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1. Introduction 
 

A variational principle is a scientific principle used with in 

the calculus of variations, which develops general methods 

for finding functions which extremizing the value of 

quantities that depend upon those functions. For example, to 

answer this question: What is the shape of a chain suspended 

at both ends? We can use the variational principle that the 

shape must minimize the gravitational potential energy. In 

the calculus of variations, the Euler-Lagrange equation, see 

equation (1), is a second-order partial differential equation 

which solutions are the functions for which a given 

functional is stationary. It was developed by Swiss 

mathematician Leonhard Euler and Italian-French 

mathematician Joseph-Louis Lagrange in the 1750s. Any 

body seeks the function minimizing or maximizing, the 

Euler-Lagrange equation is useful for solving optimization 

problems in which, given some functional. This is analogous 

to Fermat’s theorem in calculus, stating that at any point 

where a differentiable function attains a local extremum its 

derivative is zero. In Hamilton’s principle of stationary 

action, the evolution of a physical system is described by the 

solutions to the Euler-Lagrange equation for the action of the 

system. In classical mechanics, it is equivalent to Newton’s 

laws of motion, but it has the advantage that it takes the 

same form in any system of generalized coordinates, and it is 

better suited to generalizations. In classical field theory there 

is an analogous equation to calculate the dynamics of a field. 

Typically, mathematicians are interested in free-analogue 

that arise naturally, rather than in arbitrarily contriving free-

analogue of known results. The free analogues are most 

frequently studied in the mathematical fields of 

combinatorics and special functions. It finds applications in a 

number of areas, including the study of fractals and multi-

fractal measures, and expressions for the entropy of chaotic 

dynamical systems. The relationship of fractals and 

dynamical systems results from the fact that many fractal 

patterns have the symmetries of Fuchsian groups in general 

(see, for example Indra’s pearls and the Apollonian gasket) 

and the modular group in particular. 

 

Free analogues also appear in the study of quantum groups 

and in free super algebras. The connection here is similar, in 

that much of string theory is set in the language of Riemann 

surfaces, resulting in connections to elliptic curves. This 

article organized as follow: In Section 2, we present a 

variational principle of Euler-Lagrange differential equation. 

In Section 3, we study the free Euler-Lagrange equation. In 

Section 4, we introduce some examples of free Euler-

Lagrange equation. 

2. Preliminaries 
 

2.1. Euler-Lagrange Differential Equation 

 

The Euler-Lagrange differential equation is the fundamental 

equation of calculus of variations. It states that if is defined 

by an integral of the form 

 
where 

 
then J has a stationary value if the Euler-Lagrange 

differential equation 

 
 

is satisfied. If time-derivative notation is replaced instead by 

space-derivative notation , the equation becomes 

 
The Euler-Lagrange differential equation is implemented as 

Euler equations [f,u[x], x] in the Wolfram Language package 

variational methods. In many physical problems, the partial 

derivative of with respect to turns out to be 0, in which case 

a manipulation of the Euler-Lagrange differential equation 

reduces to the greatly simplified and partially integrated 

form known as the Beltrami identity, 

 
Problems in the calculus of variations often can be solved by 

solution of the appropriate Euler Lagrange equation. 

 

2.2. Free Derivative 

 

Here is a nice diversion for anyone who knows what the 

derivative of a simple function is f(x). The modern theory of 

differential and integral calculus began in the 20th century 

with the works of Newton and Leibniz. As it is well known, 

the derivative of a function f(x) with respect to the variable x 

is by definition: 

 
Now, let us consider the following expression: 

 
D will be called the free derivative. As an example we 

compute the free derivative of . If , we have 
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and if , we have . One can easily check 

that the free-derivative operator is linear: 

 
the product rule is slightly modified but it approaches the 

usual product rule: 

 
 

3. Free Euler Lagrange Equation 
 

As analogous of the classical Euler Lagrange equation 

 
Where 

 
We introduce the free Euler Lagrange equation as follows: 

 

 

 

 
and  

 
From the above discussion we obtain the following theorem. 

 

Theorem 3.1. If , and , the free 

Euler Lagrange equation (2) is equivalent to 

 

 
 

And if t = 0, and , then, equation(2) is 

equivalent to 

 
where  is given by 

   (5) 

 

Proof.• First case: If  , and . We 

substitute (3) and (4) in (2), we get 

 
This gives 

 
Then, we get 

 

 

 
 

which implies that 

 

 
 

Therefore, we obtain 

 
 

 
Hence, we get 

 
 

=  

• Second case: If t = 0, and ,then 

equation (2) becomes 

 

 
Which completes the proof. 

 

4. Examples 
 

Recall that, the classical standard example, for f given by 

 
 

We get, ·That is, the function must have 

constant first derivative and thus it is graph is a straight line. 

Now, we will study the free analogue of this standard 

example. 
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Theorem 4.1. Let  given by 

 
satisfying the free Euler Lagrange equation (2). Then, 

for and if we get , for 

constants A and B·  

 

Proof. Using equation (4), we obtain 

 
Since, we have . Then, by Eq. (2), we get 

 
Therefore, we obtain 

 
Then, we get 

. 

 

 
 

Using Euler-Lagrange equation (1) and by taking the 

following function 

 
As free-deformation of this example we get the following 

theorem 

 

Theorem 4.2. Let f given by 

 
satisfying the free-Euler Lagrange equation (2). Then, 

 
Where 

 
 

 

Proof. Using equation (4), we obtain 

 

 

 
Where 

 
 

This completes the proof. 

 

Remark 1.In this study we introduced the free-Euler- 

Lagrange equation. A free analogue of some nuclear 

algebras of operators acting on space of holomorphic 

functions on a free analogue complexification of real 

nuclear space can be studied and we expect to develop a 

new quantum white noise analogue of free-Euler-Lagrange 

equation .(seeRef. [3], [14], [15], [16], [17], [18] and [19]). 
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