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Abstract: Cracks in vibrating component can initiate catastrophic failures. Therefore there is need to understand dynamics of cracked
structures. In the present study, vibration analysis is carried out on a cantilever beam with two open transverse cracks, to study the
response characteristics. A neural network for the cracked structure is trained to approximate the response of the structure by the data
set prepared for various crack sizes and locations. It is verified from both computational and simulation analysis that the presence of

crack decreases the natural frequency of vibration.
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1. Introduction

Cracks in a structure may be hazardous due to static or
dynamic loadings, so that crack detection plays an important
role for structural health monitoring applications. If cracks
remain undetected and reach their critical size, then a sudden
structural failure may occur. The objective is to carry out
vibration analysis on a cantilever beam with and without
crack. The results obtained analytically are validated with
the simulation results. In first phase of the work two
transverse surface cracks are included in developing the
analytical expressions in dynamic characteristics of
structures. The use of neural networks in detecting the
damage has been developed for several years, because of
their ability to cope with the analysis of the structural
damage without the necessity for intensive computation. In
this study feed-forward multi-layer neural networks trained
by back-propagation are used to learn the input (the location
and depth of a crack)-output (the structural eigen
frequencies) relation of the structural system. A neural
network for the cracked structure is trained to approximate
the response of the structure by the data set prepared for
various crack sizes and locations.

2. Literature Review

Orhan Sadettin [2] has studied the free and forced vibration
analysis of a cracked beam was performed in order to
identify the crack in a cantilever beam. Single- and two-edge
cracks were evaluated. Dynamic response of the forced
vibration better describes changes in crack depth and
location than the free vibration in which the difference
between natural frequencies corresponding to a change in
crack depth and location only is a minor effect.

3. Theoretical Analysis

The beam with a two transverse edge cracks is clamped at
left end, free at right end and it has a uniform structure with
a constant rectangular cross-section. The Euler—Bernoulli
beam model was assumed. The damping has not been
considered in this study. A cantilever beam of length L, of
uniform rectangular cross-section BxW with cracks located
at positions L1 and L2 is considered in fig.(4.1). The cracks
are assumed to be an open crack and have uniform depths a;
and a, respectively. In the present analysis the axial and
bending vibration are considered.
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4. Neural Network

Studies on neural networks have been motivated to imitate
the way that the brain operates. A network is described in
terms of the individual neurons, the network connectivity,
the weights associated with various interconnections
between neurons, and the activation function for each
neuron. The network maps an input vector from one space to
another. The mapping is not specified, but is learned. The
network is presented with a given set of inputs and their
associated outputs. The learning process is used to determine
proper interconnection weights and the network is trained to
make proper associations between the inputs and their
corresponding outputs. Once trained, the network provides
rapid mapping of a given input into the desired output
quantities. This, in turn, can be used to enhance the
efficiency of the design process.

In this study, we use the back-propagation network, that is, a
multi-layer feed-forward neural network topology with one
hidden-layer as shown in Figure 5.4. The feed forward back
propagation (BP) network is a very popular model in neural
networks. In multilayer feed forward networks, the
processing elements are arranged in layers and only the
elements in adjacent layers are connected. It has minimum
three layers of elements (i) the input layer (ii) the middle or
hidden layer and (iii) the output layer. The name back
propagation derives from the fact that computations are
passed forward from the input to output layer, following
which calculated errors are propagated back in the other
direction to change the weights to obtain better performance.
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Back-propagation networks can be learned when presented
with input-target output pairs.

Figure: Three-layer neural network utilized in this study.
Matlab program
Creation
Feed-Forward Networks
newff(mm, sizeArray, transferFunctionCellArray,
trainingAlgorithm);
LVQ Networks
newlvg(mm, hiddenLayerSize, percentages);
Elman Networks
newelm(mm, sizeArray, transferFunctionCellArray);
mm: Matrix of size number_of_inputs x 2. Each row
contains the minimum and maximum value that a particular
input node can have.
sizeArray: array that contains size for each layer (not
including input)
transferFunctionCellArray: Cell Array that contains
strings representing the transfer functions for each layer (not
including input layer).

Transfer function MATLAB® String
logarithmic-sigmoidal logsig
tangential-sigmoidal tansig
hard limit hardlim
linear purelin
competitive (automatic for appropriate layer)

trainingAlgorithm: A string representing the training
algorithm for the network

Training algorithm MATLAB® String
Batch Gradient Descent with Momentum traingdm
Resilient Backpropagation trainrp
BFGS trainbfg
Levenberg-Marquardt trainlm
Random trainr

hiddenLayerSize: The size of the hidden layer
percentages: matrix of expected percentages of inputs.
Training

[net, tr] = train(net, trainData, T, [], [1, VV);

net: neural network to be trained

trainData: training data set

T: desired output for each input

VV: struct array of with validation inputs and targets
Testing

output = sim(net, testData);

net: neural network to be tested

testData: testing data set

Finite Element Modeling

The ANSYS 15.0 finite element program was used for free
vibration of the cracked beams. For this purpose, the key
points were first created and then line segments were
formed. The lines were combined to create an area. Finally,
this area was extruded and a three-dimensional V-shaped
edge cracked beam model was obtained. We modeled the
crack with a 0.5mm width on the top surface of the beam
and a crack going through the depth of the beam. A 20-node
three-dimensional structural solid element under SOLID 185
was selected to model the beam. The beam was discretised
into 1045 elements with 2318 nodes. Cantilever boundary
conditions are modeled by constraining all degrees of
freedoms of the nodes located on the left end of the beam.
The subspace mode extraction method was used to calculate
the natural frequencies of the beam.

Neural Network Training

The clamped-free beam of Figure 4.1 has a length of L=0.8
m, width of the beam = 0.05 m, depth of the beam = 0.006
m, the material properties are E = 0.724x10 11 N/m2 ,
Poisson’s ratio = 0.334, p= 2713 kg/m3 . For the preparation
of the learning data, 10 sets of a crack depths
al=a2=0.0003,...., 0.003m (step size=0.0003m) are
introduced at the 17 different crack locations L1=0.04,....,
0.68m (step size=0.04m) and L2=0.08,...,0.72m (step
size=0.04m). Totally 170 cases or patterns (10 different
crack depths and 17different crack locations) are solved for
the first three frequencies. The patterns which consist of 170
sets of data are used to train the neural network.

5. Results

The problem involves calculation of natural frequencies and
mode shapes for cantilever beam without a crack and with
two cracks of different crack depths. The results calculated
analytically are validated with the results obtained by
simulation analysis. The method described has been applied
to a cracked Bernoulli-Euler beam. Aluminum has taken the
beam. Properties: Width of the beam = 0.05 m Depth of the
beam = 0.006 m Length of the beam = 0.8 m Elastic
modulus of the beam = 0.724x10 11 N/m 2 Poisson’s Ratio
= 0.334 Density = 2713 kg/m 3 End condition of the beam =
One end fixed and other end free (Cantilever beam).

6. Conclusion

The frequency of the cracked cantilever beam decreases with
increase in the crack depth for the all modes of vibration.
For moderate cracks (al/w=a2/w=0.1667) appreciable
changes in mode shapes are noticed and for deep cracks
(al/w=a2/w=0.5) the change in mode shapes are quite
substantial. A neural network for the cracked structure is
trained to approximate the response of the structure by the
data set prepared for various crack sizes and locations.
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Appendex-A

Nueral network Program in MATLAB

%crack size

a1=0.0003:0.0003:0.003;

a2=0.0003:0.0003:0.003;

%crack location

L1=0.04:0.04:0.68;

L2=0.08:0.04:0.72;

%input

x=[al a2 L1 L2];

%target (transpose of f1)

f1=[138.04 138.06 138.06 138.05 138.02 138.05 138.03
138.06 138.05 138.06 138.05 138.04 138.04 138.02
138.03 138.03 138.04 138.01 138.04 138.02 138.01
137.97 137.95 137.99 138.03 138.05 138.04 138.01
137.96 137.92 137.91 137.95 137.98 138.02 137.92
137.01 137.99 137.93 137.86 137.83 137.89 137.97
137.03 138 137.97 137.84 137.78 137.77 137.82 137.89
137.97 137.85 138.01 137.99

I

%initiation

net=newff(minmax(al),[13 1],{'logsig’, purelin’,'trainin'});
%specifications

net.trainparam.epochs=100;
net.trainparam.goal=1e-25;

net.trainparam.Ir=0.01;

%training

net=train(net,x,f1);

%testing

x=sim(net,al(6))

%answer is 138.0400

Appendix-B

Test data

Sno| al a2 L1 |L2 fl 2 3
1 (0.0003(0.0003(0.04]0.08| 7.8668 [49.293| 138.04
0.0003|0.0003|0.08(0.12| 7.8678 |49.302 | 138.06
0.0003|0.0003|0.12]0.16| 7.8683 [49.306 | 138.06
0.0003|0.0003|0.16|0.2 | 7.8682 [49.305| 138.05
0.0003|0.0003|0.2 [0.24|7.8671 |49.296| 138.02
0.0003|0.0003|0.24 (0.28 | 7.8694 |49.306 | 138.05
0.0003|0.0003|0.28(0.32| 7.8686 [49.297 | 138.03
0.0003|0.0003|0.32]0.36| 7.8697 | 49.3 |138.06
9 |0.0003|0.0003[0.36|0.4 | 7.8889 [49.292| 138.05
10 |0.0003]0.0003| 0.4 |0.44|7.8702 |49.298| 138.06
11 |0.0003]0.0003|0.4410.48| 7.8699 49.296| 138.05
12 |0.0003(0.0003]0.48(0.52| 7.8702 |49.298| 138.04
13 |0.0003|0.0003]0.52(0.56| 7.8706 |49.301|138.04
14 |0.0003|0.0003]0.56 (0.6 | 7.8699 |49.299| 138.02
15 |0.0003]0.0003| 0.6 {0.64|7.8701 |49.301| 138.03
16 |0.0003]0.0003|0.64|0.68| 7.8697 | 49.3 |138.03
17 |0.0003(0.0003]0.68(0.72| 7.8697 |49.301|138.04
1 |0.0006|0.0006(0.04]0.08| 7.8591 [49.269| 138.01
0.0006[0.0006 |0.08]0.12| 7.8594 (49.284|138.04
0.0006(0.0006(0.12(0.16 | 7.8602 49.292 | 138.02
0.0006(0.0006(0.16 (0.2 | 7.8635 [49.306 | 138.01
0.0006|0.0006 | 0.2 |0.24| 7.8644 |49.303| 137.97
0.0006|0.0006 (0.24]0.28| 7.8646 [49.287|137.95
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