International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Review of Advance Rocket Engine

Sanjana Sharma

Research Scholar, Chandigarh University, Punjab (India)

Abstract: The rocket engine is the main and very important part of the space transportation system. In this paper an attempt has been made about the history of Rocket Engine, types of Rocket Engines and future scope in the technology of theRocket Engines. Also, an attempt about physics behind the jets, and advantages and disadvantages of every rocket engine is made in this review paper.

1. Introduction

Rocket Engines are basically used to store the rocket mass of rocket propellant for forming its high speed propulsive jet. Those vehicles which are propelled by rocket engines are commonly known as rockets. Rockets function on the principle of Newton's 3rd law of motion. We always see that most of the rocket engines use combustion, but noncombusting (such as cold gas thrusters) forms also exist.

In comparison, of rocket engine to other types of jet engines, rocket engines are by far the lightest, have the highest thrust and have least propellant efficiency. Rocket engines become more efficient with higher velocities, due to greater propulsive efficiency and the Oberth effect. Since they do not require any atmosphere, they are well suited for uses at very high altitudes and in space.

2. History of Rocket Engine

According to ancient Roman writings, AulusGellius, Inc. 400 BC, a Greek Pythagorean named Archytas, propelled a wooden bird along wires using steam.[41][42] However, it would not appear because it did not have so much amount of thrust.

In the 13th century, a turning point in rocket technology emerged with a short typescript entitled LiberIgniumadComburendos Hosts (abbreviated as The Book of Fires). The typescript is composed of recipes for creating incendiary weapons from the mid-eighth to the end of the thirteenth century—two of which are rockets. The first recipe calls for one part, which is sulfur, added to six parts of saltpeter (potassium nitrate) dissolved in laurel oil, then inserted into hollow wood and lit to actually fly away whenever you want, to whatever destination you wish and burn up everything. The second recipe combines a pound of sulfur, two pounds of charcoal, and six pounds of saltpeter all finely powdered on a marble slab. Then this powder mixture is packed firmly into a long and narrow case. The saltpeter's introduction into pyrotechnic mixtures connected the shift from hurled Greek fire into self-propelled rocketry.

Rocket type engines were also used by Tippu Sultan, the king of Mysore. These rockets could be of various sizes, but commonly consisted or used of a tube of soft hammered iron about 8 in (20 cm) long and 1 1/2-3 in (3.8-7.6 cm) diameter, closed at one end and strapped to a shaft of bamboo about 4 ft (120 cm) longer. The iron tube which was used acted as a combustion chamber and it contained well packed black powder propellant. A rocket carries about one pound of powder which could travel almost 1,000 yards (910 m). These 'rockets', fitted with swords used some different type of sharp objects and had a long peak which could travel long distances, several meters above in air before coming down with sword edges facing the enemy. These rockets were used against the British empire very effectively. Here is the history of Rocket engines, described in Table.[1] which were as follows :-

name of Scientist	Description	Use of its application	Limitation
Archytas (400 BC)	using steam		It did not produce much amount of thrust, to fly somebody.
Aeolipile	Hero's Engine(Steam Rocket)	Steam rocket on bearing	The principle behind it was not well understood, and its full potential was not realized for a millennium.
Chinese Taoist alchemists	Black Powder	Fire arrows	It was only used for small objects.
Liber IgniumadComburendos Hosts	It has recipe that combines one pound of sulfur, two pounds of charcoal, and six pounds of saltpeter—all finely powdered on a marble slab.	Use for creating incendiary weapons.	
Conrad Haas(German military engineer in (159-1576))	Construction to multistage rockets.	Use as missiles	
Konstantin Tsiolkovsky (19 th century)	Liquid-fueled rocket engines.	Tsiolkovsky rocket equation.	Is was not published for a long time
Robert Goddar (American Physicist –(in 20 th century))	Modern Liquid-fueled rocket engines.	First to use a De Laval nozzle and this was the birth of modern	

Volume 8 Issue 4, April 2019 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

		Rocket engine	
Wernher von Braun and Hellmuth Walter (German scientists in (1930))	Liquid fueled rocket engine	Installing liquid fueled rockets in military aircraft	Higher temperature is a big problem for the nozzle.
Alexey Isaev (in 1949)	Staged combustion	Used in Soviet planetary rockets	
Nikolai Kuznetsov	Close cycle engine	Used in formation of NK-9 ,NK- 15,NK-33 engine	Unsuccessful Lunar N1 rocket
Ludwig Boelkow (in 1963)	Combustion test engine		
Gamma (British scientist)	Hydrogen Peroxide / Kerosene fueled engine	This gave the efficiency advantage of staged combustion	
American scientist (1962)	Liquid Hydrogen Engine (RL-10)	Hydrogen engine were use in Apollo program.	
Scientist of NASA (2016)	Black Brant XII	Most popular sounding Rockets	

Here in Table[1]. There are names of scientists with their rocket experiments and their limitations.

Different type of Rocket engines

On the different type of power source the rocket engines are different which was given as follows:-

2.1 Physical powered

Туре	Description	Advantage	Disadvantage
Water	Partially filled	Very simple to	Altitude typically
rocket	pressurized	build.	limited to a few
	carbonated drinks		hundred feet or so
	container with tail		(world record is 623
	and nose weighting		meters or 2,044
			feet)
Cold gas	A noncombusting	Non-	Extremely low
thruster	form, use for	contaminating	performance
	Vernierthrusters	exhaust	

2.2 Chemically Powered

Туре	Description	Advantage	Disadvantage
		Simple, often	
		no moving	Throttling, burn
	Ignitable, self-	parts,	termination, and
	sustaining solid	reasonably	reignitionrequires
	fuel/oxidizer	good mass	special designs.
Solid rocket	mixture	fraction,	Handling issues
	("grain") with	reasonable <u>Isp</u> .	from ignitable
	the central hole	A thrust	mixtures. Lower
	and nozzle	schedule can be	performance than
		designed into	liquid rockets.
		the grain	
			Some
			of the oxidizers,
			which are
			monopropellant
			type& canalso be
		Quite simple,	exploded in own
	Separate	solid fuel inert	right; mechanical
	oxidizer/fuel;	without	failure of the
	typically the	oxidiser & is	solid propellant
Hybrid rocket	oxidizer is	safer; cracks do	can also block
	liquid and kept	not escalate,	the nozzle (very
	in a tank and the	throttleable and	rare with
	fuel is solid.	easy to switch	rubberized
		off.	propellant),
			central hole
			widens over the
			burn and
			negatively affects
			mixture ratio.
Monopropellant	Propellant (such	Simple in the	Catalysts can be

rocket	as hydrazine,	concept, is	contaminated
TOCKET	hydrogen	throttleable&	easily,
	peroxide or	low	monopropellants
	nitrous oxide)	temperatures in	can detonate if
	flows over a	combustion	they are
	catalyst and	chamber.	contaminated or
	exothermically	chamber.	provoked, I_{sp} is
	decomposes; hot		perhaps $1/3$ of
	gases are		best liquids
	emitted through		best inquites
	the nozzle.		
	the hozzle.	U., t. 000/	
		Up to ~99% efficient	Pumps needed
		combustion	for high
	True fluid	with excellent	performance are
	Two fluid		expensive to
	propellants, which are	mixture	design, huge
		control,	thermal fluxes
D' 11 (mostly liquid,	throttleable,	across
Bipropellant	introduced	can be used	combustion
rocket	through	with	chamber wall can
	injectors into	turbopumps	impact reuse,
	combustion	which permit	failure modes
	chamber and	incredibly	have major
	burnt further	lightweight	explosions, a lot
		tanks, can be	of plumbing is
		safe with	needed.
		extreme care	
	A combined		Atmospheric
	cycle	Very close to	airspeed limited
	turbojet/rocket	existing designs	to same range as
	where an	operate in a	turbojet engine,
	additional	very high	carrying
Turborocket	oxidizer such as	altitude, wide	oxidiszer
	oxygen is added	range of	like LOX can be
	to the airstream	altitude and	dangerous. Much
	to increase	airspeed	heavier than
	maximum	unspeed	simple rockets.
	altitude		simple rookets.

2.3 Electric power

Atmospheric airspeed which is limited to same range, as the turbojet engine is, carrying oxidizers like \underline{LOX} can be dangerous. Much heavier than the simple rockets.

Туре	Description	Advantage	Disadvantage
Resistojet	Energy is	Efficient where	Requires a whole
(Electric	imparted to a	electrical power	lot of power
heating)	usually inert	is at a lower	&energy
	fluid serving as	premium than	therefore,
	reaction mass	mass.	typically yields
	via Joule	Higher <u>I</u> spthan	low thrust.
	heating of a	monopropellant	
	heating element.	alone, about 40%	
	May also be	higher.	

Volume 8 Issue 4, April 2019 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

International Journal of Science and Research (IJSR) ISSN: 2319-7064 ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

	used to impart		
	extra energy to a		
	monopropellant		
Arcjet rocket	Identical to	1,600 seconds	Very low thrust
(chemical	resistojet except		and high power,
burning aided	the heating		performance is
by electric	element is		similar to <u>ion</u>
discharge)	replaced with an		drive.
	electrical arc,		
	eliminating the		
	physical		
	requirements of		
	the heating		
	element.		
Pulsed plasma	Plasma is used	High I_{sp} , can be	Low energetic
thruster	to erode a solid	pulsed on and off	efficiency
	propellant	for attitude	
		control	
Variable	Microwave	Variable I_{sp} from	Similar
specific	heated plasma	1,000 seconds to	thrust/weight
impulse,	with magnetic	10,000 seconds	ratio with ion
magnetoplasma	throat/nozzle		drives (worse),
type rocket			thermal issues, as
			with ion drives
			very high power
			requirements for
			significant thrust,
			really need
			advanced nuclear
			reactors, never
			flown, requires
			low temperatures
			for
			superconductors
			to work

3. Jet Physics

Rocket jets were dependent on the rocket engine's design altitude, thrust and other factors. Exhausts having rich Carbon is from <u>kerosene</u> fuels & are often orange in colour due to the <u>black body radiation</u> of the unburnt particles. <u>Peroxide</u> oxidizer-based rockets and hydrogen rocket jets have high amount of <u>steam</u> and are nearly invisible to the naked eye but shine brightly in the <u>ultraviolet</u> and <u>infrared</u>. Jets from <u>solid rockets</u> can be highly visible as the propellant frequently contains metals such as elemental aluminum which burns with an orangewhite flame and adds energy to the combustion process.

The shape of the jet varies by the design altitude: at high altitude, all rockets are grossly under-expanded, and a quite small percentage of exhaust gases actually is getting end up expanding forwards.

4. Conclusion and Future Scope

Today, human culture or scientists have discovered the new type of rocket engine which consumes less amount of money and having high-efficiency comparing to the startup by the formation of the Rocket engine. Hence in the future, there is a lot of amount of Innovation which will happen in the field of the rocket engine. Today's scientist was getting work on the new type of rocket engine which gets work on the phenomena plasma. Today NASA and some other organization get work to send the rocket to Mars which required a heavy amount of fuel to getting cover the distance up to mars. Which increase the mass of rocket so, scientists are getting to work on different type of rocket engines such as plasma type.

References

- [1] https://www.en.wikipedia.org/
- [2] Bergin, Chris (2016-09-27). "SpaceX reveals ITS Mars game changer via colonization plan". *NASASpaceFlight.com*. Retrieved 2016-09-27
- [3] Belluscio, Alejandro G. (2016-10-03). "ITS Propulsion

 The evolution of the SpaceX Raptor engine". NASASpaceFlight.com.Retrieved 2016-10-03.
 [4] Wade, Mark. "RD
- 0146". EncyclopediaAstronautica.Retrieved 2009-09-25.
- [5] "RD-180". Retrieved 2009-09-25.
- [6] Astronautix NK-33 entry
- [7] Mueller, Thomas (June 8, 2015). "Is SpaceX's Merlin ID's thrust-to-weight ratio of 150+ believable?".Retrieved July 9, 2015. The Merlin 1D weighs 1030 pounds, including the hydraulic steering (TVC) actuators. It makes 162,500 pounds of thrust in vacuum. that is nearly 158 thrust/weight. The new full thrust variant weighs the same and makes about 185,500 lbs force in vacuum.
- [8] Sauser, Brittany. "What's the Deal with Rocket Vibrations?". MIT Technology Review.Retrieved 2018-04-27.
- [9] David K. Stumpf (2000). Titian II: A History of a Cold War Missile Program. University of Arkansas Press. ISBN 1-55728-601-9.
- [10] G.P. Sutton & D.M. Ross (1975). Rocket Propulsion Elements: An Introduction to the Engineering of Rockets (4th ed.). Wiley Interscience. ISBN 0-471-83836-5. See Chapter 8, Section 6 and especially Section 7, re combustion instability.
- [11] John W. Strutt (1896). The Theory of Sound Volume 2 (2nd ed.). McMillan (reprinted by Dover Publications in 1945). p. 226. According to Lord Rayleigh's criterion for thermoacoustic processes, "If heat be given to the air at the moment of greatest condensation, or be taken from it at the moment of greatest rarefaction, the vibration is encouraged. On the other hand, if heat be given at the moment of greatest rarefaction, or abstracted at the moment of greatest condensation, the vibration is discouraged."
- [12] George P. Sutton & Oscar Biblarz (2001). Rocket Propulsion Elements (7th ed.). Wiley Interscience. ISBN 0-471-32642-9. See Equation 2-14.
- [13] George P. Sutton & Oscar Biblarz (2001). Rocket Propulsion Elements (7th ed.). Wiley Interscience. ISBN 0-471-32642-9. See Equation 3-33.
- [14] Sutton, George P. (2005). History of Liquid Propellant Rocket Engines. Reston, VA: American Institute of Aeronautics and Astronautics.
- [15] Foust, Jeff (2015-04-07). "Blue Origin Completes BE-3 Engine as BE-4 Work Continues". Space News.Retrieved 2016-10-20.
- [16] Wade, Mark. "RD-0410". Encyclopedia Astronautica.Retrieved 2009-09-25.

Volume 8 Issue 4, April 2019

<u>www.ijsr.net</u>

Licensed Under Creative Commons Attribution CC BY

- [17] KonstruktorskoeBuroKhimavtomatiky» Scientific-Research Complex / RD0410. Nuclear RocketEngine.Advanced launch vehicles".KBKhA -Chemical Automatics Design Bureau.Retrieved 2009-09-25.
- [18] "Aircraft: Lockheed SR-71A Blackbird". Archived from the original on 2012-07-29.Retrieved 2010-04-16.
- [19] "Factsheets : Pratt & Whitney J58 Turbojet". National Museum of the United States Air Force. Archived from the original on 2015-04-04. Retrieved 2010-04-15.
- [20] "Rolls-Royce SNECMA Olympus Jane's Transport News". Archived from the original on 2010-08-06.Retrieved 2009-09-25. With afterburner, reverser and nozzle ... 3,175 kg ... Afterburner ... 169.2 kN
- [21] Military Jet Engine Acquisition, RAND, 2002.

Volume 8 Issue 4, April 2019 <u>www.ijsr.net</u> Licensed Under Creative Commons Attribution CC BY