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ABSTRACT: Abstract:Localized blast loadings are often overlooked during the structural system design process despite their potential 

detrimental effects.  In this research, a set of slab models with semi-rigid boundary conditions on its sides and with variations in 

geometry and stiffness are subjected to a Friedlander localized blast loading at certain locations.  The main system responses that are 

observed are the transversal deflections at midspan and the internal stresses of the system, particularly the maximum principle stress, 

minimum principle stress, and the maximum shear stress.  Three loading phases are included in the analysis, namely: the positive phase, 

the negative phase, and the free vibration phase. Analyses are carried out utilizing a numeric approach termed the Modified Bolotin 

Method.  Deflections resulting from various load positions on the set of slab models throughout all three phases  are then compared. 

Stresses are calculated on all slab models with the Friedlander localized blast loading applied at midspan and the results are presented as 

stress contours that are then compared between each model.  Based on the results from this research, adding 2cm to the slab thickness 

provides a better structural response  compared to adding 2 secondary beams to one of the orthogonal directions of the slab.   
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1.Introduction 

 

Floor slabs are one of the most vital structural elements in 

construction.  Almost every project contains slabs with 

various conditions and environments and they can be 

found in hotels, schools, apartments, malls, shelters, roads, 

and other public facilities. Due to this, slabs should be 

evaluated at different conditions and situations so that we 

can achieve a safe, economic, and functional design.  

Some of the slabs responses analyzed include deflections, 

internal forces, and stresses so that the design will satisfy 

both strength and serviceability requirements [1]. 

 

The types of loads commonly modeled in slab analysis are 

gravity loads (dead and live loads) and lateral loads (wind 

and seismic loads), however, many engineers ignore the 

effects from other dynamic loads such as machine 

vibrations or blast loads.  An effective slab design should 

anticipate any load that potentially may affect the slab, 

including blast loads,which have unique characteristics 

and effects on slabs that must be taken into account.  An 

explosion can be defined as the rapid release of energy as 

mass from a reactive material that is then converted into an 

extremely dense region of high pressure gas[2].  

Friedlander load is a semi-empircal localized blast load 

that is modeled using an exponential function for the 

positive phase and a different function for the negative 

phase.  The negative phase of a blast load is often ignored 

in analysis; however recent studies show that the negative 

phase of the localized dynamic load plays an important 

factor in increasing the maximum structure responses [3]. 

The dynamic behavior of a stiffened damped orthrotropic 

plate has already been a subject of interest for several 

years [4, 5] and those studies are done with a few 

variations on the object such as total number of stiffeners 

used and the characteristic material of the plate element 

utilized. 

 

Previous research included a ground floor slab with semi-

rigid supports and an elastic Pasternak foundation [6].  The 

slab is loaded with a Friedlander load that follows the 

parameters used by Susleret. al[7].  Furthermore, that 

research compared the differences of the responses of a 

structural slab supported on soft soil, medium soil, and 

hard soil. 

 

Any element given a dynamic excitation will show unique 

characteristics and behaviors based on its relative stiffness 

and mass.  The dynamic behavior can be quantitized by 

finding the natural frequency (eigenvalue) and the mode 

shape (eigenvector) of the structure. The Modified Bolotin 

Method is a method that can be used to obtain the 

vibrational natural modes.  This method has the advantage 

of being able to solve the differential equation of plates 

accurately for higher modes [8]. 

 

In this research, an elastic and orthrotropic floor slab under 

a localized blast load (Friendlander) is analyzed.  The 

governing differential eqution for an orthogonal damped 

thin rectangular plate that is given a dynamic transversal 

load pz(x,y,t) is derived using the Newton’s Second Law 

which states that all forces acting on a body must be under 

equilibrium.  Solving the equation is achieved by finding a 

unique solution for the equation of motion used for an 

undamped structure (γ = 0) and calculating the eigenvalues 

or natural frequencies of the structure.  First, the geometric 

boundary conditions that apply to the model must be 

determined.  Choosing how the slab supports are modeled 

is very critical because of the large impact it has on the 

desired responses.  Slabs that are simply supported have 

often been a subject under research because of the relative 

ease of analysis [8], however this support condition does 

not accurately represent the conditions found in-situ.  It 

turns out that these slabs simultaneously experience 

bending moments and rotations at the supports, therefore, 

floor slabs should be modeled with semi-rigid supports, 

not simply supported or fully rigid. 
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2.Literature Survey 

 
This research analyzes a few models of slabs with and 

without floor beams and also variations in slab thickness.  

Because floor beams are present, the slab is orthrotropic, 

meaning that the stiffness values in both orthogonal 

directions are different.  The floor slab analyzed is elastic 

linear and damped, therefore the governing differential 

equation is given by the following equation [9]. 

 

𝐷𝑥

𝜕4𝑤

𝜕𝑥4
+ 2𝐵

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷𝑦

𝜕4𝑤

𝜕𝑦4
+ 𝜌ℎ

𝜕2𝑤

𝜕𝑡2
+ 𝜉ℎ

𝜕𝑤

𝜕𝑡
= 𝑝𝑧(𝑥, 𝑦) (1) 

 

For rectangular orthrotropic slabs stiffened by floor beams, 

the equation above can be used to obtain the plate 

responses from certain loads.  The geometric parameters 

that should be determined are shown in Fig. 1. 

 

 
Figure 1:Rectangular orthrotropic slabs with floor beams[8] 

 

Generally, the analysis is carried out under static loads 

where the acceleration and velocity of the loads are 

insignificant.  Structures that are given dynamic loading 

with intensities that are a function of time will yield 

responses differentfrom static loading.  In order to obtain 

the values of the structural reponses under dynamic 

loading, the solution to the following differential equation 

of motion must be completed. 

 

 

𝑚𝑢 + 𝑐𝑢 + 𝑘𝑢 = 𝑝(𝑡) 
(2) 

 

A structure under dynamic loading will have two 

responses depending on the form of excitation; those 

responses are free vibration and forced vibration.  Free 

vibration is the response of the structure after given a 

certain initial condition, such as a displacement in a 

specified direction, and the structure will vibrate due to 

those initial conditions.  The response from the free 

vibration component can be obtained by solving for the 

homogenous solution for the above differential equation.  

Forced vibration is the dynamic response from any direct 

loading on the structure.  The response from the forced 

vibration component can be obtained by solving for the 

particular solution for the differential equation of motion.  

The total reponse is the sum of the reponses from the free 

vibration and forced vibration components. 

 

Blast loads have an arbitruary function, which requires the 

load function to be discretized and solved for using 

Duhamel’s Integral in order to obtain the total response for 

a certain duration t[10]. 

 

𝑢 𝑡 =
1

𝑚 𝜔𝐷

 𝑝 𝜏 𝑒−𝜉𝜔𝑛  𝑡−𝜏 sin 𝜔𝐷 𝑡 − 𝜏  
𝑡

0

 (3) 

 

A few studies have developed the equation for a localized 

Friedlander load for both the positive phase and negative 

phase of the load.  The positive phase of a blast load is 

commonly expressed as a linear or exponential function 

and acts in the direction towards the slab.  In this case, the 

localized Friedlander load utilizes an exponential function 

which is as follows. 

 

𝑝𝑟 𝑡 = 𝑝𝑟 ,𝑚𝑎𝑥  1 −
𝑡

𝑡𝑑
 𝑒−𝑏𝑡 /𝑡𝑑  (4) 

 

After the positive phase is completed, the load enters its 

negative phase, changing into a vacuum force.  Generally 

this phase has amplitude smaller than the positive phase 

but it has a much longer duration, approximately twice the 

length of the positive phase.  The function of a Friedlander 

load for both the positive and negative phase is shown in 

Fig. 2. 
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Figure 2:Function of a Friedlander load [2] 

 

3.Research Methodology 
 

The slab models in this study are rectangular and are 

assumed to have a uniform thickness and also floor beams 

in one of the orthogonal directions for two out of four 

models.  Based on the study by Alisjahbana and 

Wangsadinata [4,5], the differential equation to find the 

responses for the slab is given as below: 

 

Dx  
∂4w(x,y,t)

∂x4
 +2B  

∂4w(x,y,t)

∂x2∂y2
 +γh  

∂w(x,y,t)

∂t
  

+Dy  
∂4w(x,y,t)

∂y4
 +ρh  

∂2w(x,y,t)

∂t2
 =pz x,y,t  

(5) 

 

Where Dx is the flexural stiffness in the direction 

perpendicular to the floor beam, Dy is the flexural stiffness 

in the direction parallel to the floor beam, B is the torsional 

stiffness, γ is the damping coefficient, ρ is the density of 

the slab, and pz is the dynamic transversal load.  The 

values of Dx, Dy, and B can be calculated using the 

following equations. 

 

Dx=
E'h3

12
+

Exbx

6ax

  hx-  ex-
h

2
  

2

 2hx+ex+h -  ex-
h

2
 

2

 ex+h   (6) 

Dy =
𝐸′h3

12
 (7) 

B =  𝐷𝑥𝐷𝑦  (8) 

 

Next, the boundary conditions determined according to the 

mathematical model are used.In the model, the four edges 

are given semi-rigid supports where there are no vertical 

nor horizontal displacements, however there is a rotation 

that occurs simultaneously with a certain bending moment.  

Based on this condition, the boundary conditions can be 

formulated as given below. 

 

𝑤 𝑥, 𝑦 = 0   𝑑𝑖 𝑥 = 0, 𝑥 = 𝑎, 𝑦 = 0, 𝑦 = 𝑏 (9) 

𝑚 𝑥, 𝑦 = −𝐷𝑥  
𝜕2𝑤 𝑥, 𝑦 

𝜕𝑥2
+ 𝜈𝑦

𝜕2𝑤 𝑥, 𝑦 

𝜕𝑦2
 = 𝑘1

𝜕𝑤 𝑥, 𝑦 

𝜕𝑥
 𝑑𝑖 𝑥 = 0, 𝑥 = 𝑎 (10) 

𝑚 𝑥, 𝑦 = −𝐷𝑦  
𝜕2𝑤 𝑥, 𝑦 

𝜕𝑦2
+ 𝜈𝑥

𝜕2𝑤 𝑥, 𝑦 

𝜕𝑥2
 = 𝑘2

𝜕𝑤 𝑥, 𝑦 

𝜕𝑦
 𝑑𝑖 𝑦 = 0, 𝑦 = 𝑏 (11) 

 

where k1 and k2 are the spring rotational constants in the x 

and y direction respectively.  Based on the boundary 

conditions applied, a trial function is selected for the 

governing differential equation. 

 

𝑊𝑚𝑛 = 𝐴𝑚𝑛  𝑠𝑖𝑛  
𝑚𝜋𝑥

𝑎
 𝑠𝑖𝑛  

𝑛𝜋𝑥

𝑏
  (12) 

 

The trial function is substituted into equation (5) and is 

then algebraically manipulated to obtain equation (13). 

 

𝜔𝑚𝑛
2 =

𝜋4

𝜌ℎ
 𝐷𝑥  

𝑚

𝑎
 

4

+ 2𝐵  
𝑚𝑛

𝑎𝑏
 

2

+ 𝐷𝑦  
𝑛

𝑏
 

4

  (13) 

 

Equation (13) above gives the eigenvalue of the structure 

for a certain mode shape.  By taking the positive square 

root of the eigenvalue, the natural frequency of the 

structure is obtained.  Equation (13) is only valid if the 

slab is simply supported on all sides, whereas the object of 

this study applies semi-rigid boundary conditions, which 

requires further modification of the above equations. 

 

The Modified Bolotin Method is a numeric approach to 

solving the differential equations of a plate with semi-rigid 

boundary conditions while taking into account the effects 

of higher modes.  The eigenvalue for a rectangular slab 

with semi-rigid supports on all sides can be found by 

solving the equation in a manner similar to a simply 

supported plate.  The integer index values for the x and y 

directions are substituted with coefficients p and q for the 

mode shapes in the x and y directions respectively.  The 
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values of p and q are real numbers that are obtained by 

solving the auxiliary problems.  The eigenvalue equation 

for a slab with semi-rigid supports is expressed by 

equation (14). 

 

𝜔𝑚𝑛
2 =

𝜋4

𝜌ℎ
 𝐷𝑥  

𝑝

𝑎
 

4

+ 2𝐵  
𝑝𝑞

𝑎𝑏
 

2

+ 𝐷𝑦  
𝑞

𝑏
 

4

  (14) 

 

The values for p and q are obtained by the Modified 

Bolotin Method through solving two transcendental 

equations, one for each orthogonal direction.  Both 

transcendental equations are obtained by the determinant 

of two matrices of the imposed boundary conditions for 

both the x and y directions.  Because the auxiliary 

problems are solved for each direction seperately, ignoring 

any effects of the perpendicular direction, this problem can 

be categorized as a Levy type problem. 

 

For the x and y directions, each have a Levy type problem 

called auxiliary 1 and auxiliary 2.  Auxiliary 1 will provide 

the solution for the position function X(x) in the x 

direction while the y direction will only vibrate 

harmonically.  On the other hand, auxiliary 2 will provide 

the solution for the position function Y(y) in the y 

direction while the x direction will only vibrate 

harmonically. 

 

The solution for first Levy auxiliary is solved for the x 

direction by utilizing the following trial function 

 

𝑊 𝑥, 𝑦 = 𝑋 𝑥 sin  
𝑞𝜋𝑦

𝑏
  (15) 

 

where X(x) is the position function from the orthrotropic 

plate in the x direction.  The characteristic equation above 

can be solved by assuming the following: 

 

𝑋 𝑥 = 𝐴𝑒𝜆𝑥  (16) 

 

The above trial function is used to solve for the 

characteristic equation which yields two real roots and two 

imaginary roots.  The solution for the first auxiliary 

problem is expressed as: 

 

X x =A1 cosh  
βπx

ab
 +A2 sinh  

βπx

ab
  

+A3 cos  
pπx

a
 +A4 sin  

pπx

a
  

(17) 

 

where A1, A2, A3, and A4 are coefficients determined by 

imposing the boundary conditions at x=0 and x=a.  The 

solutions from the above equations must be non-trivial in 

order to find the eigenvalues for the structure under 

loading.  The non-trivial values of p and q are acquired by 

setting the determinant of the characteristic equations 

equal to 0 as shown in equation (18). 

 

 

 

1 0 1 0

F1

β

ab
k1 −F2

p

a
k1

C1 S1 c1 s1

F1C1 +
β

ab
S1k1 F1S1 +

β

ab
C1k1 −(F2c1 +

p

a
s1k1) −(F2s1 −

p

a
c1k1)

 

 
= 0 (18) 

 

Equation (18) above is used to solve for the real roots p 

and q that will be used to obtain the eigenvalues of the 

structure.  After the values for p and q are obtained, the 

coefficients A1, A2, A3, and A4 can be calculated as well.  

The values of A2, A3, and A4 are normalized with respect 

to A1 and by substituting the values of A1, A2, A3, and A4, 

the position function for the first auxiliary in the x 

direction is shown in equation (19). 

 

X x = cosh  
πβx

ab
 + 

b c1k1p − C1k1p + a F1 + F2 s1 

k1 bpS1 − s1β 
sinh  

πβx

ab
  

− cos  
πpx

a
  

−
ab F1 + F2 S1 +  c1 − C1 k1β

k1 bpS1 − s1β 
sin  

πpx

a
  

(19) 

 

The second auxiliary in the y direction can be solved by a 

procedure analogous to the above derivations. 
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As stated previously, the slab responses for a dynamic 

transversal load requires two distinct solutions, the 

homogenous solution (free vibration) and the particular 

solution (forced vibration).  The homogeneous and 

particular solutions are solved separately and both 

solutions are added to obtain the total structure response.  

The homogeneous solution, wH, is the solution for the 

structure that is excitated by an initial deformation or 

velocity (initial condition) that causes the structure to 

respond.  In order to solve for the homogenous solution, 

the right side of the governing equation of motion is set 

equal to zero.  The separation of variables method is used 

to solve for governing differential equation of motion.   

This method will simplify solving for the above equations 

by separating the governing differential equation into two 

different equations: the spatial differential equation W(x,y) 

and the temporal differential equation T(t).  The spatial 

differential equation is a function of position of the load at 

x and y while the temporal differential equation is a 

function of time t.  The homogeneous solution can be 

expressed as the following equation. 

 

𝑤𝐻 = 𝑤 𝑥, 𝑦, 𝑡 =   𝑊𝑝𝑞  𝑥, 𝑦 𝑇𝑝𝑞  𝑡 

∞

𝑞=1

∞

𝑝=1

 

=   [𝑋𝑝𝑞  𝑥 𝑌𝑝𝑞  𝑦 ]𝑒−𝜉𝜔𝑝𝑞 𝑡 𝑎0 cos 𝜔𝐷𝑡 + 𝑏0 sin 𝜔𝐷𝑡  

∞

𝑞=1

∞

𝑝=1

 

(20) 

 

Similary to the method for solving the homogeneous 

solution, solving for particular solution also requires the 

separation of variables method.  The coefficients in the 

above equation are adjusted to take into account the effects 

from load pz(x,y,t) ≠ 0 that was ignored in the 

homogeneous solution.  The homogenous solution pqT̂ (t)
 

contains constants that are calculated based on the initial 

conditions because this function uses a transient vibration 

without loading.  Meanwhile, the particular solution 
*

pqT (t)

depicts the vibrations due to an acting load.  The particular 

solution from the differential equation is the total of the 

spatial and temporal components and is expressed as 

follows. 

 

𝑤𝑝 =   𝑋𝑝𝑞  𝑥 𝑌𝑝𝑞 (𝑦)

∞

𝑞=1

∞

𝑝=1

 (21) 

 

The total solution is the actual occurring response that 

takes into account the effects from both free and forced 

vibrations.  This solution is obtained through summing the 

homogeneous and particular solutions, thereby acquiring 

the following equation. 

 

w=𝑤𝐻 + 𝑤𝑃  (22) 

 

The blast load used in this study is a localized blast load developed by Friendlander, with the positive phase using an 

exponential function and the negative phase using the cubic negative phase developed by Ganstrӧm [11].  Based on the study 

of Rigby et. al [2], for the negative phase of a Friedlander load, the cubic negative phase approach yields the most accurate 

results.  The parameters used for the Friedlander load are identical to the ones used in a study by Susleret. al[7].Those 

parameters are tabulated in Table 1. 

 

Table 1: Friedlander load parameters 
Notation Value Unit Description 

Pmax 28906 
Newton 

[N] 
Positive phase amplitude 

Pmin 7226,5 
Newton 

[N] 
Negative phase amplitude 

tA 0 Second [s] Initial load time 

tP 0,0018 Second [s] Positive phase duration 

tN 0,0036 Second [s] Negative phase duration 

α 0,35 - Wave shape coefficient 

 

Influences due to the location of the Friedlander load at any arbitrary position that changes with time are expressed with 

Dirac’s Delta function.  

𝑃 𝑥, 𝑦, 𝑡 = 𝑃 𝑥 𝑡 , 𝑦 𝑡 , 𝑡  
= 𝑃 𝑡 𝛿 𝑥 − 𝑥 𝑡  𝛿[𝑦 − 𝑦 𝑡 ] 

(23) 

 

4.Results and Discussion 
 

Four plate models in this study are loaded using a localized 

blast load that changes in intensity over time, thereby 

resulting in structure responses that vary greatly over time 

as well.  Resulting slab deflections in midspan are plotted 

with respect to time in order to produce the time history of 

slab deflections within a predetermined interval.  The 
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duration displayed is from 0 seconds to 0.25 seconds so 

that all the deflections from all three phases are included. 

 

The absolute maximum deflection is the largest deflection 

that occurs throughout the duration of the loading and after 

the loading is no longer applied (free vibration).  Absolute 

maxmimum deflections are critical in design and are 

required to check to see if the serviceability and small 

deflection requirements are satisfied.Figure 3 below 

displays the response history of all slab models with the 

load at three different positions. Tables 2 to 4 show the 

values of the maximum and minimum deflections for each 

plate model with various load positions. 

 

 
Figure 3: Dynamic deflections at midspan for three load positions 

 

Table 2:Absolute deflections with load at midspan 

Absolute Deflection, Load atMidspan (mm) 

Model 
h = 23cm h = 25cm h = 23cm, 1 Stiffener h = 23cm, 2 Stiffener 

Maximum  Minimum  Maximum  Minimum  Maximum  Minimum  Maximum  Minimum  

Positive Phase 0.02394 6.65E-49 0.02037 9.445E-49 0.02341 -3.37E-17 0.02279 -3.37E-17 

Negative Phase 0.08079 0.002899 0.09089 0.00424 0.09176 0.00422 0.09403 0.00356 

Free Vibration 0.88998 -0.7853 0.7418 -0.6506 0.81783 -0.7198 0.77365 -0.67265 

 

Table 3: Absolute deflections with load at one-forth of span 

Absolute Deflection, Load at One-Forth of Span (mm) 

Model 
h = 23cm h = 25cm h = 23cm, 1 Stiffener h = 23cm, 2 Stiffener 

Maximum  Minimum  Maximum  Minimum  Maximum  Minimum  Maximum  Minimum  

Positive Phase 8.026E-47 -0.002691 8.866E-47 -0.002299 -2.04E-17 -0.002585 -2.03E-17 -0.002585 

Negative Phase 0.02668 -0.02026 0.0332737 -0.016133 0.0319801 -0.019599 0.0329224 -0.019386 

Free Vibration 0.3238391 -0.189974 0.2673293 -0.16003 0.3106137 -0.172333 0.3085424 -0.158669 
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Table 4: Absolute deflections with load at one-eighth of span 

Absolute Deflection, Load at One-Eighth of Span (mm) 

Model 
h = 23cm h = 25cm h = 23cm, 1 Stiffener h = 23cm, 2 Stiffener 

Maximum  Minimum  Maximum  Minimum  Maximum  Minimum  Maximum  Minimum 

Positive Phase 0.0021394 4.741E-47 0.0015257 5.222E-47 0.0016709 -7.06E-18 0.0017236 -7.57E-18 

Negative Phase 0.0127699 -0.042471 0.0110687 -0.034441 0.0136132 -0.040803 0.0122583 -0.039456 

Free Vibration 0.2042123 -0.167571 0.1675167 -0.124228 0.1898689 -0.142698 0.1815482 -0.137945 

 

From the above tables, it is shown that the closer the load 

is to midspan, the larger the absolute maximum deflection.  

Furthermore, for all models and all load locations, the 

absolute maximum deflection takes place during the free 

vibration phase.  The absolute maximum deflection is 0.89 

mm which occurs in the model of the 23 cm thick plate 

without any floor beams and loading at midspan.  For all 

load locations, the largest reduction of slab deflections is 

achieved by adding 2 cm to the slab thickness.  These 

results reveal that adding floor beams are not as effective 

as adding to slab thickness in reduced slab deflections. 

 

After the characteristic equation of motion w(x,y,t) is 

obtained, the values for the stresses that occur in the plate 

can be calculated.  Stress is a complex value that contains 

many components.  For this research, the stresses 

calculated are the maximum principle stresses, minimum 

principle stresses, and maximum shear stresses based on 

the formulations by Mohr’s Theory.  In order to find those 

maximum stresses, we first need to calculate the stress 

components σx, σy, and τxy.  The values for σx, σy, danτxy are 

obtained using equations that show the relationship 

between displacements and stress components [12].  For 

all stress calculations, the load is only modeled at the 

midspan of the plate.The resulting stress contours of the 

maximum and minimum principle stresses and maximum 

shear stresses are illustrated in Figures 4 to 6 below. 

 

 
Figure4: Maximum principle stress contours 
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Figure 5: Minimum principle stress contours 

 

 
Figure 6: Absolute maximum shear stress contours  

 

The values, coordinates, and time of the maximum principle stress, minimum principle stress, and maximum shear stress are 

tabulated in Tables 5-7 below. 

 

Table 5: Maximum principle stress with load at midspan 

Maximum Principle Stress (MPa)  

Model 
h = 

23cm 

h = 

25cm 

1 

Stiffener 

(h=23cm) 

2 

Stiffener 

(h=23cm) 

x (m) 3.25 3.25 3.25 3.25 

y (m) 1.8 1.8 1.8 1.8 

t (s) 0.0084 0.0078 0.0082 0.0082 

θp (°) -13.6 -13.24 -9.667 -7.896 

σmax 3.14 2.7683 2.99554 2.829 
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Table 6: Minimum principle stress with load at midspan 

Minimum Principle Stress (MPa) 

Model 
h = 

23cm 

h = 

25cm 

1 

Stiffener 

(h=23cm) 

2 

Stiffener 

(h=23cm) 

x (m) 4.75 4.75 4.75 3.25 

y (m) 3.2 3.2 3.2 3.2 

t (s) 0.0084 0.0078 0.0082 0.0084 

θp (°) -3.148 -2.771 -2.99734 -2.82693 

 

Table 7: Maximum shear stress with load at midspan 

Maximum Shear Stress (MPa) 

Model 
t = 

23cm 

t = 

25cm 

1 

Stiffener 

(t=23cm) 

2 

Stiffener 

(t=23cm) 

x (m) 3.25 3.25 3.25 3.25 

y (m) 3.1 3.2 3.2 3.2 

t (s) 0.0086 0.0078 0.0082 0.0082 

θp (°) 37.4205 35.398 37.254 38.0085 

σmax 1.83205 1.59372 1.73695 1.68116 

 

For all types of stresses evaluated, the model with an 

additional 2 cm of slab thickness provides the greatest 

reduction in stresses.  The percentage of reductions in 

stresses from adding 2 floor beams are close to the values 

of an additional 2 cm of slab thickness, but overall adding 

slab thickess remains the more efficient option.  All 

models reveal that the locations of maximum principle 

stresses are the same, but the times at which they occur 

vary slightly. 

 

5.Conclusions 
 

Based on the results of analysis of the plates loaded with 

localized blast loads, there are several points that can be 

concluded.  The largest dynamic response of the structure 

takes place during the free vibration phase, not the positive 

or negative phase.  This point is proven by the evaluation 

of the slab deflections for all cases observed.  Although the 

load is no longer effectively acting on the structure, the 

initial conditions from the previous phases are able to 

create deflections larger than when the load is actively 

acting on the slab. 

 

Generally, adding to the slab thickness is more effective 

than adding floor beams. By adding 2 cm to the slab 

thickness, the maximum principle stresses are reduced by 

12%, whereas adding 1 and 2 floor beams, the reduction in 

maximum principle stresses are 4.8% and 10.1% 

respectively.  By adding 2 cm to the slab thickness, the 

minimum principle stresses are reduced by 12%, whereas 

adding 1 and 2 floor beams, the reduction in minimum 

principle stresses are 4.8% and 10.2% respectively.  These 

figures show that reduction in maximum and minimum 

principles stresses are nearly identical.  By adding 2 cm to 

the slab thickness, the maximum shear stresses are reduced 

by 13%, whereas adding 1 and 2 floor beams, the 

reduction in maximum shear stresses are 5.2% and 8.2% 

respectively.  Adding 2 cm to the slab thickness reduces 

deflections at midspan by 16.65% and adding 2 floor 

beams will only reduce deflections by 13.1%. 
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