Synthesis and Characterization of Pure and Cu\(^{2+}\) Doped Zinc Oxide Nanoparticles Using Sol-Gel Method

M. S. Arul Divya Mary\(^1\), Dr. T. R. Jeena\(^2\)

\(^1\)Mphil Scholar, Department of Physics, Nanjil Catholic College of Arts and Science, Kaliyakkavilai, K.K.Dist-629 153
\(^2\)Assistant Professor, Department of Physics, Nanjil Catholic College of Arts and Science, Kaliyakkavilai, K.K.Dist-629 153

Abstract: Pure and Cu\(^{2+}\) doped ZnO nanoparticles of size less than 50nm are synthesized by simple Sol-gel method. The prepared nanoparticles were characterized by X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The structure, crystallite size, lattice parameters and microstrain of the prepared samples were studied using XRD analysis. The XRD spectra indicated hexagonal wurzite structure for both pure and doped samples. Also, the precise value of crystallite size and microstrain of the prepared samples were found using W-H plot. The metal oxide formation and phase purity of the prepared samples were further confirmed using FTIR analysis. The bands corresponding to ZnO formation are found around 495 cm\(^{-1}\) and that corresponding to Cu-O stretching vibration are found around 553 cm\(^{-1}\). The optical studies of the prepared samples were done using UV-Vis spectroscopy which showed indirect allowed type of transition for all samples. Also, the band gap of the prepared samples were found using Tauc plot as 3.20eV, 3.33eV and 3.31eV for pure, 1 wt. % Cu\(^{2+}\) and 3 wt. % Cu\(^{2+}\) doped ZnO nanoparticles respectively.

Keywords: ZnO nanoparticles, XRD, FTIR, UV-Vis, sol-gel method

1. Introduction

Zinc oxide is the one of the most important n-type semiconductor materials with a 3.37eV band gap at room temperature and 60meV excitation binding energy [S.R.Brintha. et al, 2015]. Zinc Oxide is due to its variant morphologies like nanorods, nanoflowers, nanowires, nanodendrites and nanoparticles have diameter in the range of tens of hundred of nanometer. This reduction in size improves its physical properties and hence gives different results as compared to the bulk Zinc Oxide [Robina Ashraf.et. al, 2013]. ZnO nanoparticles have applications in ultraviolet filtering, catalytic, anti-corrosion and antibacterial properties. Other applications of Zinc Oxide nanopowder include electro photography, photo printing, capacitors, protective coatings, antimicrobial and conductive thin films in LCDs, solar cells and blue laser diode [J.N. Hasnidawani.et.al, 2015]. Among various methods available for the preparation of nanopowders, the sol-gel method provides high purity and quality with homogeneous distributions of nanopowder [Deepak Davis.et.al, 2016]. In the present work Pure and Cu doped ZnO nanoparticles are prepared using sol gel method.

2. Experimental

Pure and Cu doped Zinc Oxide nanoparticles were synthesized using sol-gel method. In order to prepare a sol, stoichiometric amount of Zinc acetate Dihydrate and Sodium hydroxide were dissolved in 50 ml of distilled water and then copper nitrate in 1 and 3 Wt% were added as dopants to the solution respectively. Then the solution was mechanically stirred and a white precipitate formed to get dried Cu doped ZnO nanopowder.

3. Results and Discussions

3.1 XRD Studies

For Phase identification/structural characterization of as synthesized Zinc Oxide material, the most appropriate technique (ie) X-ray diffraction was employed. The XRD pattern of Pure ZnO, ZnO+1Wt%Cu\(^{2+}\) and ZnO+3Wt%Cu\(^{2+}\) nanoparticles prepared by sol-gel method is shown in the Fig:3.1(a).

![Figure 3.1 (a) XRD Pattern of Pure and Cu doped ZnO nanoparticles](image-url)

The diffraction peaks of pure ZnO were identified to originate from (100), (002), (101), (102), (110), (103) and...
The main diffraction peak is observed at 2θ value of 36.23°. The value of (β) observed for Pure ZnO is 0.1968. This peak is identified to originate from (101) plane of the Pure ZnO.

The diffraction peaks of 1Wt% and 3Wt% Cu doped ZnO nanoparticles were identified to originate from (100), (002), (101), (102), (110), (103) and (112) planes. All the peaks are indexed to wurtzite structure of ZnO having hexagonal phase, which is in good agreement with standard JCPDS (card no. 79-2205). The intensity of the diffraction peaks are increased on 1Wt. % and 3Wt. % Cu doped ZnO nanoparticles showing the degradation of crystallinity. The crystalline size of the nanopowder are estimated using the Scherrer’s formula [Mahmoud.W.E.et.al.2013],

\[
D = \frac{0.9\lambda}{\beta \cos \theta}
\]

Where, λ is the wavelength, β is the full width half maximum, θ is the Bragg’s angle.

Based on the Scherrer’s formula the average crystallite size of Pure ZnO, 1Wt. % and 3Wt. % Cu doped ZnO are observed as 43nm, 41nm and 34nm respectively. The micro strain of the prepared nanoparticles were found by using the formula,

\[
E = \frac{\beta}{4 \tan \theta}
\]

Based on this formula, the average strain of the Pure ZnO, 1Wt. % and 3Wt. % Cu doped ZnO are observed as 0.24514, 0.300174 and 0.228176 respectively.

Williamson–Hall plot (fig. 3.1(b)) was constructed to find the precise value of crystallite size and microstrain.

![Williamson–Hall plot for pure and Cu doped ZnO nanoparticles](image)

From the plot, the crystallite size and microstrain of the Pure ZnO, 1Wt. % and 3 Wt. % Cu doped ZnO are observed as shown in the table 3.1 respectively.

<table>
<thead>
<tr>
<th>S.NO</th>
<th>Sample details</th>
<th>Lattice parameter</th>
<th>Crystalline size</th>
<th>Microstrain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a</td>
<td>c</td>
<td>XRD</td>
</tr>
<tr>
<td>1.</td>
<td>Pure ZnO</td>
<td>3.25142</td>
<td>5.20903</td>
<td>43nm</td>
</tr>
<tr>
<td>2.</td>
<td>ZnO + 1W% Cu</td>
<td>3.25196</td>
<td>5.21014</td>
<td>41nm</td>
</tr>
<tr>
<td>3.</td>
<td>ZnO + 3W% Cu</td>
<td>3.22999</td>
<td>5.22999</td>
<td>34nm</td>
</tr>
</tbody>
</table>

3.2 FTIR Studies

![FTIR spectra of Pure ZnO and Cu doped ZnO nanoparticles](image)

Fig. (3.2) shows the FTIR spectrum of the pure, 1wt.% Cu2+ doped and 3wt.% Cu2+ doped ZnO nanoparticles in the range of 400-4000 cm⁻¹. Strong absorbance below 800 cm⁻¹ is the characteristics of metal oxides. Here, in all the three samples, bands at around 495 cm⁻¹ are observed that corresponds to the ZnO stretching vibration. Also, the absorption bands at around 606 cm⁻¹ are due to C-H bending and that at 876 cm⁻¹ is due to O-H bending. The band at 1437 cm⁻¹ and 2470 cm⁻¹ correspond to C=OH stretching of carboxylate and C-H stretching respectively. A broad absorption band found at around 3449 cm⁻¹ can be assigned to O-H stretching. In the Cu2+ doped ZnO samples, the bands around 553 cm⁻¹ and 500 cm⁻¹ are observed which corresponds to the Cu-O stretching vibration. In those samples the intensities of bands corresponding to ZnO are found to decrease which indicates the impregnation of Cu2+ in the doped samples.
3.3 UV-Vis Studies

The UV-Vis absorption study was carried out in order to find the optical absorbance of the synthesized pure and Cu-doped ZnO samples. Fig. 3.3(a) shows the UV-absorbance spectrum of pure ZnO, 1Wt. % and 3Wt. % Cu doped ZnO nanoparticles respectively. Strong absorption bands at around 363nm are observed which corresponds to the absorption edge of the prepared samples.

The band gap of the pure and Cu doped nanoparticles are found using Tauc’s plot. The Tauc’s plot is drawn for \((\alpha h\nu)^{1/2}\) along x-axis and \(h\nu\) along y-axis as shown in the fig.3.3(b)

4. Conclusion

In the present study, Pure and Cu\(^{2+}\) doped ZnO nanoparticles of size less than 50nm are synthesized by simple Sol-gel method. The prepared nanoparticles were characterized by X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and UV-Vis spectroscopy. The structure, crystallite size, lattice parameters and microstrain of the prepared samples were studied using XRD analysis. The XRD spectra indicated hexagonal wurtzite structure for both pure and doped samples. Also, the precise value of crystallite size and microstrain of the prepared samples were found using W-H plot. The metal oxide formation and phase purity of the prepared samples were further confirmed using FTIR analysis. The bands corresponding to ZnO formation are found around 495 cm\(^{-1}\) and that corresponding to Cu-O stretching vibration are found around 553 cm\(^{-1}\). The optical studies of the prepared samples were done using UV-Vis spectroscopy which showed indirect allowed type of transition for all samples. Also, the band gap of the prepared samples were found using Tauc plot as 3.20eV, 3.33eV and 3.31eV for pure, 1 wt. % Cu\(^{2+}\) and 3 wt. % Cu\(^{2+}\) doped ZnO nanoparticles respectively.

References