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Abstract: The road transport industry in Kenya plays a vital role in the life of the majority of her citizens. Many Kenyans utilize 

different transport modes to reach their various destinations daily. Nearly 3000 people killed on Kenyan roads per year. The objective of 

this study was a time series analysis of road accidents trend in Kenya using the Autoregressive Integrated Model (ARIMA) model. This 

study used time series techniques which can better describe and model the accident data. This is achieved using suitable techniques 

whose performances are subsequently analyzed. The study utilized accident data between the years 2014-2017 obtained from National 

Transport Safety Authority. In this research project, the time series with Box – Jenkins method applied to 4 years of annual road 

accident data from 2014 – 2017 to determine the trend of road traffic accident cases and deaths in Kenya. ARIMA models subsequently 

fitted for accident cases and deaths. 
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1. Introduction 
 

The increase in road transport has brought benefits to society 

in terms of mobility and accessibility; it also, however, has 

costs. These costs include not only the direct cost of 

providing transport services such as infrastructure, 

personnel, equipment costs but also the various indirect 

costs in terms of the negative impact on the environment 

such as noise and air pollution, travel delay due to traffic 

congestion, and the loss of life and property damage as a 

result of road accidents. This project focused on the 

significant aspect of road transport activity that is: time 

series analysis of road accidents and how to fit the model. 

Road accidents are among the leading cause of death and 

disability in Kenya, where nearly three thousand people die 

annually because of accidents related to activities. Despite 

the efforts to improve road infrastructure, road accidents 

have continued to occur almost with haste, even with the 

introduction of the speed control devices, safety belts and 

other reforms in the sector (Ministry of Transport, 2007). 

 

Road accidents have been acknowledged as one of the 

adverse element which contributes to the suffocation of the 

economic growth in the developing countries Kenya being 

one of them, due to high cost related to them hence causing 

social and economic concerns. These substantial costs 

related with road accidents, including human costs (e.g., 

willingness for someone to pay to avoid pain, grief, and 

suffering), the direct economic costs of lost output, and the 

medical costs associated with road accident injuries. Also,  

costs of damage to vehicles and properties, police costs and 

administrative costs of accidents insurance, also the 

combination of factors, including rapid motorization, 

reduced road and traffic infrastructure, as well as the 

behavior of road users (Nantulya, 2012). This contrasts with 

technologically advanced countries where the indices are 

reducing (Oskam J., 2002). One of the significant challenges 

faced today is the improvement of the quality of service in 

the transport sector to make them safe. Despite the enormous 

economic burden exerted by road traffic accidents, the major 

causes of accidents in Kenya have not been exhaustively 

analyzed and modeled to outline the significant causes and 

their interrelatedness. This emphasizes the need to 

comprehensively understand the major causes of these 

accidents and response strategies Kenya can adopt in its 

endeavor to bring road accidents to a halt of a bare 

minimum. On May 11, 2011, during the lunch of United 

Nation Decade of Action for Road Safety 2011-2020, it was 

discovered that 1.9 million lives would be lost per annum by 

2020 worldwide if nothing is done to reduce road accidents. 

In a keynote address, at the launch, David Cameroon, the 

U.K Prime Minister stated that “Every six seconds someone 

is killed or seriously injured on the world‟s roads.” The 

Russian President, Dimity Medvedev stated “Experts 

estimate that more than a million people die on the roads 

each year one in five of whom is a child. More than 50 

million people are hurt or seriously injured. The 

international community, therefore, has a great duty to 

develop a common strategy and joint action to enhance road 

safety.” This study will analyze the trend of road accidents 

cases and deaths in Kenya and to fit a suitable ARIMA 

model for the road accidents data in Kenya. This study uses 

ARIMA (Box-Jenkins) methodology to develop a time 

series model for both descriptive and forecasting purposes. 

This will be achieved using suitable techniques whose 

performances are subsequently analyzed. The study utilized 

accident data between the years 2014-2017 obtained from 

NTSA. 

 

2. Review of Road Accident Models 
 

2.1 Trend of Road Accidents Globally 

 

In 2010, the United Nations General Assembly adopted 

resolution 64/2551 proclaiming a Decade of Action for Road 

Safety to stabilize and reduce the increasing trend in road 
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traffic fatalities. However, a Road accident in high-income 

countries is expected to fall by 2020, while the converse is 

true for the developing countries. More than 85% of RTAs 

occurs in developing countries. The total number of losses 

realized in developing countries per year exceeded the 

annual amounts of aid and loans received for development. 

It has been suggested that the cost to the economy due to 

RTAs costs an approximately 1- 2% of a country‟s gross 

national product (Organization, Global Status Report on 

Road Safety 2013, 2013) 

 

2.2 Trend of Road Accidents in Kenya 

 

Road accidents are at an alarming rise in Kenya, but very 

few studies on its causes have been done. However, some 

thought-provoking facts have been studied and revealed 

about accidents in Kenya. The figures state the need for 

quick and detailed research on accidents and their causes to 

minimize this menace. Kenya, being a developing country, 

recorded the highest number of accidents. The reasons for 

many accidents at the marked hotspot include over speeding, 

careless overtaking and unsafe pedestrian crossing (Daily, 

1st August 2018). The number of deaths from road traffic 

accidents rose from 1,850 in 1990 to 2,830 in 2000 

comprising: pedestrians, 40 percent; passengers, 40 percent; 

drivers, motorcyclists, and bicyclists, 20% (Ministry of 

Transport, 2007) 

 

2.3 Review of Ordinary Least Square Model 

 

The ordinary least squares method (OLS) is widely applied 

to estimate regression coefficients of prediction models 

describing the relationship between road accident and a set 

of factors describing the underlying transport system, such 

as many motor vehicles, speed, the volume of the traffic, 

road design and population size. (Emanalo S., 1977), 

considered the road transportation system in Zambia and 

conducted analytical studies to identify the trend of several 

measures such as the frequency of road accident occurrences 

and the rate of death resulting from the accident.  

 

2.4 Review of Log-Linear Model 

 

(Kim K., 1995), utilized a log-linear model to explain the 

role of driver behaviors in the causal sequence that led to a 

more brutal injury. The study showed that the use of alcohol 

and lack to use seat belts significantly increased the odds of 

more severe crashes and injuries. This was also employed 

when they utilized the Artificial Neural Network (ANN) 

using Multilayer perception to predict the likelihood of an 

accident happening at a particular location between the first 

40 kilometers along Lagos-Ibadan Express road.  

 

2.5 Time series Models 

 

(Razzaghi, 2013), extended the application of time series 

analysis to the road safety field and used the data from 

crashes occurring in Taybad between 2007 and 2011 for 

investigating the possible patterns of road crashes during the 

study period, where the time series analysis used a time lag 

of one month. (Hermans E., 2006), studied the monthly 

developments in the rate of traffic crashes in Belgium during 

the period from 1974 to 1999 to identify the trend and 

investigating the effect of the weather conditions and 

economy on the road accident crashes rates. (Monfared A., 

2013), used Autoregressive Moving Average (ARIMA) 

models to describe the trend of the death rate of the road 

accident in Iran, 2004-2011. The analytical studies revealed 

how powerful the ARIMA technique is in modeling and 

capturing the variability in a dataset observed at consecutive 

points of time. (Ofori, 2012), conducted a comparative study 

between ARIMA and Exponential Smoothing techniques 

and measured their effectiveness in developing an accurate 

prediction model for the road crash injuries in Ghana, where 

the study reported the effectiveness of the ARIMA model 

over its counterpart the Exponential Smoothing models. 

 

2.6 Review of Box-Jenkins (ARIMA) Models 

 

The ARIMA model is an integration of autoregressive and 

moving average models, and it is commonly used because of 

its flexibility. The letter „I‟ which lies in the middle of the 

name „ARIMA‟ stands for integration or a differencing 

operator is needed to make the series stationary (COST329, 

2004). The ARIMA model is a potent tool which gives 

accurate short-range forecasts in time series analyses.  

 

3. Methodology 
 

3.1 Study Design and Population 

 

The study relied on secondary data obtained from the 

National Transport Safety Authority (NTSA). The data 

comprises explicitly time series data on daily road traffic 

accidents covering the period from January 2014 to 

December 2017. The Authority regularly gathers data on 

road traffic accident data from hospitals, police stations, 

forensic medicine, and road organization. To ensure the 

quality of the collected data, any duplicate or redundant 

information concerning the road accident was cleaned. Box-

Jenkins method used to derive ARIMA models for 

forecasting the data. This method is preferred because of its 

high accuracy in forecasting data, especially within a short 

and medium term period. Also, the model simplicity gives it 

an advantage of cost and response time, because high cost is 

required to run and set up complex models (Nihan, 1980). 

 

3.2 Method of Data Analysis 

 

The time-series analysis was applied to model the observed 

frequency of accident data in the study and to predict future 

incidences. The Box-Jenkins approach used to develop the 

best autoregressive integrated moving average (ARIMA) 

model. The Daily time-series observation is used to increase 

the prediction power of the model. The ARIMA model will 

be expressed by ARIMA (p,d,q), where the p,d, and q 

represents the number of ordinary autoregressive, 

differences (or integration), and moving average parameters, 

respectively. In simple term, the p and q are the number of 

significant lags of the autocorrelation function (ACF) and 

the partial autocorrelation function (PACF) plots, 

respectively, and d is the differenced order needed to remove 

the ordinary non-stationarity in the mean of the error terms. 

The Akaike Information Criteria (AIC) was calculated to 

evaluate the goodness of fit for each model (Box GEP, 

2016). This indicator evaluates the model fitness based on 
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the likelihood model and many parameters. The smaller the 

size, the better was the model. Finally, the fitted ARIMA 

model will be used to predict the trend of the people 

involved in road accident cases and deaths. All the analyses 

and the forecast will be computed using the R statistical 

software. The statistical significance will be decided at p 

< 0.05. 

 

3.3Autoregressive Integrated Moving Average (ARIMA) 

 

This is a general model introduced by (Box, 1976) which 

includes autoregressive as well as moving average 

parameters, and clearly includes differencing in the 

formulation of the model. There are three types of 

parameters in the model are the autoregressive parameters 

(p), the number of differencing passes (d), and moving 

average parameters (q). In the notation introduced by Box 

and Jenkins, models are summarized as ARIMA (p, d, q) e.g 

ŷ
𝑡
= 𝜇 + 𝑦𝑡−1 + ∅ 𝑦𝑡−1 − 𝑦𝑡−2  

3.4 Model Building 

 

3.4.1 Model Identification 

Here, the Identification step involves the use of the 

techniques to determine the values of p, q,andd. The values 

were determined by using the Autocorrelation Function 

(ACF) and Partial Autocorrelation Function (PACF). In 

ARIMA (p, d, q) process, the theoretical PACF has non-zero 

partial autocorrelations at lags 1, 2...p and has zero partial 

autocorrelations at all lags, while ACF has non zero 

autocorrelation at lags 1, 2, 3, 4, …,q and zero 

autocorrelations at all lags. 

 

3.4.2 Estimation Stage 

Once a model is identified the next stage ofthe ARIMA 

model building process is to estimate the parameters 

(𝑝, 𝑑𝑎𝑛𝑑𝑞). When estimating the parameters for the 

ARIMA (Box- Jenkins) models two approaches were used 

in the estimation, these are non-linear least squares and 

maximum likelihood estimation. This study the estimation 

of the parameters will be done using a statistical package R. 

 

3.4.3 Model Diagnostic Stage 

In this stage, different models can be obtained for various 

combinations of AR and MA individually and collectively, 

where the best model was obtained with the following 

diagnostics: 

1) Diagnostic of Residuals- here we will use: Time plot of 

the residuals, the plot of the residuals ACF, the normal 

Q-Q plot, and testing the model for adequacy 

2) Tests of Significant of coefficients 

 

Before performing the time series analysis, the quality of the 

collected data will be assessed in terms of data integrity. 

Based on data integrity, the daily and monthly period will 

be chosen. It is necessary for a stationary mean and variance 

to be established. In order to remove the seasonality 

variation and trend from the observed time series, seasonal 

differencing and order differencing, respectively, will be 

applied to the data. The patterns of the autocorrelation 

function (ACF) and the partial autocorrelation function 

(PACF) plots will be used to identify best models. In this 

study, several different models will be identified through 

analysis of the ACF and PACF plots, including AR 

(autoregressive), MA (moving average), ARMA 

(autoregressive moving average), ARIMA (autoregressive 

moving integrated moving average), and SARIMA 

(seasonality autoregressive moving integrated moving 

average). 

 

4. Results and Analysis 
 

4.1 Data Presentation 

 

Accident data on the Kenyan highways for the period 2014-

2017 were compiled from the NTSA, which involves a 

number of accident cases, the number of people involved 

and the number of people died. 

 

4.2 Descriptive analysis of Road Accident Cases 

 

 
Figure 4.2: Daily, Weekly, Monthly and Yearly Time Plot 

for the Number of People Involved in Road Accidents in 

Kenya for the year 2014-2017. 

 

The figure above shows a time plot for total people involved 

in road accidents in Kenya from 2014-2017. An irregular 

pattern is observed on the daily data that is on the top left, 

the same also can be observed on the top right that shows a 

weekly number of people involved in road accidents. The 

bottom left displays monthly accident data; it can be seen 

that there is a systematic pattern on monthly data this can be 

attributed to the seasonal effects. The bottom right figure 

shows the yearly number of people involved in road 

accidents. It can be seen that in the year 2014, the number of 

people involved in RTA was very high compares to the 

succeeding years. There was a drastic fall in 2015, for the 

number of people involved in RTA. Then it steadily rises in 

2016 before falling in 2017. 

 

4.3 Descriptive analysis of Road Accident deaths 

 

 
Figure 4.3: Daily, Weekly, Monthly and Yearly Time Plot 

for the Number of People Died in Road Accidents in Kenya 

for the year 2014-2017 

 

The above figure shows the number of fatalities in road 

accidents in Kenya for the period 0f 2014-2017. An irregular 

pattern is observed on the daily data that is on the top left, 

the same also can be observed on the top right that shows the 
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weekly number of people died in road accidents. The bottom 

left displays monthly accident data; it can be seen that there 

is a systematic pattern on monthly data this can be attributed 

to the seasonal effects. The bottom right figure shows a 

yearly number of people involved in road accidents. It can 

be seen that in the year 2014, the number of people who died 

in RTA was very. Then there was a rise in 2015, for the 

number of people who dies in RTA. Then it sharply falls in 

2016 before it started to rise again in 2017. This shows that 

there is a rising trend in the number of people dying as a 

result of road accidents in Kenya. 

 

Testing the hypothesis 

We will try to establish if the mean number of accidents and 

the number of people who died in a road accident are the 

same for Day of the week, quarterly and monthly data 

 

ANOVA for Day of the Week Accidents Data 

The mean for the number of people involved in RTA for the 

day of the week is given below from the data 
Fri         Mon  Sat  Sun    Thu    Tue    Wed 

29.92344 34.70192 33.04785 34.84211 27.32057 30.96635 26.76555 

 
𝐻0: No difference in mthe ean number of people involved in 

the day of the week 

𝐻1: There is a significant difference in mthe ean number of 

people involved in accidents during the day of the week 

 

Table 4.1 ANOVA Table for Total Number of People 

Involved During the Day of the Week 

 
 

Inference and Conclusion 

Since p-value <0.05, we, therefore, reject the null 

hypothesis. There is a statistically significant difference in 

the mean number of people involved in RTA during the day 

of the week. We, therefore, compute Tukey HSD 

 

Table 4.2: TukeyHSD Table for Total Number of People 

Involved During the Day of the Week 
Tukey multiple comparisons of means 

95% family-wise confidence level 

 diff lwr upr p adj 

Mon-Fri 4.778478 -4.37811 13.93507 0.720014 

Sat-Fri 3.124402 -6.0212 12.27001 0.952138 

Sun-Fri 4.91866 -4.22694 14.06426 0.690218 

Thu-Fri -2.60287 -11.7485 6.542732 0.980669 

Tue-Fri 1.042901 -8.11369 10.19949 0.999885 

Wed-Fri -3.15789 -12.3035 5.987708 0.949643 

Sat-Mon -1.65408 -10.8107 7.502513 0.998356 

Sun-Mon 0.140182 -9.01641 9.296771 1 

Thu-Mon -7.38135 -16.5379 1.77524 0.20772 

Tue-Mon -3.73558 -12.9031 5.431984 0.893141 

Wed-Mon -7.93637 -17.093 1.220216 0.139568 

Sun-Sat 1.794258 -7.35135 10.93986 0.997388 

Thu-Sat -5.72727 -14.8729 3.41833 0.514975 

Tue-Sat -2.0815 -11.2381 7.075088 0.994118 

Wed-Sat -6.2823 -15.4279 2.863306 0.397185 

Thu-Sun -7.52153 -16.6671 1.624072 0.187484 

Tue-Sun -3.87576 -13.0323 5.28083 0.874364 

Wed-Sun -8.07656 -17.2222 1.069048 0.124408 

Tue-Thu 3.645772 -5.51082 12.80236 0.90337 

Wed-Thu -0.55502 -9.70063 8.590579 0.999997 

Wed-Tue -4.2008 -13.3574 4.955793 0.825734 

 

This output indicates that the differences Monday-Friday, 

Sat-Friday, all through to Wednesday-Tuesday are 

significant. A more “easy” way to interpret this output is 

visualizing the confidence intervals for the mean differences. 

The mean for the number of people died in RTA for the day 

of the week is given below from the data 

 
Fri Mon Sat Sun Thu Tue Wed 

7.215311 8.317308 8.311005 9.215311 6.444976 7.048077 6.531100 

 

𝐻0: No difference in mthe ean number of people died in the 

day of the week 

𝐻1: There is a significant difference in the mean number of 

died in accidents during the day of the week 

 

Table 4.3: ANOVA Table for Total Number of Deaths 

during the Day of the Week 

 

Inference and Conclusion 

Since p-value <0.05, we,therefore, reject the null hypothesis. 

There is a statistically significant difference in the mean 

number of people died in RTA during the day of the week. 

We, therefore, calculate Tukey HSD 

 

Table 4.4: TukeyHSD Table for Total Number of People 

Involved During the Day of the Week 
Tukey multiple comparisons of means 

95% family-wise confidence level 

 diff lwr upr p adj 

Mon-Fri 1.101996688 -1.2877066   3.4917000 0.8221821 

Sat-Fri 1.095693780 -1.2911425   3.4825300 0.8253106 

Sun-Fri 2.000000000 -0.3868363   4.3868363 0.1695456 

Thu-Fri -0.770334928 -3.1571712   1.6165013 0.9636533 

Tue-Fri -0.167234082 -2.5569374   2.2224692 0.9999935 

Wed-Fri -0.684210526 -3.0710468   1.7026257 0.9799417 

Sat-Mon -0.006302908 -2.3960062   2.3834004 1.0000000 

Sun-Mon 0.898003312 -1.4917000   3.2877066 0.9253617 

Thu-Mon -1.872331616 -4.2620349   0.5173717 0.2381834 

Tue-Mon -1.269230769 -3.6617977   1.1233362 0.7040233 

Wed-Mon -1.786207214 -4.1759105   0.6034961 0.2922987 

Sun-Sat 0.904306220 -1.4825300   3.2911425 0.9225373 

Thu-Sat -1.866028708 -4.2528650   0.5208075 0.2405825 

Tue-Sat -1.262927862 -3.6526312   1.1267755 0.7077602 

Wed-Sat -1.779904306 -4.1667406   0.6069320 0.2950841 

Thu-Sun -2.770334928 -5.1571712 -0.3834987 0.0111874 

Tue-Sun -2.167234082 -4.5569374   0.2224692 0.1046639 

Wed-Sun -2.684210526 -5.0710468 -0.2973743 0.0160309 

Tue-Thu 0.603100847 -1.7866025   2.9928042 0.9896825 

Wed-Thu 0.086124402 -2.3007119   2.4729607 0.9999999 

Wed-Tue -0.516976445 -2.9066798   1.8727269 0.9955127 

 

This output indicates that the differences Monday-Friday, 

Sat-Friday, all through to Wednesday-Tuesday are 

significant. A more “easy” way to interpret this output is 

visualizing the confidence intervals for the mean differences. 
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ANOVA for Monthly Accidents Data 

The monthly mean for the total number of people involved 

in RTA is given below: 

 
 

 
𝐻0: No difference in the mean number of people involved in 

accidents monthly 

𝐻1: There is a significant difference in the mean number of 

people involved in accidents monthly 

 

Table 4.5: ANOVA Table for Monthly Total Number of 

People Involved in RTA 

 
 

Inference and Conclusion 

Since p-value >0.05, we, therefore, fail to reject the null 

hypothesis. There is no statistically significant difference in 

the mean number of people involved in RTA monthly. The 

monthly mean for the total number of people died in RTA is 

given below: 

 
 

𝐻0: No difference in the mean number of deaths monthly 

𝐻1: There is a significant difference in the mean number of 

deaths monthly 

 

Table 4.6: ANOVA Table for Monthly Total Number of 

People Deaths in RTA 

 
 

Inference and Conclusion 

Since p-value >0.05, we, therefore, fail to reject the null 

hypothesis. There is no statistically significant difference in 

the mean number of deaths monthly. 

 

ANOVA for Quarterly Accidents Data 

The Quarterly mean for the total number of people involved 

in RTA is given below: 

 
𝐻0: No difference in the mean number of people involved in 

accidents quarterly 

𝐻1: There is a significant difference in the mean number of 

people involved in accidents quarterly 

 

Table 4.7: ANOVA Table for Quarterly Total Number of 

People Involved in RTA 

 
 

Inference and Conclusion 

Since p-value >0.05, we, therefore, fail to reject the null 

hypothesis. There is no statistically significant difference in 

the mean number of people involved in RTA quarterly. The 

quarterly mean for the total number of people died in RTA is 

given below: 

 
      Q1              Q2                Q3             Q4  

6.994460     7.887363      7.478261     7.964674 

 

𝐻0: No difference in the mean number of deaths quarterly 

𝐻1: There is a significant difference in the mean number of 

deaths quarterly 

 

Table 4.8: ANOVA Table for Monthly Total Number of 

People Deaths in RTA 

 

Inference and Conclusion 

Since p-value >0.05, we, therefore, fail to reject the null 

hypothesis. There is no statistically significant difference in 

the mean number of deaths quarterly. 

4.4 Trend Differencing For the number of People 

Involved in RTA 

 
Figure 4.4: First difference of the Number of People 

Involved in Road Accident. 

 

A transformation of the Road accident cases data using the 

first differencing method is performed to remove the trend 

component in the original accident data cases which are 

shown in Figure 4.3. The observations move irregularly but 

revert to its mean value and the variability is also 

approximately constant. The total number of people 

involved in RTA data now looks to be approximately stable. 
The following are the ACF and PACF of the total number of 

people involved in RTA 

 

 
Figure 4.5: ACF and PACF plots of the first differencing of 

the accident data cases 
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The top part of Figure 4.5 shows the autocorrelation function 

of the first differencing of the motorway accident data at 

various lags and the bottom part is the partialautocorrelation 

function of the first differencing of the road accident data 

also at different lags. 

 

Comparing the autocorrelations with their error limits, the 

only significant autocorrelation is at lag 2, indicating an MA 

(2) behavior. Similarly, it‟s geometric at partial 

autocorrelations are significant, indicating an AR (1) but 

applying the principle of parsimony we use AR (0). The 

following models are suggested; 

 ARIMA (0,1,2) 

 ARIMA (1,1,2) 

 ARIMA (2,1,2) 

To select the best model for forecasting into the future, each 

model is assessed based on its parameter estimates, the 

corresponding diagnostics of the residuals and the AIC. 

4.5 Model Selection for the Data 

4.5.1 Parameter Estimates ARIMA Models 
ARIMA (0,1,2) 

Call: 

arima(x = diffdata1, order = c(0, 1, 2)) 

 

Coefficients: 

          ma1                ma2 

        -1.9744          0.9747 

s.e.   0.0049           0.0048 

 

sigma^2 estimated as 1030:  log likelihood = -7137.73,  aic = 

14281.46 
 
Tests for coefficients 
 
z test of coefficients: 

 
Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟  

 

ARIMA (1,1,2) 

Call: 

arima(x = diffdata1, order = c(1, 1, 2)) 

 

Coefficients: 

 
sigma^2 estimated as 1007:  log likelihood = -7125.06,  aic = 

14258.12 

 

Tests for coefficients 
 
z test of coefficients: 

 
Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

 

ARIMA (2,1,2) 

 
 
4.5.2 Diagnostic for ARIMA Models 

Test for the significance for ARIMA (0,1,2) 
Box-Ljung test 

data:  arimaModel_1$residuals 

X-squared = 46.554, df = 20, p-value = 0.0006762 

ma1 ma2  

  0   0  

 

z test of coefficients: 

 
 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 
 
The p – values for the Ljung-Box statistics is not significant 

at any positivelag. That is all p – values are less than 0.05. 

 
Figure 4.6: Diagnostic plot of ARIMA (0,1,2) 

 

Diagnostics of the residuals from ARIMA (0, 1, 2) is shown 

in Figure 4.7 above. 

a) The residuals plot shows no obvious pattern and looks 

like an i.i.d. of mean zero with few outliers. 

b) The ACF of the residuals plot shows no significant 

residual autocorrelation for the ARIMA (0, 1, 2) model. 

c) The normal Q-Q plot of the residuals doesn‟t look too 

bad, so the assumption of normally distributed residuals 

look okay. 
 

Test for the significant for ARIMA (1,1,2) 
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z test of coefficients 

 
Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

Box-Ljung test 

data:  arimaModel_2$residuals 

X-squared = 34.275, df = 20, p-value = 0.02432 

 

The p – values for the Ljung-Box statistics is not significant 

at any positivelag. That is all p – values are less than 0.05. 

 
Figure 4.7: Diagnostic plot of ARIMA (1,1,2) 

 

Diagnostics of the residuals from ARIMA (1, 1, 2) is shown 

in Figure 4.7 above. 

a) The residuals plot shows no obvious pattern and looks 

like an i.i.d. of mean zero with few outliers. 

b) The ACF of the residuals plot shows no significant 

residual autocorrelation for the ARIMA (1, 1, 2) model. 

c) The normal Q-Q plot of the residuals doesn‟t look too 

bad, so the assumption of normally distributed residuals 

look okay. 

 

Test for the significant for ARIMA (2,1,2) 
z test of coefficients: 

 
--- 

Signif. codes:  0 „***‟ 0.001 „**‟ 0.01 „*‟ 0.05 „.‟ 0.1 „ ‟ 1 

 

Box-Ljung test 

 

data:  arimaModel_3$residuals 

X-squared = 36.989, df = 20, p-value = 0.01174 
 
The p – values for the Ljung-Box statistics is not significant 

at any positive lag. That is all p – values are less than 0.05. 

 
Figure 4.8: Diagnostic plot of ARIMA (2,1,2) 

Diagnostics of the residuals from ARIMA (1, 1, 2) is shown 

in Figure 4.7 above. 

a) The residuals plot shows no obvious pattern and looks 

like an i.i.d. of mean zero with few outliers. 

b) The ACF of the residuals plot shows no significant 

residual autocorrelation for the ARIMA (1, 1, 2) model. 

c) The normal Q-Q plot of the residuals doesn‟t look too 

bad, so the assumption of normally distributed residuals 

look okay. 

4.5.3 Selection of the Best Model for Forecasting Number 

of People Involved in RTA 

 

Table 4.9: Summary of the ARIMA Models Estimates and 

Standard Error 
Model Testing on Parameter Estimates 

Parameter Estimates S.E Significant 

ARIMA 

(0,1,2) 

constant -1.9744 0.0049 Not significant 

Ma1 -1.9744 0.0049 Not significant 

Ma2 0.9747 0.0048 Not significant 

ARIMA 

(1,1,2) 

Ar1 -0.0796 0.0265 Not significant 

Ma1 -1.9910 0.0034 Not significant 

Ma2 0.9910 0.0031 Not significant 

ARIMA 

(2,1,2) 

Ar1 -0.0899 0.0266 Not significant 

 Ar2 -0.0303 0.0266 Significant 

 Ma1 -1.9732 0.0058 Not significant 

 Ma2 0.9910 0.0057 Not significant 

DIAGNOSTICS 

 ARIMA 

(0,1,2) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,2) 

 

AIC 14281.46 14267.93 14258.12  

 

From the above table, we can see that the AIC for 

ARIMA(0,1,2) is 14281.46, for ARIMA(1,1,2) is 14258.12 

and for ARIMA(2,1,2) is 14268.93. The AICis good for all 

the models but they favor ARIMA (1, 1, 2),model. For the 

three ARIMA models, the residuals plot shows no obvious 

pattern and looks like an i.i.d. of mean zero with few 

outliers, The ACF of residuals plot shows no significant 

residual autocorrelation for the, and The normal Q-Q plot of 

the residuals doesn‟t look too bad, so the assumption of 

normally distributed residuals look okay. Hence the 

normality assumption is satisfied. 

 

From the discussion above it is clear that ARIMA (1,1,2) 

model is the best model for forecasting the motorway 

accident mortality. 

4.7 Fitting the ARIMA Model for the Total Number of 

People Involved in RTA 

 

ARIMA (1,1,2) is the best model for forecasting for the total 

number of people involved in road accidents cased in Kenya. 

The model, therefore, is given as: 

 𝑦𝑡 = 𝑦𝑡−1 + ∅ 𝑦𝑡−1 − 𝑦𝑡−2 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 
In terms of observed series we have; 

𝑦𝑡 − 𝑦𝑡−1 = ∅ 𝑦𝑡−1 − 𝑦𝑡−2 − 𝜃1𝜀𝑡−1 − 𝜃2𝜀𝑡−2 

The point estimate of each parameter of ARIMA (1, 1, 2) 

from table 4.1 are as follows: 

∅ = −0.796, 𝜃1 = −1.9910, 𝜃2 = 0.9910 
The fitted ARIMA (1,1,2) model is therefore given as: 

𝑦𝑡 = 𝑦𝑡−1 − 0.796 𝑦𝑡−1 − 𝑦𝑡−2 − 1.9910𝜀𝑡−1
+ 0.9910𝜀𝑡−2 
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Where𝜀𝑡has an estimated variance of 1007. 

4.5.1 Selection of the Best Model for Forecasting Death 

Cases 

 

Table 4.10: Summary of the ARIMA Models Estimates and 

Standard Error 
Model Testing on Parameter Estimates 

Parameter Estimates S.E Sig 

ARIMA(1,1,0) MA1 -0.6876 0.0190 Not significant 

constant -1.9744 0.0049 Not significant 

Ma1 -1.0000 0.0019 Not significant 

ARIMA(1,1,1) Ar1 -0.5280 0.0222 Not significant 

 Ma1 -1.0000 0.0019 Not significant 

DIAGNOSTICS 

 ARIMA 

(0,1,2) 

ARIMA 

(1,1,2) 

ARIMA 

(2,1,2) 

 

AIC 12148.46 11460.62 10985.60  

 

From the above results we can see that the AIC for 

ARIMA(1,1,0) is 12148.46, for ARIMA(0,1,1) is 11460.62 

and for ARIMA(1,1,1) is 10985.60. The plots for residuals 

ACF of all models show significantly. The normal Q-Q plot 

of the residuals indicates that residuals are located on the 

straight line except a few that are deviating from the 

normality. Hence the normality assumption is satisfied and 

appeared to be normally distributed. 

 

The AIC is good for all the models but they favor ARIMA 

(1, 1, 1),model. From the discussion above it is clear that 

ARIMA (1,1,1) model is the best model for forecasting the 

road accident death. 

4.8 Fitting the Model for the Number of Deaths 

 

ARIMA (1,1,1) model is the best model for forecasting the 

motorway accident death, this is a non- seasonal model with 

one AR term and one MA term. The model in terms 

of the differenced series 𝒙𝒕is given by: 

𝑦𝑡 = ∅𝑦𝑡−1 + 𝜃1𝜀𝑡−1 + 𝜀𝑡  
In terms of observed series, the model is given as 

 𝑦𝑡 − 𝑦𝑡−1 = ∅ 𝑦𝑡−1 − 𝑦𝑡−2 − 𝜃1𝜀𝑡−1 + 𝜀𝑡  
The fitted ARIMA (1,1,1) model is therefore given as: 

𝑦𝑡 − 𝑦𝑡−1 = −0.5280 𝑦𝑡−1 − 𝑦𝑡−2 − 1.00𝜀𝑡−1 + 𝜀𝑡  
 

Where𝜀𝑡has an estimated variance of 108. 

 

Conclusion and Recommendations 
 
A road traffic accident in Kenya is increasing at an alarming 

rate and has raised majorconcerns. The NTSA recognizes 

the contributions road safety researches makes tothe 

development of accident reduction initiatives. It is against 

this background that thisthe research was carried out to 

analyze the trend of RTA cases anddeaths and to develop a 

time series ARIMA models to predict two years of road 

accident cases and deaths along our roads.Time series 

analysis of the data from the years 2014-2017 showed that 

patterns ofroad accident cases that is the total number of 

people involved and deaths are increasing along tour roads. 

ARIMA models were subsequently developed for the total 

number of people involved in road accidents and the number 

of deaths throughout 2014-2017, after identifying various 

tentative models. ARIMA (1,1, 2) was identified to be a 

suitable model for forecasting into the future of the number 

of people involved in the accident cases while 

ARIMA(1,1,1) was found to be a suitable model for the 

accident deaths cases in Kenya. 

 

The ARIMA (1,1,2) model was recommended for 

forecasting the total number of people involved in road 

accidents while ARIMA(1,1,1) was recommended for road 

accidents death forecasting along the Kenyan roads, but the 

following precautionary measures should be taken into 

consideration to prevent the increasing forecast values of 

these models: Enforcement of traffic safety campaigns, 

proper maintenance of the roads, strict adherence to road 

traffic rules. The models should not be used to forecast a 

long time ahead (preferably a maximum of 9 years). This is 

because long periods could lead to arbitrary large forecasts 

values. Finally, it is also recommended that further study 

should be done to look for more appropriate models that can 

take care of drastic government interventions. 
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