
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 3, March 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Strategies for Mitigating Flaky Tests in Automated
Environments

Rohit Khankhoje

Independent Researcher, Avon, Indiana, USA
Email: rohit.khankhoje[at]gmail.com

Abstract: Automated testing, a crucial aspect of software development, plays an essential role in assuring the dependability and
effectiveness of applications. Nevertheless, the presence of flaky tests, which exhibit unpredictable outcomes, presents a significant
challenge that undermines the stability and credibility of automated testing suits. This article delves into the key issue of flaky tests in
automated environments, offering a comprehensive analysis of their causes, ramifications, and strategies for mitigation. Through a
combination of scholarly literature review and empirical investigation, the study identifies crucial factors that contribute to test
flakiness, such as inconsistencies in the environment, concurrency problems, and inadequate test design. Additionally, it explores a
variety of mitigation strategies, including advanced detection methods, improved patterns in test design, and techniques for ensuring
environmental stability. The article presents a case study and experimental evaluations to demonstrate the effectiveness of these
strategies in real - world scenarios. The findings disclose that a combination of proactive test design, robust management of the
environment, and continual monitoring can significantly decrease the prevalence of flaky tests. This research contributes to the field of
software testing by providing actionable strategies for practitioners to enhance the dependability of their automated testing procedures,
as well as by establishing a foundation for future research in this vital area of software quality assurance.

Keywords: Automated Testing, Flaky Test, Software Testing, Quality Assurance

1. Introduction

In the contemporary realm of software development, test
automation has emerged as an indispensable tool,
empowering teams to efficiently validate the functionality,
performance, and reliability of software. Nevertheless, amid
the advancements in this field, the industry encounters a
substantial and persistent challenge: the prevalence of
unreliable tests. These unreliable tests are characterized by
inconsistent outcomes, fluctuating between successful and
unsuccessful states without any modifications to the code or
testing environment. This phenomenon not only jeopardizes
the credibility of testing results but also impedes the
efficiency of development processes.

The ramifications of unreliable tests extend beyond mere
inconveniences. In environments that rely on automated
testing, where dependability and consistency are of utmost
importance, unreliable tests can trigger a series of adverse
consequences. They erode trust in the accuracy of test
results, cause delays in delivery schedules, and necessitate
additional resources for troubleshooting and rectification.
Furthermore, the existence of unreliable tests can obscure
genuine issues, potentially leading to the release of faulty
software. This situation is particularly critical in Continuous
Integration/Continuous Deployment (CI/CD) pipelines,
where automated tests play a crucial role in the delivery
process.

Acknowledging the critical nature of this problem, this study
aims to analyze the perplexing nature of unreliable tests in
automated environments. The research paper aims to
investigate and clarify the underlying causes of test
unreliability, encompassing environmental instabilities and
inherent flaws in test design and scripting. A significant
emphasis of the study is to propose and assess various
strategic interventions and best practices that can be

implemented to effectively detect, manage, and mitigate
unreliable tests.

FlakyTest - In the realm of test automation, the term "flaky
test" refers to a type of test that demonstrates inconsistent
outcomes, alternating between successful and unsuccessful
results without any modifications to the underlying code or
environment. This lack of predictability renders flaky tests
problematic, as they are unable to reliably indicate whether a
software application is operating correctly. The sources of
flakiness can vary, encompassing timing discrepancies,
dependencies on external systems, non - deterministic
behaviors, or inadequately constructed test scripts. Flaky
tests erode confidence in automated testing procedures,
complicate the process of debugging, and may result in
failures being overlooked or unnecessary delays in the
software development life cycle. The resolution of flaky
tests is of utmost importance in order to uphold the
effectiveness and integrity of the automated testing process.

The extent of this paper encompasses a wide range of
software applications, including various automated testing
frameworks and environments. By conducting a thorough
review of existing literature, analyzing case studies, and
conducting empirical research, this study aims to provide a
comprehensive understanding of the phenomenon of flaky
tests. Its objective is to equip software testers, developers,
and quality assurance professionals with practical insights
and methodologies to effectively address this pervasive
challenge. Through direct confrontation of the issue of flaky
tests, the study aspires to make a significant contribution
towards enhancing the quality, reliability, and efficiency of
software development and testing processes within the realm
of automated testing.

Paper ID: SR231228182000 DOI: https://dx.doi.org/10.21275/SR231228182000 1950

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 3, March 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

2. Literature Review

Current methodologies employed in automated testing
environments to deal with unstable tests expose a significant
disparity between the identification and resolution of these
unforeseeable issues. While conventional approaches, such
as rerunning failed tests or isolating unstable ones, provide
temporary remedies, they frequently fail to address the
underlying causes of instability. This issue is worsened by
an excessive dependence on manual debugging procedures,
which are time - consuming and not easily scalable,
particularly in the context of extensive and intricate test
suites. Moreover, the absence of sophisticated tools and
frameworks specifically designed to systematically detect,
analyze, and rectify unstable tests further exacerbates this
gap. These tools are imperative for effectively predicting

potential instability and offering comprehensive analysis, yet
their development and integration into existing testing
environments have been restricted. Another crucial gap
pertains to the management of test environment stability;
fluctuations in the testing environment can often result in
unstable tests, but this aspect is frequently neglected in favor
of solely focusing on the test scripts themselves.
Furthermore, current methods encounter difficulties with
scalability and efficiency, as they are not always equipped to
handle the expanding size and complexity of test suites in
rapidly evolving development cycles. This situation
necessitates a transition towards more advanced, data -
driven, and AI - based approaches that can provide
predictive insights, automate the management of instability,
and ensure more robust and dependable test automation
frameworks.

Table 1: Traditional way to handle flaky test

Traditional way Approach Limitation

Rerunning Failed
Tests

Commonly, teams rerun tests that fail to determine if
they are flaky.

This method is time - consuming and doesn’t address the root
cause of flakiness. It may also lead to ignoring genuine failures,

assuming them to be flaky.

Isolation of Flaky
Tests

Flaky tests are identified and isolated from the main test
suite.

While this keeps the main suite stable, it often results in a
backlog of flaky tests that get less attention over time,

potentially hiding underlying issues.
Increased

Timeouts and
Delays

Increasing timeouts or adding delays to handle
synchronization and timing issues.

This can lead to increased test execution times and does not
guarantee the resolution of flakiness, especially if the root cause

is unrelated to timing.
Manual

Inspection and
Debugging

Manual investigation of flaky tests to identify and fix
issues.

This process is labor - intensive and not scalable. It also relies
heavily on the expertise and experience of the QA team.

Logging and
Monitoring

Implementing extensive logging to track down when and
why a test behaves flakily.

While useful for diagnosis, extensive logging can become
overwhelming and may not always lead to a straightforward

solution.
Test

Quarantining
Temporarily removing flaky tests from the test suite until

they are fixed.
Quarantining can lead to prolonged neglect of flaky tests, and

essential tests might be out of action for extended periods.

Static Analysis
Tools

Using static analysis tools to identify potentially flaky
tests based on code patterns.

These tools might not detect all flaky tests, especially those
caused by external factors like network issues or database

dependencies.

The examination of existing literature concerning the
characteristics and origins of unreliable tests uncovers a
multifaceted problem deeply ingrained in automated testing
environments. Unreliable tests are defined as those that
exhibit uncertain outcomes, inconsistently passing or failing
without any modifications to the code or external conditions.
The literature identifies multiple primary causes:
inconsistencies in the environment, such as variations in test
execution environments or external dependencies; timing
issues, including race conditions and insufficient wait times
in asynchronous operations; non - deterministic order of test
execution; and deficiencies in test design, such as lack of
isolation or dependence on external states. Studies also
highlight the use of external services and network
dependencies as significant contributors to the unreliability.
Additionally, the literature emphasizes the role of poorly
maintained test data and configuration issues in contributing
to this unpredictability. This body of work underscores the
intricate, often interconnected nature of factors leading to
unreliable tests, necessitating a comprehensive and nuanced
approach to their identification, management, and resolution.

Identifying Flaky Tests
Detecting flaky tests in automated testing environments is an
essential and pivotal undertaking that necessitates the
utilization of a combination of strategic approaches and
specific criteria. Provided below is a comprehensive
overview of the principal criteria and strategies employed
for this purpose. By correlating these strategies with the
particular criteria, teams have the ability to embrace a more
precise methodology in identifying and subsequently
mitigating the presence of inconsistency within their
collections of tests. This methodical association guarantees
that every facet of inconsistency is tackled with the utmost
efficient strategy, resulting in a more resilient and
dependable automated testing procedure. Furthermore, in
conjunction with these explicit correspondences, certain
tactics offer more comprehensive assistance and have the
potential to be efficiently implemented across various
standards.

Paper ID: SR231228182000 DOI: https://dx.doi.org/10.21275/SR231228182000 1951

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 3, March 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Figure 1: Criteria vs Strategy

Criteria for Detecting Flaky Tests:
1) Inconsistent Results: The identification of tests that

exhibit non - deterministic outcomes, namely
intermittent success and failure, under identical
conditions.

2) Environmental Sensitivity: Tests that solely fail in
specific environments or under particular configurations
may serve as an indication of flakiness.

3) Timing and Concurrency Issues: Tests that fail due to
timing problems or concurrency issues, such as race
conditions, are often characterized by their flaky nature.

4) Dependency on External Systems: The occurrence of
flakiness can be attributed to tests that rely on external
systems or services that lack consistency or are
occasionally unavailable.

5) Order - Dependent Tests: Tests that produce varied
outcomes depending on the sequence in which they are
executed can be indicative of flakiness.

Strategies for Detecting Flaky Tests:

1) Rerun Strategy: The automated repetition of failed

tests multiple times to ascertain the presence of
inconsistent results. Furthermore, the implementation of
a predefined threshold for reruns is recommended to
strike a balance between detection and resource
utilization.

2) Historical Analysis: The scrutiny of historical test data
to identify recurrent patterns of inconsistency.
Additionally, the utilization of machine learning
algorithms to forecast potential flaky tests based on past
behavior is advised.

3) Time - Based Analysis: The systematic monitoring of
tests for failures that exhibit a correlation with specific
time periods or occur subsequent to updates made to the
testing environment.

4) Parallel Execution in Varying Environments: The
execution of tests in parallel across diverse
environments or configurations to effectively identify
environment - sensitive flakiness.

5) Code Analysis: The application of static code analysis
techniques to uncover code smells or patterns that
commonly give rise to flakiness, such as improper
setup/teardown, shared state, or unmocked external
calls.

6) Dependency Analysis: The thorough examination of
tests to detect dependencies on external systems, and the
flagging of tests that display a high reliance on these
systems.

7) Order - Dependence Detection: The execution of tests
in a randomized order to expose any potential issues
related to order dependency.

8) Logging and Monitoring: The implementation of
comprehensive logging mechanisms for tests, and the
continuous monitoring of logs to identify patterns or
anomalies that suggest the presence of flakiness.

9) Community Feedback and Crowdsourcing: The
utilization of feedback provided by developers and
testers who regularly work with the tests. In addition,
crowdsourced insights can often accurately identify
flaky tests based on human experience and intuition.

By diligently applying these well - defined criteria and
strategies, teams can effectively and efficiently detect flaky
tests, thereby taking the initial step towards addressing and
mitigating their impact on the software development
lifecycle. This proactive approach is of paramount
importance for upholding the integrity and dependability of
automated testing suites.

Mitigation Strategies
The examination of the application and efficacy of every
tactic to alleviate unreliable tests necessitates an assessment

Paper ID: SR231228182000 DOI: https://dx.doi.org/10.21275/SR231228182000 1952

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 3, March 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

of how these approaches are put into practice and an
evaluation of their influence on the dependability and

effectiveness of the tests.

Table 2: Mitigation Strategy and Effectiveness

Strategy Implementation Effectiveness

Improving Test Isolation
Test cases are redesigned to be self - contained, with

mock objects or stubs used for external dependencies.

Enhances test reliability by removing external factors,
but requires careful management of mock objects to

ensure they accurately represent real - world scenarios.

Enhancing Test
Environment Stability

Standardized environments are created using
containerization tools.

Offers high consistency across test runs, reducing
environmental flakiness, but may introduce complexity

in managing containerized environments.
Addressing Timing and

Concurrency Issues
Incorporate explicit waits and synchronization

mechanisms in tests.
Reduces flakiness due to timing issues, but may

increase test complexity and execution time.

Data Management
Use separate databases or data sets for each test or test

run.
Prevents data - related flakiness; however, it requires

additional setup to manage isolated data environments.

Rerun Flaky Tests with
Analysis

Automatically rerun failed tests and analyze the
outcomes.

Useful for immediate identification of flaky tests, but
doesn’t address the root cause and could lead to

ignoring real issues.
Code Quality and Design

Patterns
Regular refactoring and adoption of patterns like Page

Object Model in UI tests.
Improves maintainability and readability of tests, but

requires ongoing effort and adherence to best practices.

Use of Advanced Tools
and Technologies

Employ specialized tools for flaky test detection and
predictive analytics.

Can significantly enhance the detection process;
however, the accuracy depends on the sophistication of

the tools.
Comprehensive Logging

and Monitoring
Detailed logging for each test run and monitoring of

test trends.
Facilitates in - depth analysis of flaky tests, though it
may generate large volumes of data to sift through.

Community and Team
Collaboration

Regular meetings, knowledge - sharing sessions, and
collective ownership of test quality.

Fosters a proactive approach to test maintenance, but
relies heavily on team culture and collaboration.

Regular Audits and
Reviews

Periodic reviews of the test suite and code reviews
focusing on test scripts.

Helps in early identification and rectification of
potential flakiness but requires dedicated time and

resources.

The efficacy of these strategies in addressing the issue of
unreliable tests is contingent upon the specific circumstances
in which they are employed, encompassing factors such as
the project's inherent characteristics, the testing
environment, and the team's dedication to ensuring quality
assurance. Employing a combination of multiple strategies
typically yields optimal outcomes in diminishing the
occurrence of test flakiness.

3. Discussion

Evaluating the efficacy of diverse mitigation techniques for
unreliable tests necessitates a nuanced comprehension of
how each approach addresses specific facets of instability in
automated testing. Strategies that isolate tests and
concentrate on ensuring each test is independent prove
highly effective in mitigating interdependencies and
interactions that contribute to unreliability, especially in the
case of unit and integration tests. However, their
effectiveness may be hampered by the intricate nature of
implementing extensive mocking and stubbing.

Approaches that foster environmental stability, which
involve standardizing and controlling the testing
environment, significantly diminish external factors that
contribute to unreliability. This strategy is particularly
critical for end - to - end tests as it ensures consistency
across test runs. Nevertheless, the effectiveness of this
strategy is somewhat tempered by the resource - intensive
process of setting up and maintaining controlled
environments.

The Rerun Strategy, which entails repeatedly executing
failed tests to identify instances of unreliability, provides a

straight forward and expeditious means of detecting flaky
tests. Although it effectively identifies non - deterministic
tests, it fails to address the underlying causes, thus serving as
a short - term resolution.

Code Quality and Design Patterns play a pivotal role in
enhancing the maintainability and resilience of test scripts.
By refactoring tests and employing patterns such as the Page
Object Model in UI testing, this strategy significantly
reduces the likelihood of encountering flakiness. However,
its effectiveness is limited by the continuous effort and
profound comprehension of design principles that it
demands.

Advanced Tools and Technologies, such as specialized
software for detecting flaky tests and AI - based predictive
models, offer efficient and often automated means of
identifying unreliable tests. Nevertheless, their effectiveness
may be constrained by integration challenges with existing
testing environments and the level of sophistication of the
tools.

Comprehensive Logging effectively facilitates in - depth
analysis of test executions, aiding in the diagnosis of the
underlying causes of unreliability. However, the
effectiveness of this strategy may be impeded by the copious
volume of data generated, which can become burdensome to
analyze.

Team Collaboration and Regular Audits ensure a proactive
approach to maintaining the health of tests. By fostering a
culture centered on quality and conducting ongoing health
checks of the tests, these strategies prove effective.
However, their effectiveness is contingent upon team

Paper ID: SR231228182000 DOI: https://dx.doi.org/10.21275/SR231228182000 1953

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 3, March 2019
www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

dynamics, active participation, and the allocation of
dedicated time for reviews.

In summary, the effectiveness of each mitigation strategy
varies depending on the types of tests, available resources,
and the specific challenges posed by unreliability. Often, a
combination of these strategies, tailored to the unique
context of the project, yields the most comprehensive and
effective solution in mitigating flaky tests.

4. Conclusion

The issue of unreliable tests in automated testing
environments poses a significant obstacle to the
dependability and efficiency of the software development
lifecycle. This research paper has delved into various
strategies for alleviating the impact of these unpredictable
tests, offering a comprehensive approach that encompasses
enhancing test isolation, stabilizing the testing environment,
addressing timing concerns, managing data effectively,
utilizing advanced tools, and fostering collaborative
teamwork.

The effectiveness of these strategies lies in their holistic
application. By integrating practices that isolate tests and
standardized testing environments, teams can significantly
reduce external factors that contribute to test instability.
Implementing flexible timing strategies and robust data
management practices further ensures that tests are less
vulnerable to timing and data - related inconsistencies. The
selective rerun of tests, along with comprehensive logging
and monitoring, provides valuable insights into the nature of
instability, enabling teams to identify and address underlying
issues more effectively.

These points open an avenue for future work -
 Flakiness primarily arises from the interactions among

various components of the system, the testing
infrastructure, and uncontrollable external factors. To
address flakiness, forthcoming research endeavors can
utilize monitoring and log analysis to propose
techniques that aid practitioners.

 One crucial measure to prevent flaky tests is the
establishment of straightforward testing guidelines,
which include recommendations on test size, external
resources, and assertion thresholds. In the future, studies
can reduce the manual effort required to enforce these
guidelines by offering static analysis tools and
incorporating code review processes.

 To effectively expose and reproduce flaky tests, future
work can take advantage of variability - aware reruns
and fuzzy testing. Such techniques have the potential to
automate the current manual test validations performed
by practitioners.

 Considering the frequency of flaky tests and the cost
associated with mitigating them, practitioners rely on
the flake rate to adapt their strategies. In the assessment
of flaky tests and the development of automated
solutions, future endeavors should take into account this
indicator.

 In some cases, practitioners mistakenly categorize
buggy and nondeterministic features as flaky tests,

leading them to disregard these issues as false alerts.
Further research should explore the consequences of
such confusions.

 Due to the challenges involved in reproducing and
debugging flaky tests, the task of fixing them is rarely
accomplished by practitioners. Therefore, future work
should concentrate on providing tools that aid in
identifying the root cause and reproducing flaky tests.

It is evident that there is no universal solution to the problem
of unreliable tests. Each strategy possesses its own unique
advantages and must be tailored to the specific context of the
project and testing environment. The key to success lies in a
balanced and adaptable approach, continuously adjusting
and refining strategies based on feedback and changing
project dynamics.

In conclusion, effectively mitigating the issue of unreliable
tests requires a multifaceted approach that combines
technical solutions, process enhancements, and a strong
emphasis on collaborative teamwork and continuous
learning. As the field of software testing continues to evolve,
it is crucial to stay updated on new challenges and solutions
in managing unreliable tests to ensure the delivery of high -
quality software products.

References

[1] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An
empirical analysis of flaky tests, ” in Proceedings of
the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, vol.16 - 21 - November - 2014.
Association for Computing Machinery, nov 2014,
pp.643–653.

[2] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry,
“REPiR: An Information Retrieval based Approach for
Regression Test Prioritization, ” FSE ’14, Hongkong,
2014.

[3] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes
my test alarm? automatic cause analysis for test alarms
in system and integration testing, ” in Proceedings of
the 39th International Conference on Software
Engineering, ser. ICSE ’17. IEEE Press, 2017, p.712–
723. [Online]. Available: https: //doi.
org/10.1109/ICSE.2017.71

[4] A. Micco, John & Memon, “Gtac 2016: How flaky
tests in continuous integration - youtube, ” https:
//www.youtube. com/watch?v=CrzpkF1 - VsA,
December 2016

[5] J. Listfield, “Google testing blog: Where do our flaky
tests come from?” https: //testing. googleblog.
com/2017/04/ where - do - our - flaky - tests - come -
from. html, April 2017

[6] F. J. Shull, J. C. Carver, S. Vegas, and N. Juristo, “The
role of replications in Empirical Software Engineering,
” Empirical Software Engineering, vol.13, no.2,
pp.211–218, 2008.

[7] O. S. Gomez, N. Juristo, and S. Vegas, “Understanding
replication of experiments in software engineering: A
classification, ” Information and Software Technology,
vol.56, no.8, pp.1033–1048, 2014.

Paper ID: SR231228182000 DOI: https://dx.doi.org/10.21275/SR231228182000 1954

