
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Development of Cross-Platform Desktop Apps

using Electron Framework

Aravind Kumar B
1
, Anitha Sandeep

2

Department of Computer Science and Engineering, R V College of Engineering, Affiliated to VTU, Bengaluru – 560059, India

Abstract: Desktop applications have their own benefits due to which they have the tendency to outperform web applications which are

dependent upon a Web Browser which acts as the client interface. Browsers are many in number and vary from one another. They also

keep getting upgraded as result of which one browser exists in many versions with varying feature and characteristics. At times, certain

web applications may not be allowed to run on a particular web browser due to lack of compatibility or absence of specific version. One

possible solution to this problem is development of Desktop Applications and in order to achieve this, a commonly used framework is the

Electron Framework.

Keywords: Browser, Compatibility, Electron JavaScript Modules, JSON, NodeJs, npm, Packaging, Platform

1. Introduction

Desktop applications grabbed the attention and became the

center of attraction to the users and people when computers

initially became popular among them and were often

commonly used with ease at homes for personal use or at

offices/workplaces for professional use. However, as a

consequence of the advancement of internet and the online

commerce boom, the ideas and mindset of people changed

and web application became prominent. The future and

further usage of desktop applications was regarded to be

bleak, however it did not completely die out. There were

some fundamental differences between the two that made

both of them beneficial or essential in different

circumstances.

Desktop Based Applications:
A software that has been installed on one single computer

and performs functions and tasks specifically for which it

was designed and developed is known as a desktop

application.

Web Based Applications:
Web based applications are applications that mostly cannot

function or operate without the aid of internet connectivity.

Irrespective of the local network, they have the capability to

run on multiple devices. They are called commonly referred

to as cross-browser web applications as they can launched

using different web browsers.

Web applications are mostly built on the client-server model

and use a suitable and compatible web browser as the client

interface.

An important difference between the two exists. Web

applications must possess cross-browser compatibility and

desktop applications must possess cross-platform

compatibility. However, it not easy to achieve both in a

simple budget. Web developers were able to create desktop

applications for major OS's using modern languages like

JavaScript and Python. However, they faced certain

challenges. They had to learn the web technologies,

languages and their APIs separately for developing the

applications which was tedious and time consuming.

This is the point where the web developers had to think

about transiting to desktop application development using

existing web technologies and make them perform equally

well on multiple platforms. But to do that they needed

something that would enable them to build applications that

would function across multiple platforms. Electron

Framework came into existence at this crucial juncture and

progressively seeked attention and popularity. Electron

Framework allows the developers to make the best use of

their skills and knowledge to build highly functional desktop

applications.

2. Related Works

In [1], there is a comparison of Native Apps vs. Cross-

platform and the differences are highlighted.It also explains

working principle of Electron and why developers take the

Electron way.It also tells when to choose Electron and gives

example of certain notable desktop applications developed

using Electron.

[2] explains as to why Electron Framework is a good choice

for cross-platform desktop application development. Certain

advantages are highlighted in the article. Developing a

cross-platform desktop application saves time and coding is

to be done only once to establish a unified codebase.

[3] describes cross-platform mobile application development

using web technologies such as HTML,CSS and

JavaScript.The paper presents a comparison among four

very popular cross platform tools, which are Rhodes,

PhoneGap, DragonRad and MoSync.

[4] provides a comparison between Native applications, Web

applications and Hybrid applications indicating the pros and

cons of each of them.It also gives a number of advantages of

hybrid applications.

[5] speaks about Electrino and how it can contribute towards

achieving the reduction in memory consumption of Electron

desktop applications.

Paper ID: ART20197670 10.21275/ART20197670 389

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Web –VS- Desktop Apps

Building of desktop applications definitely have certain

importance and benefits. Due to which it is not possible to

completely replace or neglect desktop applications. The key

motives for preferring desktop applications are quite a few

in number. There is no worry about data being hacked or

data being lost because, all the data is stored within the

user's computer system.Where as this does not apply in case

web applications. Protection from vulnerabilities can be

achieved because the user has complete control over the

standalone application. Web applications are dependent

upon a web browser which acts as the client interface.

Browsers are many in number and vary from one another.

They also keep getting upgraded as result of which one

browser exists in many versions with varying features and

characteristics. At times, certain web applications may not

be allowed to run on a particular web browser due to lack of

compatibility or absence of specific version. In the

development of desktop applications there is no question of

web browser acting as a client interface. It is the desktop

applications which itself acts as the standalone client.

However, web technologies such as HTML5, CSS3,

JavaScript etc. may be essential for developing desktop

applications. The user can avail the desktop application

providing the same functionalities in place of the

corresponding web application.

4. Electron Framework

Electron Framework is mainly used for cross-platform

desktop applications development with the existing web

technologies such as HTML,CSS and JavaScript. Chromium

and Node.Js are combined into one single runtime by

Electron. Windows, Mac and Linux are the platforms to

which Electron applications are typically packaged to.

Figure 1 shows Electron Framework logo.

Figure 1: Electron Apps Logo

The number of processes that are available in the Electron

Framework is two. They are fundamentallydifferent from

one another and they are as follows:

1) The Main Process2) The Renderer Process

In the Electron Framework, the main process is responsible

for running the package.json's main script. By means of

creation of a number of web pages the script that runs in the

main process will be able to display a GUI. Main process is

always one in number and never more than that. Renderer

processes can be multiple in number. A renderer process is

run by each browser window due to which there are multiple

number of renderer processes. The renderer process typically

renders the UI of the application in the window. Hence, the

term renderer process. This has been represented using

Figure 2.2.

Managing all the web pages and their corresponding

renderer processes is handled by the main process. The

renderer processes are isolated from one another and are

only concerned about the web page that is running it.

The basic file structure is as follows:

 index.html

 main.js

 package.json

 render.js

index.htmlwhich is an HTML5 web page serving one big

purpose i.e our canvas.

main.jscreates windows and handles system events.

package.jsonis the startup script for the application. It will

run in the main process and it contains information about the

application.

render.jshandles the application‟s render processes.

Packaging and distribution are crucial aspects associated

with the desktop application development process. Being a

cross-platform desktop application development framework,

Electron must enable easy approach for the packaging and

distribution of applications for different platforms. A project

known as Electron-Packager has been developed by the

Electron Community that handles this. A proper executable

must be available so that it would allow the users to install

the Desktop Application onto their machines. This is taken

care of by the Electron Packager. Packaging an Electron

application simply means creating a desktop installer for the

required operating system. It identifies the platform of the

system and according integrates the application to the

platform thus generating an OS-specific desktop application.

Figure 2 represents role of electron packager.

Figure 2: Role of Electron Packager

Paper ID: ART20197670 10.21275/ART20197670 390

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

5. Implementation

The key steps involved in the methodology of Electron App

development are as follows:

1) Development of Web App.

2) Porting Web App to Electron Framework to obtain

Cross-Platform Desktop App.

3) Electron Packaging of Cross-Platform Desktop App to

obtain OS Specific Desktop App.

4) Running the executable and installing OS-Specific

Desktop App.

5) Clicking the Icon to start the Desktop App.

Figure 3 is a representation of the Electron App

development methodology.

Figure 3: Electron App Development Methodology

6. Result and Analysis

The Web application ported to Electron Framework was able

to run as a Desktop Application without the use of any Web

Browser.However, Electron Framework based desktop

applications use Chromium internally to render HTML and

CSS.

Electron Packager was able to detect the host system‟s

platform and perform packaging of Desktop Application

across different platforms such as Windows, Mac and Linux.

The Electron Desktop Application runs by giving the same

feel, look and consistency across different platforms.

Troubleshooting was done to ensure compatibility of

Desktop Application with different platforms and no issues

were detected as a result of testing the program with

different platforms.

However, certain negative aspects could also be identified

w.r.t the Electron Desktop Applications.

The loading time consumed by the desktop application is

slightly greater than running the web application using a

web browser. This is because HTML and CSS are to be

rendered and JavaScript is to be executed by NodeJs.

JavaScript exists in the form of modules which are all stored

in the npm registry. The JavaScript modules required to be

used are specified in the „package.json‟ file. These modules

are to be searched and obtained from the npm registry due to

which loading time is slightly high in case of Electron

Desktop Applications. Figure 4 and Figure 5 represents

performance of web application and Electron application

respectively.

Figure 4: Performance of Web Application

Figure 5: Performance of Electron Application

Electron applications are essentially a fully-featured

Chromium browser and a Node process that communicate

with one another via IPC.Packaged Electron applications are

generally quite large in terms of memory. More and more

web pages can be ported to Electron Framework and hosted

together in the form of one Desktop Application. However

with the increase in number of web pages ported to Electron

Framework, post Electron-Packaging stage, it can be

observed that there is steady increase in memory consumed.

Electron applications often consume a lot of system

resources and also uses quite a large amount of battery

power when run for a long span of time.

Electron does not allow the developer to have access the

widget toolkits of the target operating system.

7. Conclusions

Electron Framework successfully enables hosting of the

existing web application in the form of cross-platform

desktop application which provides a common feel, look and

consistency across different platforms post electron-

packaging.

Paper ID: ART20197670 10.21275/ART20197670 391

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 5, May 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Electron Packager is able to detect the host system‟s

platform and perform integration of Desktop Application

with the platform as a result of which it becomes installed in

the host system and can be run as a standalone application

by simply clicking on the Icon appearing on screen instead

of launching using any web browser.

However, there are few performance issues and drawbacks

associated with the Electron Desktop Applications as well

such as memory consumption, high loading time & response

time when compared to web application.

References

[1] Janis B.,"Age of Electron : Rise of Cross Platform

Desktop Apps",Netcore Web Development Services, 25

October, 2018

[2] Ryan Chatterton,"Electron, is it right for building cross-

platform applications?",SharpNotions, August 9,2017

[3] Manuel P, Inderjeet Singh, Antonio Cicchetti,

“Comparison of Cross-Platform Mobile Development

Tools”,16th International Conference on Intelligence in

Next Generation Networks,2016

[4] Paulo R. M. de Andrade, Adriano B.

Albuquerque,"Cross-Platform App-A comparative

study",International Journal of Computer Science &

Information Technology (IJCSIT),Vol 7, No 1,

February 2015

[5] PauliOlaviOjala, "Put Electron app on a diet with

Electrino", DailyJS, May 4,2018

[6] N. M. Hui,L. B. Chienget, W. Y. Ting, H.H.Mohamed

and M. Rafie,“Cross-Platform Mobile Applications for

Android and iOS”, IFIP WMNC,IEEE 2015

[7] Danny Markov,” Creating Your First Desktop App

With HTML, JS and Electron”, TutorialZine Articles,

December 16th 2015

[8] Paul B. Jensen, “Cross-Platform Desktop Applications

Using Node, Electron, and NW.js”, Chapter

1,Introducing Electron and NW.js, Page 17-Page 23,

Manning Publications, May 2017

[9] Chris Griffith and Leif Wells, “Electron: From

Beginner to Pro-Learn to Build Cross Platform Desktop

Applications using GitHub‟s Electron”, Chapter 1:

Welcome to Electron, Page 1-Page 7,Apress

Publications,2017

[10] MuhammedJasim ,“Building Cross-Platform Desktop

Applications with Electron”,Packt>Online Publications,

Chapter 1 : Introducing Electron,April 2017

Paper ID: ART20197670 10.21275/ART20197670 392

