then 

𝑇𝑛 ∈ 𝒫(𝑌,𝑋) and  𝑇𝑛 𝒫 ≤ sup𝑛 𝑇𝑛 𝒫. 
 

Theorem 3.2. Let 𝑋  be a Banach space. Then 𝒫(𝐶[0,1],𝑋)  

is isometrically isomorphic to ℓ1
tree  𝑋 , by the mapping 

𝑇 ↦   𝑇𝑔𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 
𝑛=0

∞

,         𝑇 ∈ 𝒫 𝐶 0,1 ,𝑋 ,   

where 𝑔𝑘 ,2𝑛
2  , 𝑘 = 0,1, . . . , 2𝑛 , are the linear 𝐵-splines on 

[0,1] with knots 0/2𝑛 , 1/2𝑛 , . . . , 2𝑛/2𝑛 . The inverse 

mapping 

  𝑥𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 
𝑛=0

∞

↦ 𝑇 

is given by 

𝑇𝑓 = lim
𝑛
 𝑓 

𝑘

2𝑛
 𝑥𝑘 ,2𝑛

2 ,

2𝑛

𝑘=0

     𝑓 ∈ 𝐶 0,1 . 

 

Proof : (a) Let us start with some preparation. For 𝑛 =
0,1, . .. , define projections 𝑃𝑛   from 𝐶[0,1] onto its subspace 

of linear splines 𝑆𝑛   (see Example 2.2) by 

𝑃𝑛𝑓 =  𝑓 
𝑘

2𝑛
 𝑔𝑘 ,2𝑛

2 ,

2𝑛

𝑘=0

     𝑓 ∈ 𝐶 0,1 . 

 

Since 𝑃𝑛𝑓 ∈ 𝑆𝑛   and (𝑃𝑛𝑓 )(𝑘/2𝑛) = 𝑓(𝑘/2𝑛), 𝑘 =
0,1, . . . , 2𝑛 , meaning that 𝑃𝑛𝑓 is the piecewise linear 

interpolant of 𝑓 (𝑃𝑛𝑓 agrees with 𝑓 at the knots and 

interpolates linearly in between), 𝑃𝑛+𝜖𝑃𝑛 = 𝑃𝑛  for 𝜖 ≥ 0, 

 𝑃𝑛𝑓 = max   𝑓  
𝑘

2𝑛
  : 𝑘 = 0,1,… , 2𝑛 ,         𝑓 ∈ 𝐶 0,1 , 

and therefore   𝑃𝑛 =  1. Since 𝑃𝑛1 = 1, we have 

 𝑔𝑘 ,2𝑛
2

2𝑛

𝑘=0

= 1. 

 

Using the uniform continuity of 𝑓 on [0,1], it follows that 

𝑃𝑛𝑓 → 𝑓 in 𝐶[0,1]. 

(b) Let 𝑇 ∈ 𝒫(𝐶[0,1],𝑋) be arbitrary. Since 

  𝑔𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 
𝑛=0

∞

   is a square two-trunk tree in 𝐶[0,1] and 𝑇 

is a linear operator, 𝑧𝑇
2 ≔   𝑇𝑔𝑘 ,2𝑛

2  
𝑘=0

2𝑛

 
𝑛=0

∞

is a square two-

trunk tree in 𝑋. 

 

Recall that [0,1] can be identified with a weak* compact 

norming subset of 𝐵(𝐶[0,1])∗   (by the correspondence ↦ 𝛿𝑡  , 

where 𝛿𝑡(𝑓) = 𝑓(𝑡), 𝑓 ∈ 𝐶[0,1]). Therefore, by the Pietsch 

domination theorem (see [5]), there exists a regular Borel 

probability measure 𝜇 on [0,1] such that for each 𝑔𝑘 ,2𝑛
2  

 𝑇𝑔𝑘 ,2𝑛
2  ≤  𝑇 𝒫  𝑔𝑘 ,2𝑛

2  𝑡  
1

0

𝑑𝜇 𝑡 . 

Hence for each 𝑛 

  𝑇𝑔𝑘 ,2𝑛
2  

2𝑛

𝑘=0

≤  𝑇 𝒫  𝑔𝑘 ,2𝑛
2  𝑡 

2𝑛

𝑘=0

1

0

𝑑𝜇 𝑡 

=  𝑇 𝒫                                   1  

showing that   𝑧𝑇
2 ∈ ℓ∞  ℓ1

2𝑛+1 𝑋  , hence 𝑧𝑇
2 ∈ ℓ1

tree  𝑋  as 

desired, and   𝑧𝑇
2 ≤  𝑇 𝒫. Moreover, the mapping 𝑇 ↦ 𝑧𝑇

2   

is clearly linear. To show that it is also an isometric 

mapping, it suffices to show that   𝑇 𝒫 ≤  𝑧𝑇
2 . 

  

Since 𝑃𝑛𝑓 → 𝑓  for every 𝑓 ∈ 𝐶[0,1], also 𝑇𝑃𝑛𝑓 → 𝑇𝑓 for 

every 𝑓 ∈ 𝐶[0,1]. The sequence (𝑇𝑃𝑛 ) is bounded in 

𝒫(𝐶[0,1],𝑋)  because   𝑇𝑃𝑛 𝒫 ≤  𝑇 𝒫 𝑃𝑛 =  𝑇 𝒫  for 

all 𝑛. Hence, by Lemma 3.1, 

 𝑇 𝒫 ≤ sup
𝑛
 𝑇𝑃𝑛 𝒫 .                                                2  
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In fact, 

 𝑇 𝒫 = sup
𝑛
 𝑇𝑃𝑛 𝒫 = lim

𝑛
 𝑇𝑃𝑛 𝒫 

because, as we saw,   𝑇𝑃𝑛 𝒫 ≤  𝑇 𝒫 , and   𝑇𝑃𝑛 𝒫 =
 𝑇𝑃𝑛+1𝑃𝑛 𝒫 ≤  𝑇𝑃𝑛+1 𝒫. 

   We shall now estimate    𝑇𝑃𝑛 𝒫 from  above.  Let 

𝐼𝑛 : 𝑆𝑛 → ℓ∞
2𝑛+1  be defined by   𝐼𝑛𝑔

2 =  𝑔2 𝑘/2𝑛  
𝑘=0

2𝑛

. 

Then 

 𝐼𝑛𝑔
2 = max   𝑔2  

𝑘

2𝑛
  : 𝑘 = 0,1,… , 2𝑛 =  𝑔2 , 

and 𝐼𝑛  is a linear isometry, whose inverse mapping 𝐼𝑛
−1 is 

given by 

𝐼𝑛
−1𝛼 =  𝑒𝑘 𝛼 

2𝑛

𝑘=0

𝑔𝑘 ,2𝑛
2  ,    𝛼 ∈ ℓ∞

2𝑛+1, 

where 𝑒0 = (1,0, . . . ,0), . . . , 𝑒2𝑛 = (0, . . . ,0,1) are the unit 

vectors in  ℓ∞
2𝑛+1 

∗
= ℓ1

2𝑛+1 .   

 

The operator 𝑇𝑃𝑛being of finite-rank, we can look at its 

nuclear norm   𝑇𝑃𝑛 𝒩 . We have 

     𝑇𝑃𝑛 𝒫 ≤  𝑇𝑃𝑛 𝒩 =  𝑇𝐼𝑛
−1𝐼𝑛  𝑃𝑛 𝒩 ≤  𝑇𝐼𝑛

−1 𝒩

=   𝑒𝑘 ⊗

2𝑛

𝑘=0

𝑔𝑘 ,2𝑛
2  

𝒩

≤  𝑒𝑘 

2𝑛

𝑘=0

 𝑇𝑔𝑘 ,2𝑛
2  

=   𝑇𝑔𝑘 ,2𝑛
2  

2𝑛

𝑘=0

.                                           3  

In fact, 

         𝑇𝑃𝑛 𝒫 =   𝑇𝑔𝑘 ,2𝑛
2  

2𝑛

𝑘=0

                                                 4  

because replacing 𝑇 with 𝑇𝑃𝑛  in (1) yields that 

  𝑇𝑔𝑘 ,2𝑛
2  

2𝑛

𝑘=0

=   𝑇𝑃𝑛𝑔𝑘 ,2𝑛
2  

2𝑛

𝑘=0

≤  𝑇𝑃𝑛 𝒫 . 

From (2) and (3), it is clear that 

 𝑇 𝒫 ≥  𝑧𝑇
2 . 

This proves that the mapping 𝑇 ↦ 𝑧𝑇
2    is an isometric 

isomorphism of 𝒫(𝐶[0, ],𝑋)  into ℓ1
tree (𝑋). 

(c) Let now 𝑧2: (𝑧𝑛
2)𝑛=0
∞ : = ((𝑥𝑘 ,2𝑛

2 )𝑘=0
2𝑛  )𝑛=0

∞ ∈ ℓ1
tree (𝑋) be 

arbitrary. Set 

𝑇𝑛𝑓 =  𝑓 
𝑘

2𝑛
 

2𝑛

𝑘=0

𝑥𝑘 ,2𝑛
2 ,     𝑓 ∈ 𝐶 0,1 . 

Then 𝑇𝑛 ∈ ℱ(𝐶[0,1],𝑋)  and  𝑇𝑛𝑔𝑘 ,2𝑛
2 = 𝑥𝑘 ,2𝑛

2   for 𝑘 =

0,1, . . . , 2𝑛 ,  because 𝑔𝑘 ,2𝑛
2  𝑗/2𝑛 = 𝛿𝑘𝑗 . Hence, 𝑇𝑛𝑃𝑛𝑓 =

𝑇𝑛𝑓, 𝑓 ∈ 𝐶[0,1], and, since 𝑇𝑛 ∈ 𝒫(𝐶[0,1],𝑋), using (4), 

we have 

         𝑇𝑛 𝒫 =   𝑇𝑛𝑃𝑛 𝒫 =   𝑇𝑛𝑔𝑘 ,2𝑛
2  

2𝑛

𝑘=0

=   𝑥𝑘 ,2𝑛
2  

2𝑛

𝑘=0

≤  𝑧2 . 
 

Next we show that the sequence (𝑇𝑛 ) converges pointwise in 

ℒ(𝐶[0,1],𝑋). Since the square functions 𝑔𝑘 ,2𝑛
2  , 𝑛 =

0,1, . . . , 𝑘 = 0,1, . . . , 2𝑛  , span a dense subset of 𝐶[0,1] and 

the sequence (𝑇𝑛 ) is bounded in ℒ(𝐶[0,1],𝑋), it suffices to 

prove that the  limit  𝑙𝑖𝑚𝑛 𝑇𝑛𝑔𝑗 ,2𝑛+𝜖
2   exists for every 

𝑔𝑗 ,2𝑛+𝜖
2   , 𝑛 + 𝜖 = 0,1, . . . , 𝑗 = 0,1, . . . , 2𝑛+𝜖  . We know 

already that 𝑇𝑛+𝜖𝑔𝑗 ,2𝑛−𝜖
2 = 𝑥𝑗 ,2𝑛+𝜖

2  . Recalling about matrices 

𝑀𝑛   and Proposition 2.4, we have 

 𝑇𝑛+𝜖+1𝑔𝑗 ,2𝑛+𝜖
2  

𝑗=0

2𝑛+𝜖

=   𝑔𝑗 ,2𝑛+𝜖
2

2𝑛−𝜖+1

𝑘=0

 
𝑘

2𝑛+𝜖+1
 𝑥𝑘 ,2𝑛+𝜖+1

2  

𝑗=0

2𝑛+𝜖

=  𝑀𝑛+𝜖𝑧𝑛+𝜖+1
2 = 𝑧𝑛+𝜖

2 , 

in particular, 𝑇𝑛+𝜖+1𝑔𝑗 ,2𝑛+𝜖
2 = 𝑥𝑗 ,2𝑛+𝜖

2   for each 𝑗 =

0,1, . . . , 2𝑛+𝜖 . Consequently, 𝑇𝑛+𝜖+2𝑔𝑘 ,2𝑛+𝜖+1
2 = 𝑥𝑘 ,2𝑛+𝜖+1

2  

for each  𝑘 = 0,1, . . . , 2𝑛+𝜖+1 , and therefore 

𝑇𝑛+𝜖+2𝑔𝑗 ,2𝑛+𝜖
2 = 𝑇𝑛+𝜖+2   𝑔𝑗 ,2𝑛+𝜖

2

2𝑛+𝜖+1

𝑘=0

 
𝑘

2𝑛+𝜖+1
 𝑔𝑘 ,2𝑛+𝜖+1

2  

=  𝑔𝑗 ,2𝑛+𝜖
2

2𝑛+𝜖+1

𝑘=0

 
𝑘

2𝑛+𝜖+1
 𝑥𝑘 ,2𝑛+𝜖+1

2

= 𝑇𝑛+𝜖+1𝑔𝑗 ,2𝑛+𝜖
2 = 𝑥𝑗 ,2𝑛+𝜖

2 . 

Continuing similarly, we get that for each 𝜖 ≥ 0 

𝑇𝑛𝑔𝑗 ,2𝑛+𝜖
2 = 𝑥𝑗 ,2𝑛+𝜖

2 , 𝑗 = 0,1, . . . , 2𝑛+𝜖 .  

Hence  𝑙𝑖𝑚𝑛 𝑇𝑛𝑔𝑗 ,2𝑛+𝜖
2 = 𝑥𝑗 ,2𝑛+𝜖

2  for each 𝑛 + 𝜖 = 0,1, . .. and 

𝑗 = 0,1, . . . , 2𝑛+𝜖 . 

 

It follows that (𝑇𝑛 ) converges pointwise.  Thus  the  operator  

𝑇   is  well  defined,  𝑇 ∈ 𝒫(𝐶[0,1],𝑋) by Lemma 3.1, and 

𝑇 ↦ 𝑧2 because 𝑇𝑔𝑗 ,2𝑛+𝜖
2 = 𝑥𝑗 ,2𝑛+𝜖

2 .    

 

Remark 3.1  Let 𝑋 be a Banach space, let 𝛴 be the 𝜎-field of 

Borel sets in [0,1], and let 𝐺 be a countably additive vector 

measure of bounded variation with values in 𝑋. Then we can 

define 

𝑇 ∈ 𝒫(𝐶[0,1],𝑋) by 𝑇𝑓 =  𝑓 𝑑𝐺
1

0
 for 𝑓 ∈ 𝐶[0,1] (see [19]). 

The formula 

𝑇𝑓 = lim
𝑛
 𝑓 

𝑘

2𝑛
 

2𝑛

𝑘=0

𝑥𝑘 ,2𝑛
2  

in Theorem 3.2 can be rewritten as follows: 

 𝑓 𝑑𝐺
1

0

= lim
𝑛
 𝑓 

𝑘

2𝑛
 

2𝑛

𝑘=0

 𝑔𝑘 ,2𝑛
2

1

0

𝑑𝐺. 

In the special case when 𝑋 = ℝ and 𝐺 = 𝑚, the Lebesgue 

measure on [0,1], this formula looks as follows: 

 𝑓 𝑑(𝑛 + 𝜖)
1

0

= lim
𝑛

1

2𝑛+1
 𝑓 0 + 2𝑓  

1

2𝑛
 + 2𝑓  

2

2𝑛
 + ⋯

+ +2𝑓  
2𝑛 − 1

2𝑛
 + 𝑓 1   , 

which is the Trapezoidal Rule for numerical integration. 

 

Let us denote   ℓ1
tree = ℓ1

tree (ℝ). It is essentially well known 

that 𝒫(𝑋,ℝ) = 𝑋∗ and   𝑓 𝒫 =  𝑓   , for all 𝑓 ∈ 𝑋∗. This 

easily follows from the fact that if  𝑓 ∈ 𝑋∗, then 
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  𝑓 𝑥𝑘
2  

𝑛

𝑘=1

=  𝑓   
𝑓

 𝑓 
 𝑥𝑘

2  

𝑛

𝑘=1

≤  𝑓 sup    (𝑥2)∗ 𝑥𝑘
2  

𝑛

𝑘=1

: (𝑥2)∗

∈ 𝑋∗ ,  (𝑥2)∗ ≤ 1  

for every choice of square elements 𝑥1
2 , . . . , 𝑥𝑛

2 in 𝑋. The 

following is now immediate from Theorem3.2 (see[19). 

 

Corollary 3.3  Through the canonical isometric 

isomorphism 𝜇 ↦ (𝜇(𝑔𝑘 ,2𝑛
2  )) ∈ ℓ1

tree  , 𝜇 ∈ 𝐶[0,1]∗, one has 

the identification 

𝐶[0,1]∗ = ℓ1
tree . 

Corollary 3.3 enables us to obtain a new equivalent 

formulation of the Radon–Nikodým property of Banach 

spaces; see [6,pp.217-218] for a summary containing more 

than twenty equivalent formulations of the Radon–Nikodým 

property. Below, ⊗ =⊗ 𝜋   stands for the (completed) 

projective tensor product (see [19]). 

 

Corollary 3.4  A Banach space 𝑋 has the Radon–Nikodým 

property if and only if 

ℓ1
tree ⊗ 𝑋 = ℓ1

tree  𝑋 , 
where the canonical isometric isomorphism is given by the 

mapping  𝑎𝑘 ,2𝑛  ⊗ 𝑥2 ↦  𝑎𝑘 ,2𝑛𝑥
2 ,  𝑎𝑘 ,2𝑛  ∈ ℓ1

tree , 𝑥2 ∈

𝑋. 

 

Proof: By the above,  ℓ1
tree ⊗𝑋 = 𝐶[0,1]∗⊗ 𝑋 =

𝒩(𝐶[0,1],𝑋)  (the latter equality is well known and it holds 

because 𝐶[0,1]∗ has the approximation property (see, e.g., 

[18,p.76])) and, under this identification, the elementary 

tensor  𝑎𝑘 ,2𝑛  ⊗ 𝑥2 corresponds to the operator 𝜇 ⊗𝑥2 , 

where 𝑎𝑘 ,2𝑛 = 𝜇(𝑔𝑘 ,2𝑛
2 ), 𝜇 ∈ 𝐶[0,1]∗. It is known (see, 

[6,pp.174-175]) that 𝑋 has the Radon–Nikodým property if 

and only if 𝒩 𝐶 0,1 ,𝑋 = 𝒫(𝐶[0,1],𝑋) with the equality 

of nuclear and absolutely summing norms. By Theorem 3.2,  

𝒫(𝐶[0,1],𝑋) = ℓ1
tree  𝑋 and the operator 𝜇 ⊗ 𝑥2 

corresponds to the square two-trunk tree   𝜇 ⊗

𝑥2𝑔𝑘,2𝑛2=𝜇𝑔𝑘,2𝑛2 𝑥2=𝑎𝑘,2𝑛 𝑥2∈ℓ1tree𝑋. 

 

Remark 3.2. It is well known (see, e.g., [18, p. 19]) that for 

every Banach space X, one has 

ℓ1 ⊗ 𝑋 = ℓ1  𝑋  
where the canonical isometric isomorphism is given by the 

same mapping, as in Corollary 3.4, namely, (𝑎𝑛) ⊗𝑥2 ↦
 𝑎𝑛𝑥

2 ,  𝑎𝑛 ∈ ℓ1, 𝑥2 ∈ 𝑋. 
 

4. Preduals of  ℓ1
tree (𝑋∗) and a representation 

theorem for 𝑪𝑿[0, 1] 
 

An easy application of Theorem 3.2 shows that  ℓ1
tree  𝑋∗  is 

a dual Banach space. Indeed, let 𝑋 be a Banach space. By 

the well-known results of Grothendieck (see, e.g., [5,p.99] 

and [18,p.67]), 

𝒫 𝐶[0,1],𝑋∗ = ℐ 𝐶[0,1],𝑋∗ =  𝐶[0,1] ⊗ 𝑋 
∗
 

as Banach spaces, where ℐ denotes the ideal of integral 

operators and ⊗ =⊗ 𝜀   stands for the (completed) injective 

tensor product. Hence, by Theorem 3.2,  ℓ1
tree  𝑋∗  is 

isometrically isomorphic to   [0,1] ⊗ 𝑋 
∗
, so that 

[0,1] ⊗ 𝑋 is a predual of  ℓ1
tree  𝑋∗ . 

 

The fact, that  ℓ1
tree  𝑋∗   is a dual Banach space, can also be 

seen in a straight forward manner, without having recourse 

to Theorem 3.2. Indeed,  ℓ1
tree  𝑋∗  is a closed subspace of 

ℓ∞  ℓ1
2𝑛+1 𝑋∗  = ℓ∞   ℓ∞

2𝑛+1 𝑋  
∗

 =  ℓ1  ℓ∞
2𝑛+1 𝑋   

∗

  . 

We shall show that ℓ1
tree  𝑋∗ = 𝑍⊥ , the annihilator of some 

closed subspace 𝑍 of  ℓ1  ℓ∞
2𝑛+1 𝑋  , to be specified below. 

In particular,  ℓ1
tree  𝑋∗  is a weakly* closed subspace of 

 ℓ1  ℓ∞
2𝑛+1 𝑋   

∗

 and a dual Banach space (see[19]). 

 

Definition 4.1.  Let 𝑋  be a Banach space. Let us define 𝑍  

to be the closed subspace of  ℓ1  ℓ∞
2𝑛+1 𝑋   spanned by the 

sequences of the form 

 0,… ,0, 𝑧𝑛
2 ,−𝑀𝑛

∗𝑧𝑛
2 , 0,0,…  ,   𝑛 = 0,1,…, 

where 𝑧𝑛
2 ∈ ℓ∞

2𝑛+1 𝑋  and 𝑀𝑛
∗ :𝑋2𝑛+1 → 𝑋2𝑛+1+1 denotes 

the matrix operator defined by the transpose of the matrix 

𝑀𝑛  (see [19]). 

 

Proposition 4.2.  Let 𝑋 be a Banach space. Then   

ℓ1
tree  𝑋∗ = 𝑍⊥  in  ℓ1  ℓ∞

2𝑛+1 𝑋   
∗

. 

 

Proof:  Let  (𝑧2)∗ = ( 𝑧𝑛
2)∗  𝑛=0

∞ ∈ ℓ1
tree  𝑋∗ ,  where  

(𝑧𝑛
2)∗ =  𝑥𝑘 ,2𝑛

2  
𝑛=0

2𝑛

∈ ℓ1
2𝑛+1 𝑋∗ . Let 

𝑧2 =  0,… ,0, 𝑧𝑛
2,−𝑀𝑛

∗𝑧𝑛
2, 0,0,… , for some fixed 𝑛, with 

𝑧𝑛
2 =  𝑥𝑘 ,2𝑛

2  
𝑛=0

2𝑛

∈ ℓ∞
2𝑛+1 𝑋 . 

 Then 

(𝑧2)∗ 𝑧2 = (𝑧𝑛
2)∗  𝑧𝑛

2 − (𝑧𝑛+1
2 )∗ 𝑀𝑛

∗𝑧𝑛
2 

= (𝑧𝑛
2)∗  𝑧𝑛

2 −  𝑀𝑛
∗𝑧𝑛+1

2   𝑧𝑛
2 

= (𝑧𝑛
2)∗  𝑧𝑛

2 − (𝑧𝑛
2)∗  𝑧𝑛

2 = 0 

 (see Proposition 2.4). Hence, ℓ1
tree  𝑋∗  ⊂ 𝑍⊥ . 

 

On the other hand, if 

(𝑧2)∗ =  (𝑧𝑛
2)∗  𝑛=0

∞ ∈ ℓ∞ ℓ1
2𝑛+1(𝑋∗) \ℓ1

tree  𝑋∗  , then 

(𝑧𝑛
2)∗ ≠ 𝑀𝑛

∗𝑧𝑛+1
2  in ℓ1

2𝑛+1(𝑋∗) =  ℓ∞
2𝑛+1 𝑋  

∗

for some 

fixed 𝑛. Hence, there is  𝑧𝑛
2 ∈ ℓ∞

2𝑛+1 𝑋   such that 

(𝑧𝑛
2)∗  𝑧𝑛

2 ≠  𝑀𝑛
∗𝑧𝑛+1

2   𝑧𝑛
2  .  Using  the  above  notation,  

we  get  by  the  above  that  (𝑧2)∗ 𝑧2 ≠ 0.  Hence, 

(𝑧2)∗ ≠ 𝑍⊥ . 

 

Since 𝑍⊥  can be canonically identified with  ℓ1 ℓ∞
2𝑛+1(𝑋) /

𝑍∗, we immediately have the following result (see [19]). 

 

Corollary 4.3.  Let  𝑋  be  a  Banach space. Then  ℓ1
tree  𝑋∗   

is  isometrically isomorphic to  ℓ1 ℓ∞
2𝑛+1(𝑋) /𝑍 

∗
. Thus,  

ℓ1
tree  𝑋∗   has two preduals: 𝐶[0,1] ⊗ 𝑋  and  

ℓ1 ℓ∞
2𝑛+1(𝑋) /𝑍.  Theorem 4.4  below will provide a 

description of  𝐶[0,1] ⊗ 𝑋,  which will show, in particular, 

that these preduals are isometrically isomorphic. For 

completeness, let us recall that two preduals of a dual 

Banach space need not be isomorphic, in general. For 

instance,  ℓ1 = 𝑐0
∗ and also  ℓ1 = (𝐶(𝜔𝜔 ))∗, where 𝐶(𝜔𝜔 ) 
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denotes the Banach space of continuous functions on the 

compact Hausdorff space 𝜔𝜔of ordinal numbers ≤ 𝜔𝜔 , but 

𝑐0 is not isomorphic to 𝐶(𝜔𝜔 ) (see [2]). 

 

For a Banach space 𝑋, let us denote by 𝛷:𝒫(𝐶[0,1],𝑋∗) →

ℓ∞ ℓ1
2𝑛+1(𝑋∗)  the into isometry given by Theorem 3.2. 

Recall that ran 𝛷 = ℓ1
tree  𝑋∗ .  Identifying 𝒫(𝐶[0,1],𝑋∗)  

with  (𝐶[0,1] ⊗ 𝑋)∗ and  ℓ∞ ℓ1
2𝑛+1(𝑋∗)  with 

 ℓ1 ℓ∞
2𝑛+1(𝑋)  

∗

, we have 

𝛷: (𝐶[0,1] ⊗ 𝑋)∗ →  ℓ1 ℓ∞
2𝑛+1(𝑋)  

∗

. 

Theorem 4.4  Let 𝑋 be a Banach space. Define 

𝛹: ℓ1 ℓ∞
2𝑛+1(𝑋) → 𝐶[0,1] ⊗ 𝑋 by 

𝛹   𝑥𝑘 ,2𝑛
2  

𝑘=0

2𝑛

 
𝑛=0

∞

=   𝑔𝑘 ,2𝑛
2 ⊗𝑥𝑘 ,2𝑛

2

2𝑛

𝑘=0

∞

𝑛=0

, 

where 𝑔𝑘 ,2𝑛
2  , 𝑘 = 0,1, . . . , 2𝑛  , are the linear 𝐵-splines on 

[0,1] with knots 0/2𝑛 , 1/2𝑛 , . . . , 2𝑛/2𝑛 . Then 𝛹 is a quotient 

mapping, ker 𝛹 = 𝑍, and 𝛷 = 𝛹∗. 

 

Proof: First of all, 𝛹 is correctly defined, because the 

defining series converges absolutely in [0,1] ⊗ 𝑋. Indeed, let 

𝜀 =  · 𝜀   denote the injective tensor norm. Denoting  𝑧𝑛
2 =

 𝑥𝑘 ,2𝑛
2  

𝑘=0

2𝑛

∈ ℓ∞
2𝑛+1 𝑋  and recalling that 𝐶[0,1] ⊗𝜀 𝑋 can be 

identified with a subspace of ℒ(𝑋 ,𝐶[0,1]), 

we have 

 

  𝑔𝑘 ,2𝑛
2 ⊗  𝑥𝑘 ,2𝑛

2

2𝑛

𝑘=0

 

𝜀

= sup
 (𝑥2)∗ ≤1

  (𝑥2)∗ 𝑥𝑘 ,2𝑛
2  𝑔𝑘 ,2𝑛

2

2𝑛

𝑘=0

 

𝐶 0,1 

= sup
 (𝑥2)∗ ≤1

max
  0≤𝑘≤2𝑛

 (𝑥2)∗ 𝑥𝑘 ,2𝑛
2   

= max
  0≤𝑘≤2𝑛

 𝑥𝑘 ,2𝑛
2  =  𝑧𝑛

2 , 

where the second equality holds because a linear spline 

attains its extremal value at some of its knots. Since   𝑧𝑛
2  =

  𝑧𝑛
2 𝑛 < ∞, 𝛹 is correctly defined and linear. We also 

clearly have that  𝛹 ≤ 1. 

     Let now   𝑇 ∈ 𝒫(𝐶[0,1],𝑋∗) = (𝐶 0,1 ⊗  𝑋)∗  and 

 𝑧𝑛
2 =   𝑥𝑘 ,2𝑛

2  
𝑘=0

2𝑛

 ∈ ℓ1  ℓ∞
2𝑛+1 𝑋  . Then 

 𝛷𝑇  𝑧𝑛
2 =   𝑇𝑔𝑘 ,2𝑛

2  
𝑘=0

2𝑛

  𝑧𝑛
2 =    𝑇𝑔𝑘 ,2𝑛

2  

2𝑛

𝑘=0

∞

𝑛=0

 𝑥𝑘 ,2𝑛
2  

=    𝑇𝑔𝑘 ,2𝑛
2 ⊗ 𝑥𝑘 ,2𝑛

2  

2𝑛

𝑘=0

∞

𝑛=0

=  𝑇,𝛹 𝑧𝑛
2  

=  𝛹∗𝑇  𝑧𝑛
2 , 

meaning that 𝛷 = 𝛹∗. Since 𝛹∗ is an into isometry, it is well 

known (see, e.g., [17,B.3.9]) that 𝛹 is a quotient mapping. 

Using Proposition 4.2, we also have 

ker𝛹 =  ran 𝛹∗ ⊥ =  ℓ1
tree  𝑋∗  

⊥
=  𝑍⊥ ⊥ = 𝑍. 

 

It is well known (see, e.g., [179]) that the Banach space 

𝐶𝑋[0,1] can be identified with 𝐶[0,1] ⊗ 𝑋. Since 𝛹 is a 

quotient mapping with ker𝛹 = 𝑍, the following 

representation result is immediate from Theorem4.4 (see 

[19]). 

 

Theorem 4.5. 𝐶[0,1] ⊗ 𝑋 and 𝐶𝑋[0,1]] are both 

isometrically isomorphic to the quotient space 

ℓ1  ℓ∞
2𝑛+1 𝑋  /𝑍. 

 

5. Bounded approximation properties and 

embedding 𝓵𝟏 𝑿  𝒊𝒏  𝓵𝟏
𝒕𝒓𝒆𝒆(𝑿   

 

Let 𝑋 be a Banach space. We denote by ℱ(𝑋) the subspace 

of ℒ(𝑋) of finite-rank operators. Let 𝐼𝑋   denote the identity 

operator on 𝑋. 

 

Recall that a Banach space 𝑋 is said to have the 

approximation property (AP) if there exists a net (𝑆𝛼) ⊂
ℱ(𝑋) such that 𝑆𝛼 →  𝐼𝑥2   uniformly on compact subsets of 

𝑋. If (𝑆𝛼 ) can be chosen with sup𝛼 𝑆𝛼 ≤ 1 + 𝜖  for 

some 𝜖 > 0, then 𝑋 is said to have the (1 + 𝜖)-bounded 

approximation property ((1 + 𝜖)-BAP). Recently, the weak 

bounded approximation property was introduced in [10]: 𝑋 

has the weak (1 + 𝜖)-bounded approximation property (weak 

(1 + 𝜖)-BAP) if for every Banach space 𝑌 and for every 

weakly compact operator 𝑇:𝑋 → 𝑌 there exists a net (𝑆𝛼 ) ⊂
ℱ(𝑋)  such that 𝑆𝛼 →  𝐼𝑥2  uniformly on compact subsets of 𝑋 

and sup𝛼 𝑇𝑆𝛼 ≤ (1 + 𝜖) 𝑇   . 

 

By [12] (see [15] for a simpler proof), the weak (1+∈)-BAP 

and the (1+∈)-BAP are equivalent for a Banach space 𝑋 

whenever 𝑋∗ or 𝑋∗∗ has the Radon–Nikodým property. It 

remains open whether the weak (1 + 𝜖)-BAP is strictly 

weaker than the (1 + 𝜖)-BAP. If they were equivalent, then, 

by [10], the answer to the long-standing famous open 

problem [3.8,in3], whether the AP of a dual Banach space 

implies the 1-BAP, would be “yes”. For a recent survey on 

bounded approximation properties, see [16]. 

 

Recall that ℐ denotes the ideal of integral operators. In 

[9,Theorem 1.3 and corollary 3.4] we show  that 𝑋 has the 

(1 + 𝜖)-BAP if and only if for every 𝑇 ∈ ℐ(𝐶[0,1],𝑋∗) there 

exists a net (𝑆𝛼) ⊂ ℱ(𝑋) such that 𝑆𝛼 →  𝐼𝑥2   pointwise and 

lim  sup𝛼 𝑆𝛼
∗𝑇 ℐ ≤ (1 + 𝜖) 𝑇 ℐ . It is well known that  

ℐ 𝐶 0,1 ,𝑋∗ = 𝒫(𝐶[0,1],𝑋∗) with equality of norms (see 

[5,p.99]). By Theorem 3.2, if 𝑇 ∈ 𝒫(𝐶[0,1],𝑋∗)  is 

canonically identified with   (𝑥𝑘 ,2𝑛
2 )∗ 

𝑘=0

2𝑛

 
𝑛=0

∞

∈ ℓ1
tree  𝑋∗  

and 𝑆 ∈ ℱ(𝑋), then 𝑆𝛼
∗𝑇 is canonically identified with 

  𝑆∗(𝑥𝑘 ,2𝑛
2 )∗ 

𝑘=0

2𝑛

 
𝑛=0

∞

  . Hence, the BAP of 𝑋 can be 

characterized in terms of the 𝑋∗-valued square sequence 

space  ℓ1
tree  𝑋∗   as follows (see [19]). 

 

Theorem 5.1.  Let 𝑋 be a Banach space and let 0 ≤ 𝜖 < ∞. 

The following statements are equivalent. 

(a) 𝑋 has the (1 + 𝜖)-BAP. 

(b) For every  (𝑥𝑘 ,2𝑛
2 )∗ =   (𝑥𝑘 ,2𝑛

2 )∗ 
𝑘=0

2𝑛

 
𝑛=0

∞

∈ ℓ1
tree  𝑋∗    

there exists a net (𝑆𝛼) ⊂ ℱ(𝑋)  such that 𝑆𝛼 →  𝐼𝑥2  pointwise 

and    lim supα 𝑆𝛼
∗(𝑥𝑘 ,2𝑛

2 )∗ ≤   (1 + 𝜖) (𝑥𝑘 ,2𝑛
2 )∗ . 
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Recall that 𝒩denotes the ideal of nuclear operators. In [8] we 

proved that 𝑋 has the weak (1+∈)-BAP if and only if for 

every 𝑇 ∈ 𝒩(𝑋, ℓ1) there exists a net (𝑆𝛼) ⊂ ℱ(𝑋) such that 

𝑆𝛼 →  𝐼𝑥2  pointwise and lim sup𝛼 𝑇𝑆𝛼 𝒩 ≤ (1+∈) 𝑇 𝒩. It 

is well known that 𝒩(𝑋, ℓ1) is isometrically isomorphic to  

ℓ1 𝑋
∗   since both spaces can be identified with the 

projective tensor product 𝑋∗⊗ ℓ1 (see, e.g., [18,pp.19-

20,76]). It can be easily verified that a linear isometry 

between 𝒩(𝑋, ℓ1) and ℓ1 𝑋
∗  is explicitly given by the 

mapping 𝑇 ↦ (𝑇∗𝑒𝑛),𝑇 ∈ 𝒩(𝑋, ℓ1), where (𝑒𝑛 ) is the unit 

vector basis of 𝑐0 . And the inverse mapping (𝑥𝑛
2)∗ ↦ 𝑇, 

(𝑥𝑛
2)∗ ∈ ℓ1 𝑋

∗ , is given by  𝑇𝑥2 =  (𝑥𝑛
2)∗ 𝑥2 𝑒𝑛

∗∞
𝑛=1  , 

𝑥2 ∈ 𝑋, where (𝑒𝑛
∗) is the unit vector basis of  ℓ1. Therefore, 

if 𝑇 ∈ 𝒩 𝑋, ℓ1  is canonically identified with (𝑥𝑛
2)∗ ∈ ℓ1 𝑋

∗  
and 𝑆 ∈ ℱ(𝑋),  then 𝑇𝑆 is canonically identified with 

(𝑆∗(𝑥𝑛
2)∗). Hence, the weak BAP of 𝑋 can be characterized as 

follows (see [19]). 

 

Theorem 5.2. Let 𝑋 be a Banach space and let 0 ≤ 𝜖 < ∞. 

The following statements are equivalent. 

(a) 𝑋 has the weak (1 + 𝜖 )-BAP. 

(b) For every (𝑥𝑛
2)∗ =  (𝑥𝑛

2)∗ 𝑛=1
∞ ∈ ℓ1 𝑋

∗  there exists a net 

(𝑆𝛼) ⊂ ℱ(𝑋) such that 𝑆𝛼 →  𝐼(𝑥2)∗  point-wise and lim 

sup𝛼  𝑆𝛼
∗(𝑥𝑛

2)∗  ≤ (1 + 𝜖) (𝑥𝑛
2)∗ . 

 

Since the (1 + 𝜖)-BAP of 𝑋 implies the weak (1 + 𝜖)-BAP 

of 𝑋, condition (b) of Theorem 5.1 implies condition (b) of 

Theorem 5.2. However, to see the latter implication, there is 

no need to have recourse to the approximation properties (i.e. 

conditions (a) of Theorems 5.1 and 5.2: our final result 

Theorem 5.3  shows that  ℓ1 𝑋
∗  embeds in  ℓ1

tree  𝑋∗  in the 

way that makes the implication hold. 

 

It is an easy to show that ℓ1 embeds isometrically in 𝐶[0,1]∗. 
Since  ℓ1

tree = 𝐶[0,1]∗ (see Corollary 3.3), ℓ1 = ℓ1 ℝ  
embeds in  ℓ1

tree = ℓ1
tree  ℝ . It is not clear a priori that  

ℓ1 𝑋  embeds in   ℓ1
tree  𝑋   for an arbitrary Banach space 𝑋. 

Our final purpose is to show that this is indeed the case, and 

moreover, ℓ1 𝑋    embeds in  ℓ1
tree  𝑋   in such a way that the 

embedding respects all bounded linear operators on 𝑋. To 

make this precise, we need some notation. 

 

Let 𝑆 ∈ ℒ(𝑋). Define 

𝑆  𝑥𝑛
2 =  𝑆𝑥𝑛

2 ,        𝑥𝑛
2 =  𝑥𝑛

2 𝑛=1
∞ ∈ ℓ1 𝑋  , 

𝑆  𝑥𝑘 ,2𝑛
2  =  𝑆𝑥𝑘 ,2𝑛

2  ,        𝑥𝑘 ,2𝑛
2  =   𝑥𝑘 ,2𝑛

2  
𝑘=0

2𝑛

 
𝑛=1

∞

∈ ℓ1
tree  𝑋  . 

 

It is straightforward to verify that 𝑆 ∈ ℒ(ℓ1(𝑋)), 𝑆 ∈

ℒ(ℓ1
tree (𝑋)),  𝑆 =  𝑆  =  𝑆   , and the mappings 𝑆 ↦ 𝑆   

and 𝑆 ↦ 𝑆  are linear isometries from ℒ(𝑋) into ℒ(ℓ1 𝑋 )and 

into ℒ(ℓ1
tree (𝑋)),  respectively. Thus, one can naturally 

embed ℒ(𝑋) both in ℒ(ℓ1 𝑋 )  and  ℒ(ℓ1
tree (𝑋)).  The 

following result shows that there exists a linear isometry from 

ℓ1 𝑋   into ℓ1
tree  𝑋  which identifies 𝑆 with 𝑆 for all 𝑆 ∈

ℒ(𝑋) (see[19). 

 

Theorem 5.3. Let 𝑋   be a Banach space. Then there exists a 

linear isometry 𝜑 from  ℓ1 𝑋   into ℓ1
tree  𝑋   such that 

𝜑𝑆 = 𝑆 𝜑 for all 𝑆 ∈ ℒ(𝑋). 

 

Proof:  We shall construct 𝜑as the pointwise limit of a 

sequence 𝜑𝑚 ∈ ℒ(ℓ1 𝑋 , ℓ1
tree (𝑋)). 

Let 𝑥2 =  𝑥𝑛
2 𝑛=1
∞ ∈ ℓ1 𝑋 .  We define  𝜑1𝑥

2 =
 (𝑧2)𝑛

1  𝑛=1
∞ ∈ ℓ1

tree  𝑋    as follows. We first put  (𝑧2)1
1 =

 𝑥1
2, 𝑥2

2, 𝑥3
2 , and define  (𝑧2)0

1 = 𝑀0(𝑧2)1
1.     

 

Then, departing again from (𝑧2)1
1,  we put   

                              (𝑧2)2
1 =  𝑥1 

2 , 0 , 𝑥2
2 , 0, 𝑥3

2 ,(𝑧2)3
1 =

 𝑥1
2, 0,0,0, 𝑥2

2, 0,0,0, 𝑥3
2 ,…. 

 

Thus, (𝑧2)𝑛+1
1  is obtained from (𝑧2)𝑛

1  , 𝑛 = 1,2, . .. , by 

inserting zeros between the components of the previous 

vector (𝑧2)𝑛
1 . To define 𝜑2𝑥

2 =  (𝑧2)𝑛
2 𝑛=1

∞ ∈ ℓ1
tree  𝑋 , we 

first put 

(𝑧2)2
2 = (𝑧2)2

1 +  0, 𝑥4
2, 0, 𝑥5

2 , 0 =  𝑥1
2, 𝑥4

2, 𝑥2
2 , 𝑥5

2, 𝑥3
2 . 

Then, departing from (𝑧2)2
2, we define 𝑧1

4 = 𝑀1𝑧2
4 , 𝑧0

4 =
𝑀0𝑧1

4 , and we define 𝑧3
4, 𝑧4

4 ,…. as above, by inserting zeros 

between the components of 𝑧2
4, 𝑧3

4 ,… . In general, to define 

𝜑(𝑛+𝜖)𝑥
2 =  𝑧2)𝑛

𝑛+𝜖 𝑛=1
∞ ∈ ℓ1

tree  𝑋 , we first put 

(𝑧2)𝑛+𝜖
𝑛+𝜖

= (𝑧2)𝑛+𝜖
𝑛+𝜖−1

+  0, 𝑥2𝑛+𝜖−1+2
2 , 0, 𝑥2𝑛+𝜖−1+3

2 ,… ,0, 𝑥2𝑛+𝜖+1
2 , 0 . 

Then  (𝑧2)𝑛+𝜖−1
𝑛+𝜖 , (𝑧2)𝑛+𝜖−2

𝑛+𝜖 ,… , (𝑧2)0
𝑛+𝜖   are defined by 

(𝑧2)𝑛
𝑛+𝜖 = 𝑀𝑛(𝑧2)𝑛+1

𝑛+𝜖 , 𝜖 = 0 ,1 , 2 ,…   
and  (𝑧2)𝑛+𝜖+1

𝑛+𝜖 , (𝑧2)𝑛+𝜖+2
𝑛+𝜖 ,…  are defined by inserting zeros 

between the components of the previous vector. This latter 

procedure can be formalized by introducing the (2𝑛+1 +
1) × (2𝑛 + 1) matrices 𝐴𝑛  with  

𝐴1 =

 

 
 

1 0 0
0 0 0
0 1 0
0 0 0
0 0 1 

 
 

  , 𝐴2 =

 

 
 
 
 
 
 

1 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1 

 
 
 
 
 
 

,     ⋯ 

so that 𝑀𝑛𝐴𝑛 = 𝐼2𝑛+1 , the identity matrix of order 2𝑛 + 1. 

Then the recurring rule is (𝑧2)𝑛+1
𝑛+𝜖 = 𝐴𝑛(𝑧2)𝑛

𝑛+𝜖  for =
0 ,1 , 2 ,…   . 
 

This construction guarantees that (𝑧2)𝑛
𝑛+𝜖 = 𝑀𝑛(𝑧2)𝑛+1

𝑛+𝜖   for 

 𝑛 + 𝜖 = 1,2, . . .      ,𝑛 = 0,1, . .. , so that 𝜑(𝑛+𝜖)𝑥
2 =

 (𝑧2)𝑛
𝑛+𝜖 𝑛=0

∞ ∈ ℓ1
tree  𝑋  (see Proposition 2.4). We also 

clearly have that 𝜑(𝑛+𝜖)is linear and 𝜑(𝑛+𝜖)𝑆 = 𝑆 𝜑(𝑛+𝜖) , 

𝑛 + 𝜖 = 1,2, . . . , 𝑆 ∈ ℒ(𝑋). 

 

To estimate the norm of 𝜑(𝑛+𝜖)𝑥
2 , set 𝑠 =  𝑥2 =  𝑥1

2 +

 𝑥2
2 +··· , and 𝑠𝑛

2 =  𝑥1
2 +··· + 𝑥𝑛

2 If 𝑛 = 𝑛 + 𝜖,𝑛 + 𝜖 +
1, . .. , then, by construction, 

 (𝑧2)𝑛
𝑛+𝜖 =  (𝑧2)𝑛+𝜖

𝑛+𝜖 = 𝑠2𝑛+𝜖+1
2 . 

 

Hence (see Proposition 2.4), 

 𝜑(𝑛+𝜖)𝑥
2 = lim

𝑚
 (𝑧2)𝑛

𝑛+𝜖 = 𝑠2𝑛+𝜖+1
2 ≤ 𝑠2 =  𝑥2 ,    

so that  𝜑(𝑛+𝜖) ∈ ℒ  ℓ1 𝑋 , ℓ1
tree  𝑋  ,  𝑛 + 𝜖 = 1,2, . .. , and 

 𝜑(𝑛+𝜖)𝑥
2 ↦  𝑥2 ,   𝑥2 ∈ ℓ1 𝑋 . 

Similarly, 
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 𝜑(𝑛+𝜖)𝑥
2 − 𝜑(𝑛+𝜖−1)𝑥

2 =  (𝑧2)𝑛+𝜖
𝑛+𝜖 − (𝑧2)𝑛+𝜖

𝑛+𝜖−1 

=   0, 𝑥2𝑛+𝜖−1+2
2 ,… ,0, 𝑥2𝑛+𝜖+1

2 , 0  

= 𝑠2𝑛+𝜖+1
2 − 𝑠2𝑛+𝜖−1+1

2 , 

so that for 𝜖 > 0 

 𝜑(𝑛+𝜖)𝑥
2 − 𝜑𝑛𝑥

2 

≤ 𝑠2𝑛+𝜖+1
2 − 𝑠2𝑛+𝜖−1+1

2 + 𝑠2
2𝑛+𝜖−1+1 −⋯

+ 𝑠2𝑛+1+1
2 − 𝑠2𝑛+1

2

= 𝑠2𝑛+𝜖+1
2 − 𝑠2𝑛+1

2

𝑛+𝜖 ,𝑛
    0. 

 

Hence, the limit 

𝜑𝑥2 = lim
(𝑛+𝜖)

𝜑𝑛+𝜖 𝑥
2 

 

exists for all 𝑥2 ∈ ℓ1 𝑋 , and 𝜑 ∈ ℒ  ℓ1 𝑋 , ℓ1
tree  𝑋  . 

Moreover, 

 

 𝜑𝑥2 = lim
(𝑛+𝜖)

 𝜑(𝑛+𝜖)𝑥
2 =  𝑥2 ,    𝑥2 ∈ ℓ1 𝑋 , 

 

meaning that 𝜑 is isometric, and for all 𝑆 ∈ ℒ(𝑋), 

 

𝜑𝑆 𝑥2 = lim
(𝑛+𝜖)

𝜑(𝑛+𝜖) 𝑆 𝑥
2 = lim

(𝑛+𝜖)
𝜑(𝑛+𝜖) 𝑆 𝑥

2 = 𝑆 𝜑𝑥2 ,   𝑥2

∈ ℓ1 𝑋 . 
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