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Abstract: Forecasting the distribution of tax revenues in the Democratic Republic of Congo has been an uphill task.The recent past of 

the country has been dominated by economic uncertainty, particularly in mining and in agricultural products (cash crops) meant for 

export. This factor alone has greatly contributed to high volatility of tax revenues collected by the custom officers. The fuzzy 

characteristic of Tax Revenues has made it quite impossible for researcher to detect or distinguish from randomness the three well 

known components of a classical time series, precisely Trends, Seasonality, and cyclical phenomena. Hence parametric methods, 

however rich appear not to be suitable at all to produce reliable forecasts. The current project focuses on modeling tax revenues time 

series using nonparametric method, mainly the kernel approach. Several kernels have been discussed in literature. In this project, due to 

its optimal property, the Epanechnikov kernel is used as an index kernel to model the time series under investigation.  Other commonly 

kernels, including the Parzen, Gaussian, Biweight, cosine, rectangle, triangle and the alternative Epanechnikov (epan2) kernels have 

been used to fit the dataset and their performance compared with the index kernel. By default, the Gaussian and the alternative 

Epanechnikov kernels performed very close to the index kernel. Having chosen to use, for comparison purposes, the Epanechnikov, the 

Gaussian and the alternative Epanechnikov kernels, an optimal choice of the bandwidth has been discussed through the kernel weighted 

polynomial smoothing setup. Two crucial aspects of the problem were evaluated, including the degree of the polynomial that precisely fit 

the data points and the level of the bandwidth that is required to achieve bell-fit. To this end, the performance of the Epanechnikov, the 

Gaussian and the alternative Epanechnikov (epan2) kernel using kernel weighted polynomial of degrees 1, 3 and 7 for different values 

of the bandwidth, precisely for h = {1,5,7,10} has been examined. As expected, findings suggest unequivocally that the higher the degree 

of the kernel weighted local polynomial smoothing combined with the smallest value of the bandwidth, the better is the fit of the kernel 

used to the tax revenues data.  Hence, to predict or forecast tax revenues, either the Epanechnikov, the Gaussian or the alternative 

Epanechnikov (epan2) kernel can be used, with a careful choice of the pair (p,h) where p is the degree of the polynomial which is 

assumed to be reasonably high and h is the optimal bandwidth. 

 

1. Introduction 
 

In statistics, precisely in inferential statistics, density 

estimation plays a crucial role, if not the main role; since it 

builds an estimate of some underlying probability function 

using sample observations. This density estimate is often 

used to forecast future values of the observed data in 

general. Moreover, this density estimate can either be 

parametric from known distribution or nonparametric. 

 

The field of parametric forecast of a time series is well 

documented in several time series textbooks. Interested 

reader can visit (Scott, 1992). Gramack(2017), Tsay (2014) 

and Fan and Yao (2003). A robust list of forecasting 

methods for stationary and non-stationary time series with 

application in finances, economics (housing expenditure), 

insurance, etc, are broadly discussed and both univariate and 

multivariate time series covered. 

 

But most researchers or Time series users in finance, 

insurance or economics or in any field where time series are 

used are open to rather using forecasting methods that 

enable them to access a robust information characterizing 

the time series under study. When a time series displays 

exclusively random walk, as it is the case with the DRC tax 

revenue, usual methods fail to provide the best forecast. This 

factor has motivated the researcher enormously, given that 

data he will be processing belongs to a region with higher 

volatile economy. 

 

The focus of this project is rather on nonparametric density 

function that can be used to forecast the Democratic 

Republic of Congo (DRC) tax revenues in time. Precisely, 

the researcher will use kernel density estimator to forecast 

future values of tax revenues collected in Kivu province, 

DRC. The main references the researcher will consider on 

the concept of Kernel estimation include (Bowman and 

Azzalini, 1997) and (Silverman, 1989), among many others. 

 

To introduce the concept, Elliot and Timmermann (2016) 

emphasizes that density forecast is about forecasting the 

likelihood of different outcomes which must avail the 

overall information on the uncertainty that goes with any 

forecast. Due to their generality, these density estimates are 

often employed by various users who might utilize different 

loss functions to produce any point forecast of their choice 

(Yuyan, 2017). Common methods that are widely used 

include the histograms, kernel methods and penalized 

approaches. If interested in an extensive coverage of these 

methods, one can visit (Scott, 1992), (Gramack, 2017) and 

(Silverman, 1989).  

 

Gramacki (2018) offers an extensive in-depth on kernels and 

their utilization in various fields, including both in univariate 

and multivariate statistical data analysis. Three areas of 
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applications have attracted the attention from the scientific 

community, namely in Kernel discriminant analysis, kernel 

cluster analysis and in kernel regression. J. (2004) provides a 

short and fast-paced description of the concepts underlying 

discriminant analysis. Then kernel discriminant analysis is 

simply a method used for solving a general classification 

task and is based on analyzing probability density functions 

in classes k, say. The cluster analysis technique however, 

belongs to the group of methods known as unsupervised 

classification. It focuses in the mean-shift algorithm which is 

itself an example of a density-based clustering as discussed 

in (Ester et al., 1996), the like of the well-known k-means 

method (Hartigan and Wong, 1979). Kernel regression 

analysis is simply anvariant of the usual regression analysis 

in nonparametric settings. Early works in kernel 

regressionanalysis include (Nadaraya, 1964) and (Watson, 

1964). Ever since the era of early paper, kernel density 

estimation has been applied in many fields, particularly in 

applied statistics and in time series. 

 

Yuyan (2017) covered an asymptotic theory on kernel 

estimation for time series. He established an asymptotic 

normality and uniform rates of convergence of kernel 

estimators under mild regularity conditions. 

 

In the field of applied statistics, Trosset (2008) discussed the 

kernel density estimation and its implementation in the 

software R. In a case study, the forearm lengths were tested 

whether they were Normally Distributed or not using kernel 

density estimation methods. In the area of time series, there 

is a huge library containing the use of the kernel density 

estimation in many aspects. Joanqing and Qiwei (2003) 

offers a complete survey on the concepts. In one of the early 

papers, Robinson (1984) discussed kernel estimation 

alongside interpolation method for time series containing 

missing observations. All along, one can see that kernel 

estimation method is simply one of the many smoothing 

methods that are used in various fields. Mohamed and 

Claude (2009) studied the efficiency of the Paris Stock 

Exchange market using the kernel methods. Ana (2012) 

proposes a new method for estimating the whole changing 

distribution of a time series using nonparametric kernel 

estimation and exponentially weighted moving average 

filters (EWMA). 

 

Andrew and Vitaliy (2012) estimated a time-varying 

probability density function or the corresponding cumulative 

distribution function using a kernel and did weight the 

observations using schemes derived from time series 

modeling. Krisp and Stefan (2011) investigated the density 

calculation and representation of spatially and temporally 

highly dynamic point data sets. In this paper, he suggested 

an approach to explore point patterns that have a temporal 

dimension and therefore introduced an incremental 

development of the traditional kernel density estimation 

processes. Jeffrey (1991) discussed the kernel regression 

estimation with time series errors. In his paper, he addressed 

the problem of objectively choosing the band width of a 

kernel estimate for a function f. In this paper, he showed that 

both theoretically and by simulation, cross-validation 

produces extremely rough kernel estimates when the data are 

sufficiently positively correlated. Derryberry (2014), in the 

context of time series smoothing method, discussed about 

kernel smoothers in as a method that can be used in the 

software R to produce smoothed periodigrams that pictures 

clearly the bias-variance trade-off. Jeffrey (1991) discussed 

the kernel regression estimation with time series errors. He 

showed that when one incorporates the estimated 

covariances into a risk estimation procedure, results in more 

efficient smoothing of positively correlated data.  

 

In all these literatures, it can be observed that no authors 

applied the kernel density estimation on taxes for a volatile 

economy. Therefore, the focus of this paper is to model Tax 

revenues of DRC using kernel density estimation and use 

this to predict taxes from the main sources. This paper is 

organized as follows. Section two is devoted to the review of 

the kernel density estimation methods. Section 3 presents the 

empirical application of Kernel density on tax revenue for 

the DRC and section 4 is the conclusion and 

recommendation. 

 

2. Kernel density estimation method 
 

In this section, kernel density function is presented alongside 

its properties, and other kernel characteristics with respect to 

the optimal bandwidth selection and kernel smoothing 

procedure. 

 

2.1 Kernel density function 

 

The starting point is as follows: Given T data points 

𝑋1, ⋯ , 𝑋𝑇  , how do we estimate their empirical distribution 

function? If one considers the mass 1/T at each observed 

data point, then it follows that the required empirical 

distribution function is of the form 

 
 

which is a nondecreasing function. However, this is not 

helpful since it cannot be used to examine the overall 

distribution structure of the data at hand. Moreover, the 

density of (2.1) does not exist (Jianqing and Qiwei, 2003, pg 

195).  To improve (2.1), one introduces the kernel function 

K which is used to smoothly redistribute the mass 1/T at 

each data point. 

 

Referring to David W. Scott, (), the basic kernel estimator is 

of the form 

 
 

Where kh(t) = K(t/h)/h, a notation introduced by Rosenblatt 

(1956). Kernels that are used commonly include the 

Gaussian kernel 𝐾 𝑢 =    2𝜋 
−1

𝑒𝑥𝑝 −𝑢2/2   and the 

symmetric Beta family𝐾𝛾 𝑢 =  
1

𝐵𝑒𝑡𝑎  
1

2
,𝛾+1 

 1 −

𝑢2𝛾𝐼𝑢≤1 where the choice of   𝛾=0, 1, 2, 3  corresponds 

respectively to the uniform, the Epanechnikov, the biweight 

and the triweight kernel functions. It is well known that the 

choice of the kernel is not really a problem, but the choice of 

the bandwidth, h. When this is optimally chosen, any kernel 

selected for use will perform as good as any other kernel left 

out. 
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2.2 Properties of Kernel function 

 

In statistical analysis of kernel estimators, one focuses on the 

measure of efficiency, that is, MISE analysis and the 

selection of the bandwidth. 

 

(i) Mean Integrated Squared Error (MISE) analysis 

A close examination of equation (2.2) reveals that 

 
is simply the arithmetic mean of the T i.i.d. random 

variables. Thus, it follows that 

 
and that  

 
In terms of computations of (2.3) and (2.4), one computes 

the right hand side as 

 

 

 

 
For the first term in (2.9), one computes 

 
Having set  

 
Since 

 
it follows from (2.9) that the expectation of  𝐸 𝐹  𝑥  simply 

equals f (x) onto the order O(h
2
). 

Clearly, the induced bias measure is given by 

 
where ISB stands for ’Integrated Squared Bias’. 

 

In similar manner, a close examination of (2.10), having 

(2.7) and (2.8), one deduces that 

 
where IV stands for ’Integrated Variance’. To summarize 

these results, one has the following 

 

Theorem 3.1Let (2.3) define a nonnegative univariate 

kernel density estimator. Then, it holds that 

 
and for optimum smoothness 

 
for the optimal bandwidth 

 
 

Among many other scholars, Parzen (1962) covered a set of 

condition under which the above theory holds.  

 

2.3 Optimal selection of the bandwidth 

 

Since the choice of the bandwidth h is crucial for a robust 

MISE, the lines below present briefly how optimal selection 

of h is carried out. Let Xt denote a realization from a 

stationary time series. Thus, the mean square error (MSE) of 

the kernel density estimator, by definition, is given by 

 
where x is a member of the interior support off. A global 

measure referred to as the MISE, is given by 

 
From (Fan and Yao, 2003), one learn that minimizing (2.19) 

with respect to h results in the optimal bandwidth given by 

 
Where  𝑔 2

2 =   𝑔 𝑢 𝑑𝑢
∞

−∞
  is the L2-norm,  𝜇2 𝐾 =

  𝑢2∞

−∞
 𝐾 𝑢 2 𝑑𝑢 is the variance of K and  

 

 
is a known constant. Given (2.18), the optimal MISE will be 

given by 

 

where 𝛽 𝐾 =  𝜇2 𝐾 2/5 𝐾 2
8/5

. 

 

Given two kernel functions, K1 and K2 each having its 

optimal bandwidth, hopt (K1) and hopt (K2) respectively. Then, 

the optimal bandwidth (2.18) satisfies the relation 

 
In terms of implementation of (2.18), observe that it depends 

of the knowledge of the parameter  𝑓 ′′  2 which obviously is 

not known. When f is a Gaussian density with standard 

deviation, 𝜎, from (2.18), one deduces 

 
 

When the standard deviation is not available, this is replaced 

by the sample standard deviation, s. Numerically, from (Fan 

and Yao, 2003), optimal bandwidth selector has the form 

 

 
for the Gaussian kernel and  

 

 
for the Epanechnikov kernel. 
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(i) Improvement of the optimal bandwidth 

Equations or the bandwidth selections (2.25) and (2.26) are 

very useful, particularly when the observed data are nearly 

normal. Otherwise, they may lead to oversmoothing 

particularly when the observed data are asymmetric or 

multimodal. An improvement suggested by Hjort and Jones 

(1996) is to consider the optimal bandwidth, h of the form 

 
Where 

 
are respectively the skewness and kurtosis of the observed 

data. 

 

The extension of Kernel density estimation to a multivariate 

case is discussed in many textbooks. Interested reader to 

visit, among many other textbook ArturGramacki (2018). 

 

2.4 Kernel smoothing method 

 

An equivalent but improved version of the moving average 

scheme in time series smoothing methods is what is referred 

to as the kernel regression estimator. Formally, this is 

defined by  

 
Which is also referred to as the “Nadaraya-Watson 

estimator” (see Nadaraya (1964) and Watson (1964)). 

Equation (2.29) reduces to a (2h +1) data points moving 

average when the uniform kernel, K(u) = 0.5I(|u| ≤ 1). 

Jianqing and Qiwei (2003) have shown that the bias of the 

kernel (2.29) and its variance are respectively 

 

 

Where 𝜔𝑡 =  
𝐾 

𝑡−𝑡0


 

 𝐾 
𝑡−𝑡0


 𝑇

𝑡=0

  is the weight and γx(t) is the 

autocovariance function of the process X(t).  

In the section that follows, the implementation of kernel 

density estimation on RDC tax revenue time series is 

examined.  

 

3. Research Methodology  
 

In this section, the researcher presents the methodology he is 

using to fit kernel density model and how he measures the 

efficiency of the kernels.  

 

3.1 Data and Sampling method.  

 

To implement this project, secondary data on tax revenues 

were be used. Data set have been retrieved from the Ministry 

of Finance, Department of Contributions, Kivu province. 

The set of data to be modeled covers six years and nine 

months, precisely from January 2010 to September 2016. 

This makes a total of 81 months or 2463 days. Hence the 

size of the sample under scrutiny is of 2463 data points. In 

the process, data collected were cleaned using Excel suite. 

 

3.2 Target population 

 

The population targeted in this project was tax revenues 

received by custom departments from products that, by 

certain measure, contributed the most on DRC annual 

financial budget. These products includecoltan and 

scoriestanique mineral, cassiterite mineral, gold mineral, 

coffee Arabica and machine spare parts. The list above 

reveals that both mineral and agricultural products exported 

by DRC provide, each year, a reliable source of income that 

the country usesto fund its developmental projects across the 

regions. 

 

3.3 Statistical model 

 

Let Xij ,i = Jan, Feb,…., Dec, and j = 2010, 2011,…, 2016 

denote monthly tax revenue data recorded by the custom 

officers, ministry of finance, department of contribution, 

Kivu province. For this project, the researcher intends to use 

a kernel function that has been proved to be optimal, among 

many others. In literature, it has been already shown that the 

optimal kernel that minimizes the Mean square Error (MSE) 

over a class of kernel functions is precisely the 

Epanechnikov kernel. Formally, this is given by 

 
This kernel will be used alongside the optimal bandwidth 

given as 

 𝑜𝑝𝑡 ,𝑛 =  
2.34 𝑠

𝑇1/5 associated with the Epanechnikov kernel. 

 

For comparison of performance purposes, the following 

kernel will also be used. 

 
are used and comparison with 3.1 will be made in terms of 

performance.  

 

4. Empirical application of the Kernel density 

on tax revenues for RCD 
 

4.1 Data Visualization 

 

In this section, it is of interest to represent graphically the 

time series under study and to motivate the reason why 

kernel density estimation method has been preferred to be 

used in this study. The figure below is the graphic of the 

time series under investigation. Clearly, one observes 
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Figure 4.1: Displays the time series under study. 

 

That some of the classic components of a time series are 

hardly spotted. Trend, seasonal, cycles components are 

absent, but one can only conclude that the random 

components are definitely present.  

To enforce this argument, one examines the behavior of the 

sample spectral distribution to test whether figure 4.1 may 

contain cycles which are not detected. Theoretically, the 

spectral density of a time series is referred to as a plot that 

depicts the sinusoidal amplitudes versus the frequencies for 

the sinusoidal decomposition in the time series (StataCorp. 

2009). When the sinusoidal amplitudes are computed for a 

discrete set of natural frequencies, say (1/n, 2/n, …, q/n), 

one obtains what is referred to as a “periodigram” for the 

time series.   Formally, let  𝑥𝑡 𝑡=1
𝑛  denote the time series 

under study. Also let 𝜔𝑗 =   𝑗 − 1 /𝑛 denote the natural 

frequencies for the values of j = 1,…, 
𝑗

𝑛
 + 1 where the  .   

denote the greatest integer function operator.  Define also 

the expression  

 
 

A periodigram of the time series described above is obtained 

by plotting 𝑛𝐶𝑗
2versus 𝜔𝑗  . To define the sample spectral 

density, one considers𝑓  𝜔𝑗  =  𝑛𝐶𝑗
2 . Let then 

𝑓  𝜔1 , ⋯ , 𝑓  𝜔𝑄  to be the sample spectral density function 

of the time series under investigation being evaluated at 𝜔𝑗 , 

for j=1,…, Q. If one fixes the value of qas  𝑞 =   𝑄/2 + 1, 

then, it follows that the resulting probability distribution 

function representing the sample spectral density is of the 

form 

 

 
This defines what is known as the sample spectral-

distribution function of the time series under study. Given 

the time series under study, one fixes a vertical line at 

frequency 1/12, since the data are monthly. At this point, 

one expects to observe a jump signifying existence of an 

annual cycle in the data. 

 

 
Figure 4.2: Displays the sample spectral distribution 

function of the time series under study. 

 

In Figure 4.5, at the vertical line, one notices no jump. This 

indicates absence of annual cycle in the dataset. This 

observation has been expected, given the nature of the 

dataset (taxes) records from an unstable milieu. 

 

4.2 Kernel density estimation 

 

In this section, several kernels are considered. A comparison 

of performance between Epanechnikov kernel on one side 

versus Parzen, Biweight, Epan2 and Cosine(PBEC) kernels 

on the other side as described in 3.2 through 3.7. 

 

4.2.1 Kernel density fitting – Epanechnikov versus PBEC 

kernels 

Recall that a kernel density estimate is built in assuming the 

weighted values with the kernel function, say K, in the 

density 

 
 

With 𝑞 =   𝜔𝑖
𝑛
𝑖=1  is the weights are frequencies (or 

analytic), or q = 1 if weights are importance weights.  In 

practice, analytic weights are rescaled so that  𝜔𝑖 = 𝑛𝑖=1 . 

When weights are not used, it is customary to assume wi = 1 

for i =1,…,n.  

 
Figure 4.3: Depicts a multi-plots comparison between the 

epanechnikov density estimate curve versus parzen, 

biweight, Epan2 and cosine density estimate curves. 
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In measuring the performance for each density estimate, the 

Mean Absolute Deviation (MAD) is considered. Formally, 

this is defined as 

 
 

where N is the number of data points, k is the kernel density 

considered,  𝑥𝑗
𝑑𝑎𝑡𝑎  are dataset that are subject for density 

estimation, j=1,…,N and 𝑥 𝑘 ,𝑗  is the data point estimated by 

the kernel density k. 

 

Let K denote the set of all kernel density estimates 

considered. That is K={ke, kp, kb,kep2,kcos} where the 

subscripts denote the initial for each kernel used. Let 

𝑀𝐴𝐷𝑘 .,𝑖  denote the mean absolute deviation scored by the 

kernel density of reference and 𝑀𝐴𝐷𝑘 . ,𝑖  the mean absolute 

deviation for a specific kernel.  To measure efficiency of any 

reference kernel used, one makes the following comparison, 

using equation (58): The kernel ke is considered 

outperforming any other kernel, k(.) if  

 

 
 

Otherwise one considered it underperformed it competitor.  

Prior to searching for an optimal bandwidth, h, the 

performance of 5 kernel density estimates is examined, 

including Epanechnikov, Parzen, Biweight, Epanechnikov2 

and Cosine kernel density estimates. 

 

Table 4.1: Displays the mean absolute deviation for 

Epanechnikov, Parzen, Biweight, Epanechnikov2 and 

Cosine kernel density estimates. 

 
 

From table 4.2, third column, one observes that the 

Epanechnikov kernel outperforms its competitors. Its MAD 

is of 0.7407645 and all other kernels scored higher values. In 

terms of risks, it does also very well, with the smallest 

standard deviation amounting to 1.02216. One need to 

remember that the bandwidth was not specifies. This implies 

that the optimal bandwidth, precisely h, had not been used.  

 

4.2.2 Kernel density fitting – Epanechnikov versus GTR 

kernels 

In this section, using a default bandwidth h, the performance 

of Epanechnikov kernel is compared to the ones of its three 

competitors, including Gaussian, Triangle and Rectangle 

(GTR) kernels. 

 

 
Figure 4.4: Depicts a multi-plots comparison between the 

Epanechnikov density estimate curve versus Gaussian, 

triangle and rectangle density estimate curves. 

 

Of the three competitors, the Gaussian kernel, appears closer 

to the reference kernel, the Epanechnikov.  In terms of risks, 

that is MAD described in (4.10q) through (4.11), both the 

Epanechnikov and the Gaussian kernels exhibit tremendous 

results. While the Gaussian kernel recorded less MAD as 

compared to any other kernel considered, it is the 

Epanechnikov kernel which recorded the smallest standard 

deviation. This implies that both 

 

Table 4.2: Displays the mean absolute deviation for 

Epanechnikov, Gaussian, Triangular and Rectangular kernel 

density estimates 

 
 

Kernels can be used for reliable predictions or forecasting 

exercises. Still, in this evaluation, the default bandwidth, h, 

had been used. When the bandwidth is not specified by the 

researcher, conventionally, it is determined by the algorithm 

in the software used as follows 

𝑚 = 𝑚𝑖𝑛   𝑣𝑎𝑟 𝑥 −
𝐼𝑛𝑡𝑒𝑟𝑞𝑢𝑎𝑟𝑡𝑖𝑙𝑒  𝑟𝑎𝑛𝑔𝑒  𝑥 

1.349
 ;  =  

0.9𝑚

𝑛1/5                                                  

(4.8) 

To recap these results, one realizes that the Epanechnikov 

and the Gaussian kernels performed reasonably well as 

compared to other kernel competitors, when the bandwidth 

by default is used. In real life, one needs to select an optimal 

bandwidth for efficiency in forecasting.  

 

4.2.3 Determination of the bandwidth h 

In this section, optimal bandwidth selection is considered. 

Before then, two observations are made. First, it is 

convenient to precise that optimal bandwidth is selected 

within the kernel weighted local polynomial smoothing 

which is described below. 

 

(a) Local polynomial smoothing 

In this case, one considers the model 

𝑦𝑖 = 𝑚 𝑥𝑖 +  𝜎 𝑥𝑖 𝜀𝑖                  (4.9) 

Where m(.) and σ(.) are respectively unknown mean and 

variance functions, and 𝜀𝑖  the symmetric errors assumed to 

0
1

2
3

4
5

D
e
n

s
it
y

0 .2 .4 .6 .8 1
Scaled_Taxes100M

Epanechnikov density estimate

Gaussian density estimate

Triangle density estimate

Rectangle density estimate

Paper ID: ART20196280 10.21275/ART20196280 90 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 4, April 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

have zero mean and unit variance. With no assumption on 

the functional form of m(.), the idea is to estimate m(x0) = 

E[y|X= x0]. Using STATA, the command lpoly generally 

estimates like the intercept of the regression, weighted by 

the kernel function that is selected of the dependent variable 

on the polynomial terms  𝑥 − 𝑥0 ,  𝑥 − 𝑥0 
2, ⋯ ,  𝑥 −

𝑥0 
𝑝 for each smoothing data point.  

 

The weight matrix in this case is defined as 𝑊 =

𝑑𝑖𝑎𝑔 𝐾 𝑥𝑖 − 𝑥0  𝑛𝑥𝑛  

 

where the weights are Kh(.) defined by Kh(x) = h
-1

K(x/h), 

with K(.) being the kernel selected and h the bandwidth. In 

general, as the degree of the polynomial increases, the 

smoother the kernel density estimate.  

 

In this section, three kernel are considered: Epanechnikov, 

Gaussian and the alternative Epan2 kernels, for p ={1,3,7} 

degree.  

 
Figure 4.5: Depicts Epanechnilov kernel weighted local 

polynomial smoothing for p ={1,3,7}. 

 

In the current Figure 4.5, for p = 7, it can be observed that 

the curve produced has a better approximation of the data 

than the other two ones. In Figure 4.9, the same 

phenomenon is confirmed once more, the higher the order of 

the polynomial, the better is the approximation of the kernel 

density. At p = 7, the Gaussian kernel exhibits similar 

behavior as observed for the Epanechnikov kernel. 

However, a slight difference   

 
Figure 4.6: Depicts alternative Epanechnikov (epan2) 

kernel weighted local polynomial smoothing for p ={1,3,7}. 

In Figure 4.6, the alternative Epanechnikov (epan2) behaves 

in similar fashion as the Gaussian kernel. In summary, for 

the three kernels considered, it came clearly noticeable that 

the higher the order of the polynomial, the smoother the 

kernel density estimate. 

 

(b) Selection of the bandwidth 

There are two choices that can be explored. One may decide 

to use a default bandwidth which uses equation (4.8) above, 

or simply opts for optimal bandwidth in which case kernel 

weighted local polynomial smoothing is implemented in 

(4.9). 

 
Figure 4.7: Depicts the performance of the Epanechnikov 

for p=1, and the bandwidth = 1 

 

 
Figure 4.8: Depicts the performance of the Epanechnikov 

for p = 1 andbandwidth = 5. 

 

 
Figure 4.9: Depicts the performance Epanechnikov for p = 1 

and the bandwidth = 7. 
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In Figure 4.7 through 4.9, it can be observed that the smaller 

the bandwidth, the more accurate the approximations of the 

kernel density estimate. For the same kernel, and for the 

same order of the polynomial, bandwidth equals to a unit 

produces a density estimate which captures more data points 

than the two competitors bandwidths. 

 

 
Figure 4.10: Depicts the performance Gaussian kernel for p 

= 5 and the bandwidth = 5 

 

 
Figure 4.11: depicts the performance Gaussian kernel for p 

= 5 and the bandwidth = 10 

 

Using the Gaussian kernel, Figure 4.10 through 4.11, one 

observes that for p=1 all through, with the bandwidth of a 

unit, one gets a density estimate which captures most data 

points. This confirms once again that the less is the 

bandwidth, the better is the approximation, but also the 

lesser smoother is the density estimate, as in Figure 14.    

 

 
Figure 4.12: Depicts the performance Epanechnikov2 for p 

= 5 and the bandwidth = 1 

 

 
Figure 4.13: Depicts the performance Epanechnikov2 for p 

= 5 and the bandwidth = 7 

 

In fitting the alternative Epanechnikov kernel weighted local 

polynomial, from figure 12 through 4.13, one observes the 

following points: for p = 5, bandwidth = 1, the kernel 

density estimate appears to have jigsaw features and in the 

process, it captures most data points (Figure 4.13). However, 

all the remaining kernel density estimates captured less data 

points even though smoother than the one depicted in Figure 

4.18. Examining the performance of the alternative 

Epanechnikov (epan2) in terms of bandwidth choice, one 

makes the following observations relative to Figure 18 

through 21. For p = 1 fixing h = {1,5,7,10}, the smaller the 

bandwidth (h = 1, Figure 4.18) the more accurate the 

estimates. However, the larger the bandwidth, (for instance h 

= 10, Figure 4.21), the more errors the estimates contain.  

 

 
Figure 4.18: Depicts the performance Epanechnikov2 for p 

= 5 and the bandwidth = 1 

 
Figure 4.20: Depicts the performance Epanechnikov2 for p 

= 5 and the bandwidth = 7 
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Figure 4.19: Depicts the performance Epanechnikov2 

kernel for p = 5 and the bandwidth = 5 

 
Figure 4.21: depicts the performance Epanechnikov2 for p 

= 5 and the bandwidth = 10 

 

Comparison between default bandwidth and optimal 

bandwidth selection. 

 

 
Figure 4.22: Depicts default bandwidth h = 12.25 

 

4.3 Summary 

 

The current chapter dealt with the implementation of the 

kernel density estimation. Data used have been visualized 

and different kernel density used.In the spectrum of data 

used, (see figure 4.2) trends, seasonality and cycles are not 

tractable, but random components of the time series. Time 

series analysis findings suggest strongly significant 

autocorrelation (Table 4.1).  

To verify absence of the cycles, sample spectral density has 

been carried out. Findings reveal the expected; that is, no 

annual cycles in the time series under study. As mentioned 

above, a time series with no trends, seasonality and cycles 

need different analytic treatment, particularly, the use of 

kernel density estimation methods. 

 

Having defined different kernel densities that can be used, 

the research compared, first, the performance of the 

Epanechnikov kernel against the performance of Parzen, 

Biweight, Epan2 (the alternative Epanechnikov) and the 

cosine kernels. Findings in this comparison suggest that only 

Epan2 is similar to the performance of the index kernel. All 

kernels considered display higher values of MAD as 

compared to the index kernel, which is the Epanechnikov. 

Secondly, a comparison of the performance of the index 

kernel versus Gaussian, Triangle and Rectangle kernels was 

made. Findings suggest strongly that only the Gaussian 

performs as good as the Epanechnikov kernel, but the two 

others exhibited under performance.   

 

The determination of the optimal bandwidth has been carried 

out under kernel weighted local polynomial smoothing setup 

(figure 4.8 through 4.10). Two aspects of the problem were 

examined, namely the degree of the polynomial that 

adequately fit the data points and the magnitude of the 

bandwidth required to attain bell fit.  In this respect, the 

research examined the performance of the Epanechnikov, 

the Gaussian and the alternative Epanechnikov (epan2) 

kernel using kernel weighted polynomial of degrees 1, 3 and 

7 for different values of the bandwidth, precisely for h = 

{1,5,7,10}. Findings suggest strongly that when the degree 

of the polynomial is great, and the measure of the bandwidth 

used small, the likelihood of getting bell-fit to the data is 

certainly very high. 

 

5. Conclusion and Recommendation 
 

5.1 Conclusion 

 

This intent of this chapter is to lay down conclusions based 

on research findings and eventually presents some 

recommendations either to decision makers and/or to the 

scientific community. 

 

In the current study, the main object has been to model tax 

revenues time series using kernel density estimation 

methods. The reason prompting the selection of this method 

has been that, upon visual inspection of the time series under 

study, the trend, seasonality and cycles were all not 

tractable, but random components (Figure 4.2). A 

preliminary time series analysis under Portmarteau test 

statistic and Bartlett’s test reveals respectively, at lag 12, 

existence of autocorrelation and of partial autocorrelation 

(Table 4.1, Figure 4.3). 

 

The attempt to examine presence of cycles in the time series 

under study has been carried out through sample spectral 

distribution analysis. Findings in this respect suggest 

eventually that the dataset under examination does not 

contain annual cycles. Since in figure 4.5, no jump is 

observed, this is a clear indication that no cycles are present 

in the data under study. A time series such as the one under 
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examination which is subjected to a regime with absence of 

trend, seasonality and cycles definitely need different 

analytical treatment than the usual time series analysis 

proposed in most time series and econometrics manuals. 

 

To model tax revenues, kernel density estimation method is 

proposed. Common or basic kernels that are often on the 

table in probability and statistics have been presented as well 

as their individual support. These include the epanechnikov, 

the alternative Epanechnikov (epan2), the biweight, the 

cosine, the Gaussian, the parzen, the rectangle and triangle 

kernel functions. Two main issues have been cleared in this 

respect, mainly, the choice of best kernel that has the 

potential to fit the data points and the determination of the 

bandwidth to use for that matter. 

 

Using the mean absolute deviation (MAD) to measure the 

performance of each kernel against the kernel index, 

precisely the epanechnikov kernel, and a comparison has 

been observed in that direction. The examination of the 

performance of Parzen, biweight, epan2 and cosine kernel 

against Epanechnikov singled out the epan2 displaying like 

performance as the index kernel. In similar evaluation of the 

performance of Gaussian, Triangle and Rectangle kernel 

versus the Epanechnikov, the Gaussian kernel displays 

greater similarities with the index kernel.  

 

Hence, to recap on the choice of the best kernel, by default, 

the Epanechnikov kernel remain the index kernel; the 

Gaussian and the alternative Epanechnikov can also be used 

to model tax revenues.  

 

It is important to state, on the basis of literature review that 

the question which kernel to use (to model tax revenue) is 

not often given much weight, but rather the determination of 

the bandwidth which regulate the smoothness of the kernel 

density that is being used. To this end, having chosen to use, 

for comparison purposes, the Epanechnikov, the Gaussian 

and the alternative Epanechnikov kernels, an optimal choice 

of the band with has been discussed through the kernel 

weighted polynomial smoothing setup. Two crucial aspects 

of the problem were evaluated, including the degree of the 

polynomial that precisely fit the data points and the level of 

the bandwidth that is required to achieve bell-fit.   

 

To this end, the performance of the Epanechnikov, the 

Gaussian and the alternative Epanechnikov (epan2) kernel 

using kernel weighted polynomial of degrees 1, 3 and 7 for 

different values of the bandwidth, precisely for h = 

{1,5,7,10} has been examined. As expected, findings 

suggest unequivocally that when the degree of the 

polynomial is high, and the bandwidth small, any of the 

three kernels attains a desirable bell-fit to the data under 

study.  

 

Hence, to predict or forecast tax revenues, either the 

Epanechnikov, the Gaussian or the alternative Epanechnikov 

(epan2) kernel can be used, with a careful choice of the pair 

(p,h) where p is the degree of the polynomial which is 

assumed to be reasonably high and h is the optimal 

bandwidth. 

 

 

5.2 Recommendations 

 

On the basis of findings in the current study, two 

recommendations addressed to decision makers and to 

scientific community, are plausible;  

1) If dataset whose distribution displays random walks 

characteristic are to be used for prediction or forecasting 

purposes, then kernel density method can be used to 

model the data set in question. 

2) Of all basic kernels, use any of the following kernels to 

predict future (Tax Revenues): the epanechnikov as the 

index kernel, the Gaussian and the alternative 

Epanechnikov as best two competitors capable of 

producing bell-fit of the data.  

Select optimal bandwidth and use of higher degree of 

polynomial enable desirable accuracy in the prediction.   
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