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Abstract: In this paper we present Bi-Directional Long short-term memory (BLSTM) network with linear Conditional Random Field 

(CRF) to restore punctuation and capitalization in an unsegmented speech transcript. Our approach will restore both punctuation and 

capitalization using a single model. This is purely lexical based approach with pre trained glove embeddings as an input. The task was 

treated as a sequence tagging problem where the input is sequence of un- punctuated and un-capitalized words, and the output is a 

corresponding sequence of punctuated and capitalized words. We demonstrated the accuracy of proposed model are competitive with the 

state-of-the-art models and can do both the tasks in a single model. 
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1. Introduction 
 

Typically, the output transcript from naive Automatic Speech 

Recognition (ASR) system is un-punctuated, un-capitalized 

and unsegmented sequence of words. While these outputs are 

widely adopted in many applications relying on short 

utterances such as voice commands, voice assistants, 

dictation tools applications such as voice assistants, or voice-

based commands. However, for downstream processing of 

traditional NLP classification tasks such as sentimental 

analysis or detecting language of certain documents (Emails, 

News or a website) which are trained on punctuated texts and 

absence of punctuation and capitalization can cause a 

substantive decrease in their performance. Even, it would 

increase human readability as well as improving the accuracy 

of post processing such as machine translation or language 

under- standing. Therefore, it is very important to restore 

Punctuation and Capitalization. 

 

A lot of different approaches have been put to restore 

punctuation and then restoring capitalization automatically as 

independent tasks. Restoration of punctuation has been 

tackled by various approaches and methods such as sentence 

boundary detection, n-gram models, treating this task as a 

machine translation task, translating un-punctuated to 

punctuated text. In this paper we will focus on the approach 

of sequence tagging to restore punctuation and capitalization 

using single model. 

 

In past research works, Substantially LSTM is proposed to 

model state of art Punctuation restoration system. Our re- 

search is to use BLSTM with CRF approach to restore both 

punctuation and capitalization in a single model. Our 

approach to build this model can be described in three steps: 

• First, Bi-directional LSTM is proposed to account both 

past(left) and future(right) inputs and to model the 

relationship between input features and output labels. 

• Secondly, we proposed Condition Random Field (CRF) 

layer on top of Bi-LSTM to achieve performance gain by 

catching contextual information for this task as expected 

in other sequence labelling tasks. 

• Third, our research results showcase Bi-LSTM two-layer 

model with CRF can achieve state-of-the-art performance 

in punctuation and capitalization prediction. 

 

Novelty of our approach is to use the single net- work 

(BLSTM + CRF) to restore punctuation and capitalization in 

a given unsegmented text. In above approach different data 

sets were transformed in the required format to solve the 

stated task. Our next section is a deep dive of our approach. 

Subsequent section goes in detail on models, datasets used, 

experimentation setup with metrics used as well as the results 

and finally concluding the paper with future work. 

 

2. Method 
 

Data Preparation 
In this approach we dealt the task of inferring punctuation and 

capitalization in a given unsegmented text- specifically 

Commas, Period, Question mark, Quotes and Capitalization. 

This approach was generalized for multiple lines or a para- 

graph (raw transcript output from ASR). To attain this goal, 

we treated this problem as sequence tagging problem. 

 

In our approach we have used different datasets such as 

CoNLL, IWSLT 2011, Europarl datasets to train our proposed 

model. All these datasets were read from the t text files. We 

defined 10 classes in total:
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Figure 1: An Example of a transformed sequence S for 

input 

 

• O (means no Capitalization & Punctuation mark 

followed) 

• CAP (means no punctuation mark followed by the word 

whose first letter in cap) 

• COMMA (means comma (,) followed) 

• PERIOD (means period (.) followed) 

• QUESTIONMARK (means question mark(?) followed) 

• QOUTATION (means quotation (“) followed) 

• CAP PERIOD (means period (.) followed by the word 

whose first letter in cap) 

• CAP COMMA (means comma (,) followed by the word 

• CAP QUESTIONMARK (means question mark (?) fol- 

lowed by the word whose first letter in cap) 

• CAP QOUTATION (means quotation (“) followed by 

the word whose first letter in cap) 

 

While reading the text files for the sequences. In a particular 

sequence S, all tokens were transformed as shown in figure 

1. 

 

3. Model 
 

Our model is a bidirectional LSTM based model with linear 

Conditional Random Field (CRF) where we treated 

punctuation and capitalization task as a sequence labelling 

task. 

 

 
Figure 2: Figure 

 

BLSTM 
Recurrent neural network (RNN) that can handle the 

vanishing gradient problem is known as Long Short-Term 

Memory (LSTM) network. LSTM is also better at 

maintaining long-range connections and understanding the 

connection between values at the start and end of a sequence. 

By modifying a gating structure of a traditional RNN model, 

the LSTM model can learn or retain a longer data sequence. 

Therefore, LSTM has three gates: input, forget, and hidden. 

An LSTM unit with these three gates and a memory cell forms 

a layer of neural network neurons, and each neuron has a 

hidden layer and a current state. Figure 3 shows the LSTM 

cell’s structural layout. 

 

The forget gate is used to specify whether or not certain data 

will be kept. This preservation is accomplished using the 

following formula; 

 

 
 

where xt denotes input at time t, ht−1 denotes the output of 

previous cell, and σ is a sigmoid function. If a forget gate 

outputs 1 (one), the information is stored in the cell state. The 

sigmoid function creates a vector in the following step. New 

possible values are stored in this vector. The updated values 

are specified by input gates, and the vector ct is up- dated with 

possible new values. This new vector is evaluated with the 

following formulas; 

 

 
 

Now cell’s old state ct is updated to new cell state ct 

 
 

Eventually, we select the network’s output regarding on the 

cell state. This selection process is carried out by using the 

following formulas; 

 
 

A special type of LSTM network which is used generally for 

natural language processing is called Bidirectional Long 

Short-Term Memory. In BiLSTM, there are two different 

LSTM networks in order to represent the input in both 

direction (backward and forward). Therefore, representing 

the input in both directions of the sequence, it is an effective 

tool for modeling the sequential relationships between words 

and phrases. In BiLSTM, two hidden states are introduced, 
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one for accessing the context of previous input and another 

one for accessing the context of the next input ℎ⃖ 𝑡 and another 

one for accessing the context of the next input ℎ  𝑡. Therefore, 

the formula for the hidden state of BiLSTM can be defined 

as: 

 

 
 

In summary, BiLSTM reverses the direction of information 

flow by adding one extra LSTM layer. It simply means that 

in the additional LSTM layer, the input sequence flows 

backward. The outputs from the two LSTM layers are then 

combined in a variety of ways, including average, sum, 

multiplication, and concatenation. BiLSTM process the input 

sequence of S = w1, w2,...,wn sequentially. Here wi denotes the 

ith word of the sentence S. The embedding of each word w is 

supplied to BiLSTM model in order to produce the 

concatenated output X. 

 

For many sequences labeling tasks, it is beneficial to have 

access to both past (left) and future (right) contexts. How- 

ever, the LSTM’s hidden state ht takes information only from 

past, knowing nothing about the future. An elegant solution 

whose effectiveness has been proven by previous work (Dyer 

et al., 2015) is bi-directional LSTM (BLSTM). The basic idea 

is to present each sequence forwards and backwards to two 

separate hidden states to capture past and future information, 

respectively. Then the two hidden states are concatenated to 

form the final output. 

 

CRF Tagging Models 
 

A very simple - but surprisingly effective—tagging model is 

to use the ht’s as features to make independent tagging 

decisions for each output yt (Ling et al., 2015b). Despite this 

model’s success in simple problems like POS tagging, its 

independent classification decisions are limiting when there 

are strong dependencies across output labels. NER is one such 

task, since the “grammar” that characterizes interpretable 

sequences of tags imposes several hard constraints (e.g., I-

PER cannot follow B-LOC; see §2.4 for details) that would 

be impossible to model with independence assumptions. 

Therefore, instead of modeling tagging decisions in- 

dependently, we model them jointly using a conditional 

random field (Lafferty et al., 2001). 

 

Conditional random field (CRF) is a statistical model well 

suited for handling NER problems, because it takes context 

into account. In other words, when a CRF model makes a 

prediction, it factors in the impact of neighbouring samples 

by modelling the prediction as a graphical model. For 

example, a linear chain CRF is a popular type of a CRF 

model, which assumes that the tag for the present word is 

dependent only on the tag of just one previous word (this is 

somewhat similar to Hidden Markov Models, although CRF’s 

topology is an undirected graph). 

 

One problem with the linear chain CRFs (Figure 1) is that 

they are capable of capturing the dependencies between la- 

bels in the forward direction only. If the model encounters an 

entity like “Johns Hopkins University” it will likely tag the 

Hopkins token as a name, because the model is “blind” to the 

university token that appears downstream. One way to resolve 

this challenge is to introduce a bidirectional LSTM (BiLSTM) 

network between the inputs (words) and the CRF. 

 

 
Figure 3: A simple linear- chain conditional random fields 

model. The model takes an input sequence x (words) and 

target sequence y (IOB tags) 

 

 
Figure 4: Architecture of a BiLSTM- CRF model 

 

BLSTM-CRF 

The bidirectional LSTM consists of two LSTM networks - 

one takes the input in a forward direction, and a second one 

taking the input in a backward direction. Combining the out- 

puts of the two networks yields a context that provides infor- 

mation on samples surrounding each individual token. The 

output of the BiLSTM is then fed to a linear chain CRF, which 

can generate predictions using this improved context. This 

combination of CRF and BiLSTM is often referred to as a 

BiLSTM-CRF model (Lample et al 2016), and its architecture 

is shown in Figure 2. 

 

Finally, we construct our neural network model by feeding 

the output vectors of BLSTM into a CRF layer. At first each 

word, its represented in the word embeddings using bert and 

then with the word embedding vector to feed into the BLSTM 

network. Finally, the output vectors of BLSTM are fed to the 

CRF layer to jointly decode the best label sequence. Dropout 

layers are applied on both the input and output vectors of 

BLSTM. Experimental results show that using dropout 

significantly improve the performance of our model. 

 

Firstly, every word in sentence x is represented as a vector 

which includes the word’s character embedding and word 

embedding. The character embedding is initialized randomly. 

The word embedding usually is from a pre-trained word 

embedding file. All the embeddings will be fine-tuned during 

the training process. Second, the inputs of BiLSTM-CRF 

model are those embeddings and the outputs are predicted 

labels for words in sentence x. Although, it is not necessary 
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to know the details of BiL STM layer, in order to understand 

the CRF layer more easily, we have to know what is the 

meaning of the output of BiLSTM Layer. The picture above 

illustrates that the outputs of BiLSTM layer are the scores of 

each label. For example, for w0the outputs of BiLSTM node 

are 1.5 (B-Person), 0.9 (I-Person), 0.1 (B-Organization), 0.08 

(I-Organization) and 0. These scores will be the inputs of the 

CRF layer. 

 

Then, all the scores predicted by the BiLSTM blocks are fed 

into the CRF layer. In the CRF layer, the label sequence 

which has the highest prediction score would be selected as 

the best answer. 
 

Model Implementation 
We constructed our neural network by feeding the output 

vectors of BLSTM to linear chain CRF to decode the best 

output tag sequence. Architecture of our complete network 

presented in Figure3. To construct this there are three main 

steps involved as follows: 

• Word Embeddings: First step was to use a dense word 

representation for each word w ∈ Rn to capture the 

meaning and relevant features for our task. Glove pre 

trained embeddings were used to represent the word. For 

each word a vector was built by concatenation of glove 

word embeddings wglove ∈ Rd1 of dimension 300 and the 

vector containing features extracted from the character 

level. BLSTM was run over the sequence of character 

embeddings wchars ∈ Rd2. Each character ci of a word w 

=[c1,...,cp] is associated to a vector ci ∈ Rd3. BLSTM was 

run over the sequence of character embed dings and 

concatenate the final states to obtain a fixed-size vector 

wchars ∈ Rd2, this vector captures the morphol ogy of the 

word. Word char embeddings wchars were the concatenated 

to the glove word embedding wglove to get a vector 

representing our word. Implementation of the network to 

compute char embeddings is represented in Figure2.  

• Once we have our word representation, we simply run a 

BLSTM over the sequence of word vectors and obtain an 

other sequence of vectors and concatenating of the two 

hidden states in the case of a BLSTM, h ∈ Rk. We use the 

hidden states of each time step and not just the final states. 

Thus, we had as input a sequence of m word vec tors 

w1,...,wm ∈ Rn and now we have a sequence of vectors 

h1,...,hm ∈ Rk Whereas the wt only captured information at 

the word level (syntax and semantics), the ht also take 

context into account. 

• Final step is to decode, at this stage, each word w is as 

sociated to a vector h that captures information from the 

meaning of the word, its characters and its context. We 

have 10 classes. We take a matrix W ∈ R10x k and compute 

a vector of scores s ∈ R10 = W. h+ b. We can interpret the 

s [i] (i-th component of s) as the score of class i for word 

w. To decode the final scores we use Lin ear chain CRF. 

Given a sequence of words w1,...,wm, a sequence of score 

vectors s1,...,sm and a sequence of tags y1,...,ym, a linear-

chain CRF defines a global score C∈ R such that 

 

 
where T is a transition matrix in R10x10 and e, b ∈ R10 are 

vectors of scores that capture the cost of beginning or ending 

with a given tag. The use of the matrix T captures linear (one 

step) dependencies between tagging decisions. Example of 

scoring a sequence using a linear chain-CRF shown in Figure 

4. 

 

Two steps have to be followed to decode a sentence 

sequence: 

 

• First is to compute the scores of all the 10m tagging choices 

to choose the best one or normalize each sequence score 

into a probability. Let’s suppose of a solution  

for time steps t + 1,...,m for sequence that start with yt+1 

for each of the 10 possibilities. The solution 

 

 
• The final step in decoding using Linear chain CRF is to 

apply the softmax to the scores of all possible sequences 

to get the probability P(y) of all the sequence of y tags. 

Partition factor (Sum of all the possible sequence scores) 

is computed to achieve the probability as 

 
We will sum over all the possible paths. Let’s Zt(yt) be the 

sum of all the sequence at time step t with tag yt. 

 

 

 

 
 

The probability of a given sequence of tags would look like: 

 
 

4. Experiment 
 

Datasets 

To restore punctuation and capitalization we chose three 

different datasets to train and test our model. We used 

Europarl v7, IWSLT2011(TED Talks) and CoNLL datasets. 

These all three datasets are in English language and widely 

used in the similar tasks by different researchers. All these 

datasets concatenated and are tagged by the tagging scheme 

discussed in above section. 

 

Metrics 

To assess the impact on performance of the amount of training 

data available, we prepared three data sets with varying 

numbers of tokens, and evaluated the trained models on above 
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mentioned datasets. We employ Precision, Recall, and F1 

score as key metrics to assess the effectiveness of our 

proposed model. Precision gauges the model’s capability to 

accurately identify relevant 

 entities, while Recall evaluates its ability to capture all 

relevant entities within a dataset. The F-score, on the other 

hand, serves as the harmonic mean of Precision and Recall, 

offering a balanced measure of the model’s overall 

performance. 

 

Detailed calculations for these metrics are provided below. 
 

 

 
where True Positive (TP) represents entities correctly 

recognized by the model and that align with annotated 

entities. False Positive (FP) pertains to entities erroneously 

identified by the model, which do not align with annotated 

entities. Conversely, False Negative (FN) encompasses 

annotated entities that the model fails to recognize. 

 

5. Results 
 

Results on the custom classes we have. All values are in 

percentages. 

 
Tag Precision Recall F1 Store 

CAP 94 92 93 

CAP COMMA 74 65 69 

CAP PERIOD 91 82 87 

CAP QUOTATION 86 77 81 

CAP QUESTION MARK 79 54 64 

COMMA 79 66 72 

PERIOD 97 95 96 

QUOTATION 95 95 95 

QUESTION MARK 91 83 87 

Other 97 99 98 

 

6. Conclusions and Future Work 
  

We have presented an approach to punctuation and 

capitalization restoration using text-based models Bi-

directional LSTM network with linear Conditional Random 

field (CRF) models. Our results suggest that using the 

approach of IOB tagging with larger training datasets leads to 

consistent improvements in performance and a simple 

framework to restore Punctuation and Capitalization. 

Furthermore, we show that low-frequency symbols such as 

question marks and dashes are much harder to model using 

simple n-grams than commas and periods. A natural direction 

to continue this research is to use more advanced models in 

literature such as transformers and expanding the punctuation 

classes to present more under-represented punctuations in the 

unsegmented text, and also include other textual features (e.g. 

part-of-speech and shallow syntactic information), as well as 

acoustic/prosodic features from the audio signal (e.g. pause 

duration and word final intonation). 
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