
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Punctuation and Capitalization Restoration using

Bi-LSTM Network

Ashish Bansal

Abstract: In this paper we present Bi-Directional Long short-term memory (BLSTM) network with linear Conditional Random Field

(CRF) to restore punctuation and capitalization in an unsegmented speech transcript. Our approach will restore both punctuation and

capitalization using a single model. This is purely lexical based approach with pre trained glove embeddings as an input. The task was

treated as a sequence tagging problem where the input is sequence of un- punctuated and un-capitalized words, and the output is a

corresponding sequence of punctuated and capitalized words. We demonstrated the accuracy of proposed model are competitive with the

state-of-the-art models and can do both the tasks in a single model.

Keywords: Punctuation prediction, Capitalization restoration, Neural network, true-casing, sentence segmentation

1. Introduction

Typically, the output transcript from naive Automatic Speech

Recognition (ASR) system is un-punctuated, un-capitalized

and unsegmented sequence of words. While these outputs are

widely adopted in many applications relying on short

utterances such as voice commands, voice assistants,

dictation tools applications such as voice assistants, or voice-

based commands. However, for downstream processing of

traditional NLP classification tasks such as sentimental

analysis or detecting language of certain documents (Emails,

News or a website) which are trained on punctuated texts and

absence of punctuation and capitalization can cause a

substantive decrease in their performance. Even, it would

increase human readability as well as improving the accuracy

of post processing such as machine translation or language

under- standing. Therefore, it is very important to restore

Punctuation and Capitalization.

A lot of different approaches have been put to restore

punctuation and then restoring capitalization automatically as

independent tasks. Restoration of punctuation has been

tackled by various approaches and methods such as sentence

boundary detection, n-gram models, treating this task as a

machine translation task, translating un-punctuated to

punctuated text. In this paper we will focus on the approach

of sequence tagging to restore punctuation and capitalization

using single model.

In past research works, Substantially LSTM is proposed to

model state of art Punctuation restoration system. Our re-

search is to use BLSTM with CRF approach to restore both

punctuation and capitalization in a single model. Our

approach to build this model can be described in three steps:

• First, Bi-directional LSTM is proposed to account both

past(left) and future(right) inputs and to model the

relationship between input features and output labels.

• Secondly, we proposed Condition Random Field (CRF)

layer on top of Bi-LSTM to achieve performance gain by

catching contextual information for this task as expected

in other sequence labelling tasks.

• Third, our research results showcase Bi-LSTM two-layer

model with CRF can achieve state-of-the-art performance

in punctuation and capitalization prediction.

Novelty of our approach is to use the single net- work

(BLSTM + CRF) to restore punctuation and capitalization in

a given unsegmented text. In above approach different data

sets were transformed in the required format to solve the

stated task. Our next section is a deep dive of our approach.

Subsequent section goes in detail on models, datasets used,

experimentation setup with metrics used as well as the results

and finally concluding the paper with future work.

2. Method

Data Preparation
In this approach we dealt the task of inferring punctuation and

capitalization in a given unsegmented text- specifically

Commas, Period, Question mark, Quotes and Capitalization.

This approach was generalized for multiple lines or a para-

graph (raw transcript output from ASR). To attain this goal,

we treated this problem as sequence tagging problem.

In our approach we have used different datasets such as

CoNLL, IWSLT 2011, Europarl datasets to train our proposed

model. All these datasets were read from the t text files. We

defined 10 classes in total:

Paper ID: SR24809041216 DOI: https://dx.doi.org/10.21275/SR24809041216 2020

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: An Example of a transformed sequence S for

input

• O (means no Capitalization & Punctuation mark

followed)

• CAP (means no punctuation mark followed by the word

whose first letter in cap)

• COMMA (means comma (,) followed)

• PERIOD (means period (.) followed)

• QUESTIONMARK (means question mark(?) followed)

• QOUTATION (means quotation (“) followed)

• CAP PERIOD (means period (.) followed by the word

whose first letter in cap)

• CAP COMMA (means comma (,) followed by the word

• CAP QUESTIONMARK (means question mark (?) fol-

lowed by the word whose first letter in cap)

• CAP QOUTATION (means quotation (“) followed by

the word whose first letter in cap)

While reading the text files for the sequences. In a particular

sequence S, all tokens were transformed as shown in figure

1.

3. Model

Our model is a bidirectional LSTM based model with linear

Conditional Random Field (CRF) where we treated

punctuation and capitalization task as a sequence labelling

task.

Figure 2: Figure

BLSTM
Recurrent neural network (RNN) that can handle the

vanishing gradient problem is known as Long Short-Term

Memory (LSTM) network. LSTM is also better at

maintaining long-range connections and understanding the

connection between values at the start and end of a sequence.

By modifying a gating structure of a traditional RNN model,

the LSTM model can learn or retain a longer data sequence.

Therefore, LSTM has three gates: input, forget, and hidden.

An LSTM unit with these three gates and a memory cell forms

a layer of neural network neurons, and each neuron has a

hidden layer and a current state. Figure 3 shows the LSTM

cell’s structural layout.

The forget gate is used to specify whether or not certain data

will be kept. This preservation is accomplished using the

following formula;

where xt denotes input at time t, ht−1 denotes the output of

previous cell, and σ is a sigmoid function. If a forget gate

outputs 1 (one), the information is stored in the cell state. The

sigmoid function creates a vector in the following step. New

possible values are stored in this vector. The updated values

are specified by input gates, and the vector ct is up- dated with

possible new values. This new vector is evaluated with the

following formulas;

Now cell’s old state ct is updated to new cell state ct

Eventually, we select the network’s output regarding on the

cell state. This selection process is carried out by using the

following formulas;

A special type of LSTM network which is used generally for

natural language processing is called Bidirectional Long

Short-Term Memory. In BiLSTM, there are two different

LSTM networks in order to represent the input in both

direction (backward and forward). Therefore, representing

the input in both directions of the sequence, it is an effective

tool for modeling the sequential relationships between words

and phrases. In BiLSTM, two hidden states are introduced,

Paper ID: SR24809041216 DOI: https://dx.doi.org/10.21275/SR24809041216 2021

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

one for accessing the context of previous input and another

one for accessing the context of the next input ℎ⃖ 𝑡 and another

one for accessing the context of the next input ℎ 𝑡. Therefore,

the formula for the hidden state of BiLSTM can be defined

as:

In summary, BiLSTM reverses the direction of information

flow by adding one extra LSTM layer. It simply means that

in the additional LSTM layer, the input sequence flows

backward. The outputs from the two LSTM layers are then

combined in a variety of ways, including average, sum,

multiplication, and concatenation. BiLSTM process the input

sequence of S = w1, w2,...,wn sequentially. Here wi denotes the

ith word of the sentence S. The embedding of each word w is

supplied to BiLSTM model in order to produce the

concatenated output X.

For many sequences labeling tasks, it is beneficial to have

access to both past (left) and future (right) contexts. How-

ever, the LSTM’s hidden state ht takes information only from

past, knowing nothing about the future. An elegant solution

whose effectiveness has been proven by previous work (Dyer

et al., 2015) is bi-directional LSTM (BLSTM). The basic idea

is to present each sequence forwards and backwards to two

separate hidden states to capture past and future information,

respectively. Then the two hidden states are concatenated to

form the final output.

CRF Tagging Models

A very simple - but surprisingly effective—tagging model is

to use the ht’s as features to make independent tagging

decisions for each output yt (Ling et al., 2015b). Despite this

model’s success in simple problems like POS tagging, its

independent classification decisions are limiting when there

are strong dependencies across output labels. NER is one such

task, since the “grammar” that characterizes interpretable

sequences of tags imposes several hard constraints (e.g., I-

PER cannot follow B-LOC; see §2.4 for details) that would

be impossible to model with independence assumptions.

Therefore, instead of modeling tagging decisions in-

dependently, we model them jointly using a conditional

random field (Lafferty et al., 2001).

Conditional random field (CRF) is a statistical model well

suited for handling NER problems, because it takes context

into account. In other words, when a CRF model makes a

prediction, it factors in the impact of neighbouring samples

by modelling the prediction as a graphical model. For

example, a linear chain CRF is a popular type of a CRF

model, which assumes that the tag for the present word is

dependent only on the tag of just one previous word (this is

somewhat similar to Hidden Markov Models, although CRF’s

topology is an undirected graph).

One problem with the linear chain CRFs (Figure 1) is that

they are capable of capturing the dependencies between la-

bels in the forward direction only. If the model encounters an

entity like “Johns Hopkins University” it will likely tag the

Hopkins token as a name, because the model is “blind” to the

university token that appears downstream. One way to resolve

this challenge is to introduce a bidirectional LSTM (BiLSTM)

network between the inputs (words) and the CRF.

Figure 3: A simple linear- chain conditional random fields

model. The model takes an input sequence x (words) and

target sequence y (IOB tags)

Figure 4: Architecture of a BiLSTM- CRF model

BLSTM-CRF

The bidirectional LSTM consists of two LSTM networks -

one takes the input in a forward direction, and a second one

taking the input in a backward direction. Combining the out-

puts of the two networks yields a context that provides infor-

mation on samples surrounding each individual token. The

output of the BiLSTM is then fed to a linear chain CRF, which

can generate predictions using this improved context. This

combination of CRF and BiLSTM is often referred to as a

BiLSTM-CRF model (Lample et al 2016), and its architecture

is shown in Figure 2.

Finally, we construct our neural network model by feeding

the output vectors of BLSTM into a CRF layer. At first each

word, its represented in the word embeddings using bert and

then with the word embedding vector to feed into the BLSTM

network. Finally, the output vectors of BLSTM are fed to the

CRF layer to jointly decode the best label sequence. Dropout

layers are applied on both the input and output vectors of

BLSTM. Experimental results show that using dropout

significantly improve the performance of our model.

Firstly, every word in sentence x is represented as a vector

which includes the word’s character embedding and word

embedding. The character embedding is initialized randomly.

The word embedding usually is from a pre-trained word

embedding file. All the embeddings will be fine-tuned during

the training process. Second, the inputs of BiLSTM-CRF

model are those embeddings and the outputs are predicted

labels for words in sentence x. Although, it is not necessary

Paper ID: SR24809041216 DOI: https://dx.doi.org/10.21275/SR24809041216 2022

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

to know the details of BiL STM layer, in order to understand

the CRF layer more easily, we have to know what is the

meaning of the output of BiLSTM Layer. The picture above

illustrates that the outputs of BiLSTM layer are the scores of

each label. For example, for w0the outputs of BiLSTM node

are 1.5 (B-Person), 0.9 (I-Person), 0.1 (B-Organization), 0.08

(I-Organization) and 0. These scores will be the inputs of the

CRF layer.

Then, all the scores predicted by the BiLSTM blocks are fed

into the CRF layer. In the CRF layer, the label sequence

which has the highest prediction score would be selected as

the best answer.

Model Implementation
We constructed our neural network by feeding the output

vectors of BLSTM to linear chain CRF to decode the best

output tag sequence. Architecture of our complete network

presented in Figure3. To construct this there are three main

steps involved as follows:

• Word Embeddings: First step was to use a dense word

representation for each word w ∈ Rn to capture the

meaning and relevant features for our task. Glove pre

trained embeddings were used to represent the word. For

each word a vector was built by concatenation of glove

word embeddings wglove ∈ Rd1 of dimension 300 and the

vector containing features extracted from the character

level. BLSTM was run over the sequence of character

embeddings wchars ∈ Rd2. Each character ci of a word w

=[c1,...,cp] is associated to a vector ci ∈ Rd3. BLSTM was

run over the sequence of character embed dings and

concatenate the final states to obtain a fixed-size vector

wchars ∈ Rd2, this vector captures the morphol ogy of the

word. Word char embeddings wchars were the concatenated

to the glove word embedding wglove to get a vector

representing our word. Implementation of the network to

compute char embeddings is represented in Figure2.

• Once we have our word representation, we simply run a

BLSTM over the sequence of word vectors and obtain an

other sequence of vectors and concatenating of the two

hidden states in the case of a BLSTM, h ∈ Rk. We use the

hidden states of each time step and not just the final states.

Thus, we had as input a sequence of m word vec tors

w1,...,wm ∈ Rn and now we have a sequence of vectors

h1,...,hm ∈ Rk Whereas the wt only captured information at

the word level (syntax and semantics), the ht also take

context into account.

• Final step is to decode, at this stage, each word w is as

sociated to a vector h that captures information from the

meaning of the word, its characters and its context. We

have 10 classes. We take a matrix W ∈ R10x k and compute

a vector of scores s ∈ R10 = W. h+ b. We can interpret the

s [i] (i-th component of s) as the score of class i for word

w. To decode the final scores we use Lin ear chain CRF.

Given a sequence of words w1,...,wm, a sequence of score

vectors s1,...,sm and a sequence of tags y1,...,ym, a linear-

chain CRF defines a global score C∈ R such that

where T is a transition matrix in R10x10 and e, b ∈ R10 are

vectors of scores that capture the cost of beginning or ending

with a given tag. The use of the matrix T captures linear (one

step) dependencies between tagging decisions. Example of

scoring a sequence using a linear chain-CRF shown in Figure

4.

Two steps have to be followed to decode a sentence

sequence:

• First is to compute the scores of all the 10m tagging choices

to choose the best one or normalize each sequence score

into a probability. Let’s suppose of a solution

for time steps t + 1,...,m for sequence that start with yt+1

for each of the 10 possibilities. The solution

• The final step in decoding using Linear chain CRF is to

apply the softmax to the scores of all possible sequences

to get the probability P(y) of all the sequence of y tags.

Partition factor (Sum of all the possible sequence scores)

is computed to achieve the probability as

We will sum over all the possible paths. Let’s Zt(yt) be the

sum of all the sequence at time step t with tag yt.

The probability of a given sequence of tags would look like:

4. Experiment

Datasets

To restore punctuation and capitalization we chose three

different datasets to train and test our model. We used

Europarl v7, IWSLT2011(TED Talks) and CoNLL datasets.

These all three datasets are in English language and widely

used in the similar tasks by different researchers. All these

datasets concatenated and are tagged by the tagging scheme

discussed in above section.

Metrics

To assess the impact on performance of the amount of training

data available, we prepared three data sets with varying

numbers of tokens, and evaluated the trained models on above

Paper ID: SR24809041216 DOI: https://dx.doi.org/10.21275/SR24809041216 2023

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

mentioned datasets. We employ Precision, Recall, and F1

score as key metrics to assess the effectiveness of our

proposed model. Precision gauges the model’s capability to

accurately identify relevant

 entities, while Recall evaluates its ability to capture all

relevant entities within a dataset. The F-score, on the other

hand, serves as the harmonic mean of Precision and Recall,

offering a balanced measure of the model’s overall

performance.

Detailed calculations for these metrics are provided below.

where True Positive (TP) represents entities correctly

recognized by the model and that align with annotated

entities. False Positive (FP) pertains to entities erroneously

identified by the model, which do not align with annotated

entities. Conversely, False Negative (FN) encompasses

annotated entities that the model fails to recognize.

5. Results

Results on the custom classes we have. All values are in

percentages.

Tag Precision Recall F1 Store

CAP 94 92 93

CAP COMMA 74 65 69

CAP PERIOD 91 82 87

CAP QUOTATION 86 77 81

CAP QUESTION MARK 79 54 64

COMMA 79 66 72

PERIOD 97 95 96

QUOTATION 95 95 95

QUESTION MARK 91 83 87

Other 97 99 98

6. Conclusions and Future Work

We have presented an approach to punctuation and

capitalization restoration using text-based models Bi-

directional LSTM network with linear Conditional Random

field (CRF) models. Our results suggest that using the

approach of IOB tagging with larger training datasets leads to

consistent improvements in performance and a simple

framework to restore Punctuation and Capitalization.

Furthermore, we show that low-frequency symbols such as

question marks and dashes are much harder to model using

simple n-grams than commas and periods. A natural direction

to continue this research is to use more advanced models in

literature such as transformers and expanding the punctuation

classes to present more under-represented punctuations in the

unsegmented text, and also include other textual features (e.g.

part-of-speech and shallow syntactic information), as well as

acoustic/prosodic features from the audio signal (e.g. pause

duration and word final intonation).

References

[1] E. Shriberg, A. Stolcke, D. Hakkani-T ur, and G. T ur,

“Prosodybased automatic segmentation of speech into

sentences and topics,” Speech Comm., vol. 32(1-2), pp.

127–154, 2000.

[2] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M.

Ostendorf, and M. Harper, “Enriching speech

recognition with automatic detection of sentence

boundaries and disfluencies,” IEEE Trans. Audio

Speech Lang. Process., vol. 14(5), pp. 1526–1540,

2006.

[3] Y. Gotoh and S. Renals, “Sentence boundary detection

in broadcast speech transcripts,” in ISCA Workshop on

Automatic Speech Recognition, 2000.

[4] D. Beeferman, A. Berger, and J. Lafferty, “Cyberpunc:

A lightweight punctuation annotation system for

speech,” in ICASSP, 1998, vol. 2, pp. 689–692.

[5] E.W. Brown and A.R. Coden, “Capitalization recovery

for text,” IR Techniques for Speech Applications, 2002.

[6] H. Christensen, Y. Gotoh, and S. Renals, “Punctuation

an- notation using statistical prosody models,” in ISCA

Work- shop on Prosody in Speech Recognition and

Understanding, 2001.

[7] J. Huang and G. Zweig, “Maximum entropy model for

punctuation annotation from speech,” in ICSLP, 2002.

[8] B. Favre, R. Grishman, D. Hillard, H. Ji, D. Hakkani-

Tur, and M. Ostendorf, “Punctuating Speech for

Information Extraction,” in ICASSP, 2008.

[9] C. Chelba and A. Acero, “Adaptation of maximum en-

tropy capitalizer: Little data can help a lot,” Computer

Speech and Language, vol. 20(4), pp. 382–399, 2006.

[10] Wei Wang, Kevin Knight, and Daniel Marcu,

“Capitaliz- ing machine translation,” in HLT/ACL,

2006.

[11] T. Brants, A.C. Popat, P. Xu, F.J. Och, and J. Dean,

“Large language models in Machine Translation,” in

EMNLP, 2007.

[12] Akakpo Agbago, Roland Kuhn, George Foster. 2005.

Truecasing for the Portage system. In Recent Advances

in Natural Language Processing (RANLP), Borovets,

Bul- garia.

[13] Douglas E. Appelt, Jerry R. Hobbs, John Bear, David

Is- rael, Megumi Kameyama, Andy Kehler, David

Martin, Karen Myers, Mabry Tyson. 1995. SRI

International FAS- TUS system MUC-6 Test Results

and Analysis. In Pro- ceedings of the 6th Message

Understanding Conference.

[14] Łukasz Augustyniak, Piotr Szymanski, Mikołaj Morzy,

Piotr Zelasko, Adrian Szymczak, Jan Mizgajski, Yishay

Carmiel, Najim Dehak. Punctuation Prediction in Spon-

taneous Conversations: Can We Mitigate ASR Errors

with Retrofitted Word Embeddings? arXiv:2004.05985

[cs.CL].

[15] Alexei Baevski, Sergey Edunov, Yinhan Liu, Luke

Zettle- moyer, Michael Auli. 2019. Cloze-driven

Pretraining of Self-attention Networks.

arXiv:1903.07785.

[16] Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio.

2015. Neural machine translation by jointly learning to

align and translate. arXiv:1409.0473.20

[17] Timothy Baldwin, Paul Cook, Marco Lui, Andrew

MacKinlay, Li Wang. 2013. How noisy social media

Paper ID: SR24809041216 DOI: https://dx.doi.org/10.21275/SR24809041216 2024

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 4, April 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

text,how diffrnt social media sources? In Proceedings of

the 6th International Joint Conference on Natural Lan-

guage Processing, 356-364.

[18] Fernando Batista, Isabel Trancoso, Nuno Mamede.

2009. Automatic Recovery of Punctuation Marks and

Capital- ization Information for Iberian Languages. In

Proceed- ings of the Joint SIG-IL/Microsoft Workshop

on Speech and Language Technologies for Iberian

Languages, Porto Salvo, Portugal, 99-102.

[19] Europarl: A Parallel Corpus for Statistical Machine

Translation, Philipp Koehn, MT Summit 2005, pdf.

Paper ID: SR24809041216 DOI: https://dx.doi.org/10.21275/SR24809041216 2025

www.ijsr.net
http://creativecommons.org/licenses/by/4.0/

