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Abstract: The main objective of this paper is to study the Bayes estimators of the parameter of Double Exponential distribution under
different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator
(MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the
problem to solve it accurately. Here the conjugate (Gamma) prior is used as the prior distribution of Double Exponential distribution for
finding the Bayes estimator. In our study, we used different symmetric (squared error and quadratic) and asymmetric (MLINEX and
NLINEX) loss functions. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.
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1. Introduction

Double exponential distribution is a very popular continuous
probability distribution. It has generally two parameters. One
is location parameter @ and the other is scale parameter A.
Practically location parameter has limited use. Here only
scale parameter is considered to estimate. A continuous

random variable X is said to have Double exponential (4, &)
distribution if its probability density function (pdf) is given
by [1]

|x-6]
1 = .
f(xa0)=3;°  TEX<@mmw<O<0A>0 g
0 ; otherwise
Where, @ is the location parameter and Ais the scale
parameter.

1
Replacing I by p we get,

p\x 9\

f(x;p,0)=

Double exponential distribution is used in hydrology to
extreme events such as annual maximum one- day rainfall,
temperature and river discharges. This distribution has also
been used in speech recognition to model priors on discrete
Furrier transform (DFT) coefficients and in joint
photographic experts group (JPEG) image compression to
model AC coefficients generated by adiscrete cosine
transform (DCT) [2]. Here we are interested to find the
Bayes estimator of scale parameter A under different loss
functions.

—0< X<, p>0 (2)

2. Literature Survey

Double exponential distribution plays an important role in
data analysis. Many authors have developed inference
procedures for exponential model. For example, Rahman et

for power function distribution [9]. Kulldorff (1961) devoted
a large part of book to the estimation of the parameters of the
exponential distribution based on completely or partially
grouped data [11]. Sarhan (2003) obtained the empirical
Bayes estimators of exponential model [12]. Janeen (2004)
discussed the empirical Bayes estimators of the parameter of
exponential distribution based on record values [14]. To
more details the work of Balakrishnan et al. and Al-Hemyari
of exponential distribution [13, 14] can be seen.

3. Prior and Posterior Density Function of
Parameter p

Considering a gamma prior for the parameter p having
density function [6]

7(p) = ﬁ £ e tia, f,p>0 3)

Then the posterlor density function of parameter p for the
given random sample x is given by [5]

{ﬁ F(x,/ p)}z(p)

i=1

| {1_] f(x/ p)}r(p)dp

[g] Zh g o pa-
g

Z\x -01+8)p pein- -1

f(p/x)=

pa—ldp

J‘e* Z‘Xﬁg‘*ﬂ)P pa+n—1dp
0

(Z|Xi _0| +ﬂ)a+ne*(2\xi70\+ﬁ)p p(a+n)—1

f(p/x)=

. - . . I'(a+n
al. (2012) studied the Bayes estimators under conjugate prior ( ) @)
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This implies that
f(p/x)~Gammafa+n, Y |x — 6|+ 5]

4. Different Estimators of Parameter p

Here, Bayes estimator of the parameter p for different loss
functions along with maximum likelihood estimator has been
determined.

4.1 Maximum Likelihood Estimator (MLE) of Parameter
y)

Suppose, X =(X,, X,,....., X, ) is a random sample of
size n drawn from Double exponential distribution. Let
(X;s XpyeeeeeyX,) s the  observe  value  of

(X;, Xy5yeeeey X)) - Then the likelihood function of the

parameter A for the random sample (X;, X,,......,X,), is
given by [5]

2%

=

L(/I/x)=f[f(xi;}t)=(%jne y

The natural logarithm of likelihood function is given by
n

2% 4

log L(1/x) =-nlog(21) —HT

2%~

IogL(i/x)z—nIogZ—nIogl—iﬂT (5)
Now the MLE of A is obtained by solving [5] the following
equation
x4
8IogL(ﬂ,/x):0:>_£+i:1 : 0
oA A A
=>ni=>|x -6
i=1
. 20
Hence, AMLE = = is the MLE of parameterﬂ

where, 0 is known.

4.2. Bayes Estimator of Parameter A for Squared Error
(SE) Loss Function

Here we have determined Bayes estimator of A :E for

squared  error  loss defined by
AN A 2

L(p, p)=(p-P) ()

For squared error loss function Bayes estimator is the mean

of posterior density function, so from (4) the Bayes estimator

function  [6]

A

a+n
of p is given by Pgse :W . Since we have
i
1 : 1 _Dx-0+8
P=— hence, AssE=——= is the
A a+n
pBSE

Bayes estimator of A under squared error loss function.

4.3. Bayes Estimator of Parameter A for Quadratic Loss
(QL) Function

Let, the quadratic loss function is defined as [7]

L(p; p) = p;pp 6)

Under this loss function the Bayes estimator of P is
obtained by solving the equation

8 A
— [L(p: p)f (p/x)dp =0
op

o (o] i -dtepr
66 p ['(a+n)

e*(z‘xi*9‘+ﬂ)p p(a+n)—1dp — 0

(Z|Xi_‘9|+ﬂ)a+n 2 —Olx=0+8)p _ (a+n-2)-1
= e e P

_ (Z|Xi _9| +ﬂ)a+” -Qx=01+8)p _ (a+n-1)-1

= T(a+n) fe P dp

(S
['(a+n)

I'a+n-2)
(Z|Xi _ 6?| + f) 2
_Qx-0+A""  r(a+n-1)
- I'(a+n) S|x -0+ gy~
Lho_Tan-h  fx-g+p)

Ollx—6+p)“""  T(a+n-2)
= Poo, = (@+n-2)
RO EEY)

Since we have P =7 hence, AsqL = (Z((in_n‘gjg)ﬂ) )

the Bayes estimator of A under quadratic loss function.
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4.4. Bayes Estimator of Parameter A for MLINEX Loss
Function

Let, the MLINEX is defined as

AN\C n

L(p;p)=w % —clog% -1,0>0,c=0 (7)

loss function [7]

For MLINEX loss function the Bayes estimator of 4:3 is

p
8 1
obtained by Pgy. = [E(p‘° /X)] c (8)

Here, E(p~° / x) =Ip‘°f(p/x)dp

_ (Z|Xi _g|+ﬂ)“+n T - %i=01+8)p _ (a+n—c)—1
=T T(a+n) ! © P dp
_ Q-6+ TI'(a+n-c)

[(a+n) O x -6+
I'(a+n-c) .
W(Z|Xi —6|+ )

Therefore from (8) we get,
1

ApBML = {M} C(Z‘,|Xi _0|+,B)_1

S E(p/x) =

I'(a+n)
Since we have P = Z hence,
1
AeML = {%T (Z|Xi — 6|+ B) is the Bayes

estimator of 4 under MLINEX loss function.

4.5. Bayes Estimator of Parameter A for NLINEX Loss
Function

Let, the NLINEX loss function [8] of the form
L(D) =k|exp(cD) +cD? —cD-1k >0,c >0 (9)

Here, D represents the estimation error i.e., D= p—p.

is [6]

S |-

For NLINEX loss function Bayes estimator of A=
given by

Pen. =-[INE {exp(-cp)}-2E,(p)l/(c+2) (10)
Where, Ep (-) stands for posterior expectation

Now, E, {exp(-cp)} = j e f(p/x)dp
0

_ (Z|Xi —9| +ﬂ)a+n Te_(HZ\x,—HHﬂ)p p(‘””)’ldp
I'(x+n) 5

_ Q% -6+ [(a +n)

T'(a+n) Cc+ > [x -6+
_{C+Z|xi 0]+ ﬂ](M)
D% —6]+p

—(a+n)
-~ E p{eXp(—Cp)} = {14‘ m}
So, InE {exp(-cp)}

c
=—(a+n) In(1+—z|xi - H| N ﬂj

Again, E (p) =I pf (p/x)dp
0

(11)

_ (Z|Xi - 0| + ﬂ)(a”‘) ]Ee*(z‘xi -0l+p)p p(a+n+1)—ldp

I'(a+n) 5
_ Q% =6+ T(a+n+l)
I'(a+n) Q% 6|+ g«
(a+n)
S E = 12
T iy (12)
Putting (11) and (12) in (10) we obtain
A c
Pon. = {— (a+n) In(1+ WJ
(a+n)
2"/ 2
x4 +ﬂ)} €2
Since we have P = z hence,
/AIBNL _ (c+2) is the
In(1+ Cj
s <22|xi -0+ p)
T -d+p)

Bayes estimator of A under NLINEX loss function.

5. Empirical Study

A A A

A
In order to compare estimators Amie, Asse, 4oL, AemL

and Asn.We have considered MSE of the estimators. The

MSE of estimator A is defined as

MSE(1) = E[A— AJ* =Var(2) +[Bias()]*. In this
study 10,000 Samples have generated for each case. To

obtain the variance of 4, we have used the true (assume)

value of the parameter A under consideration. Again we
have obtained the estimated value, bias and MSE of the
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estimators by using R- Code simulation from the Double 2
exponential distribution. The results and their graphs using s MLE
MS- Excel are presented below: = ESE
Table 1: Estimated value, Bias and MSE of different EQL
estimators of parameter A of Double exponential m BEML.
distribution when ¢ =1, f=2,0=1,A=1andc=1 mENL
n Criteria A " " N n 1 1.5 2 2.5
Awie | Aese | Aol | Aeme | Asne Parameter (1)
5 | Estimated Value | 0.504 | 0.807 | 0.953 | 1.045 | 1.023 Figure 2: Graph of MSEs of different estimators of parameter
Bias -0.301 |-0.090-0.366/ -0.096 | -0.063 A of Double exponential distribution.
MSE 0.215 | 0.093 | 0.332| 0.132 | 0.089
10| Estimated Value | 0.769 | 0.592 | 1.159| 0.889 | 1.059 . : ; ;
Bias -0.309 | -0 188 |-0.009] -0.111 | -0.176 . Table 3: Estimated value, Bias and MSE ofdlffergnt .
MSE 0.157 | 0.087 | 0.073| 0.073 | 0.081 estimators of parameter A of Double exponential distribution
15| Estimated Value | 0.450 | 0.694 [ 0.785| 0.574 | 1.324 wheren =10, =1, f=1,A=1andc=1
Bias -0.304 |-0.225|-0.117| -0.175 | -0.215 0 Criteria ~ ~ ~ ~ ~
_MSE 0.133 | 0.086 | 0.060 | 0.071 | 0.081 Awie | Asse | Asol| Aem | Aen
20| Estimated Value | 0.558 | 0.721 | 0.877 | 0.965 | 0.904 _
Bias -0.305 | -0.245|-0.165| -0.208 | -0.239 -2.0| Estimated Value | 0.799 | 0.776 | 0.791| 0.859 |0.561
MSE 0.124 | 0.088 | 0.060| 0.073 | 0.085 Bias -0.309 | -0.280 |-0.118| -0.205 |-0.262
25| Estimated Value | 0.440 | 0.850 | 0.777 | 0.664 | 0.789 __MSE 0.157 | 0.130 |0.088| 0.104 | 0.119
Bias -0.307 1-0.2571-0.197| -0.227 | -0.249 -1.5| Estimated Value | 0.795 | 0.682 | 0.634 | 0.424 | 0.478
MSE 0.118 1 0.089 | 0.065 | 0.076 | 0.085 Bias -0.306 | -0.279 |-0.118| -0.203 |-0.260
30| Estimated Value | 0.858 | 0.916 | 0.924| 0.791 | 0.657 __MSE 0.155 | 0.129 10.088 | 0.103 | 0.119
Bias -0.306 | -0.266 |-0.215| -0.238 | -0.259 -1.0| Estimated Value | 0.601 | 0.670 | 0.797| 0.765 |0.578
MSE 0.114 | 0.089 | 0.068 | 0.077 | 0.086 Bias -0.304 | -0.277 {-0.118| -0.204 {-0.261
MSE 0.154 | 0.127 | 0.086 | 0.104 | 0.121
— 1.0| Estimated Value | 0.720 | 0.631 |0.837| 0.890 | 0.627
0.35 Bias -0.311 | -0.279 [-0.116| -0.205 |-0.262
0.3 +— sMLE MSE 0.156 | 0.127 | 0.088 | 0.104 | 0.120
025+ 1.5| Estimated Value | 0.676 | 0.583 | 0.653 | 0.728 | 0.668
= 02 mESE Bias -0.303 | -0.282 |-0.114| -0.207 |-0.265
g I}ld: BQL MSE 0.154 | 0.129 |0.092|0.1031]0.120
437 1 . 2.0| Estimated Value | 0.862 | 0.822 [0.796 | 0.534 | 0.687
0.1 m EML Bias -0.304 | -0.280 |-0.116| -0.206 |-0.267
005 - = ENL MSE 0.153 | 0.129 | 0.089| 0.102 |0.121
) ,
510 15 20 25 30 02
Sample Size (n) = MLE
Figure 1: Graph of MSEs of different estimators of 0.13 4
parameter A for Double exponential distribution under B = BSE
different sample size. = BQL
_ _ _ 0.03 1 =BML
Table 2: Estimated value, Bias and MSE of different
estimators of parameter A of Double exponential 0- 345 41 1 15 2 =ENL
distribution when N=20,¢=2,=3,0=2andc=2 Parameter (8)

2 Criteria A A A A ; Figure 3: Graph of MSEs of different estimators of
Awmie | Asse | Agqu|AemL| dene parameter @ for Double exponential distribution.
1.0 | Estimated Value | 0.355 | 0.501 | 0.654|0.601 | 0.552
Bias -1.307 | -1.235|-1.156|-1.178/-1.209| 6 Real Study
MSE 1.739 | 1.550 | 1.368|1.417|1.489
1.5 ESt'mEg'.ed Value | 0.855 | 0912 10.796 | 0.72110828| 0 fiving Double exponential distribution, temperature data
ias -0.959 | -0.917 |-0.814|-0.840|-0.891 . . !
MSE 0989 | 0.896 |0.729|0.772| 0.852 h_av((Je been uged in th_ls paper. Monthly maximum temperature
2.0 | Estimated Value | 0.845 | 1.407 | 1.445|1.337|1.285| (in"C)datain 2012 in Sylhet have been chosen.
Bias -0.611 | -0.600 |-0.461|-0.499(-0.583
MSE 0.492 | 0.463 | 0.334|0.365|0.439
2.5 | Estimated Value | 2.506 | 1.943 |2.673|1.948|1.661
Bias -0.277 | -0.295 |-0.127{-0.159|-0.260
MSE 0.277 | 0.245 | 0.203]0.209 | 0.228
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Table 4: Estimated value, Bias and MSE of different
estimators of parameter A of Double exponential
distribution when N=12,¢ =2, =3,0=2andc=2

A Criteria n n A A A
Awmie | Asse | Ao |Aeme| Aene
1.0 |Estimated Value| 29 25 29 28 25
Bias 28 24 28 27 24
MSE 784 579 798 735 | 581
1.5 |Estimated Value| 29 25 29 28 25
Bias 27 23 27 26 23
MSE 756 555 770 707 557
2.0 |Estimated Value| 29 25 29 28 25
Bias 27 23 27 26 23
MSE 729 532 742 681 533
2.5 |Estimated Value| 29 25 29 28 25
Bias 26 22 26 25 22
MSE 702 509 715 655 | 511
1004
sMLE
00
H 600 EESE
= 400 - “BQL
200 — ®=EML
{1 ENL
1 135 2 2.5
Parameter (i)

Figure 4: Graph of MSEs of different estimators of
parameter A of Double exponential distribution

Result and Discussion

Table 1 shows the variation in the performance of the
estimators for varying sample size. It has been seen that the

biases and MSEs of ~ AmLe remain the largest for almost

all cases (figure 1). Now we compare the rest of the
estimators. The bias of all other estimators shows negatively
increasing trend except for some cases. For sample size

A
greater than 5 the bias of Aggr is smaller than all other

N
estimators. But when sample size is 5 bias of Asmiand bias

of AsnL dominate the bias of AsoL. Again the estimated bias

A A
for the two estimators Asse and Asn.  shows more or less
similar pattern. When sample size increases the MSEs of

A

estimators decreases. The MSEs of AggL decreases sharply

at the beginning and then it follows a parallel trend. For
sample size greater than 5 the MSEs of all estimators are

larger than that of AsoL. Again the MSEs of Asse and

Asne show approximately similar pattern (figure 1). Table 2
shows variation in the estimators, biases and MSEs with
respect to scale parameter 1. Bias and MSEs of all

N
estimators’ decreases with increasing A except for Amce and

N
these are least for AgoL(figure 2). Table 3 shows the
variation in the estimators, biases and MSEs with respect to

the location parameter @ . The values of & has no effect on
bias and MSE whether it is positive or negative. In this case

A

the bias and MSE of AgqL is least than all other estimators
(figure 3). Again for varying 6, Asse and AsnLare close to
one another. Table 4 shows variation in estimators; biases
and MSEs with respect to scale parameter A for real data.
MSEs of all estimators’ decreases with increasing 4 and these

A
are least for Agse (figure 4). Also bias of all estimators’
decreases and remain same for some cases with increasing A

and these are least for both Asse, Asse . Again for varying

N n

J, bias of both Agse and A s show similar pattern.
8. Conclusion

In this study, we have considered the Bayesian estimation
approach to estimate the scale parameter of Double
exponential distribution. In Bayesian approach, squared
error, quadratic, MLINEX and NLINEX loss functions have
been used. We conducted a comprehensive simulation and
real data to judge the relative performance of the Bayes
estimator under different loss functions at different sample
sizes and varied parameters of prior distribution. From above
analysis and graphical presentation we conclude that Bayes
estimator under Quadratic loss function is better than all
other estimators for simulated data. Also it is seen that Bayes
estimator under NLINEX loss function is close to Bayes
estimator under Squared Error (SE) loss function for real
data. Finally conclude that, non-classical estimator (the class
of Bayes estimator) is better than classical estimator (MLE).
Therefore, Bayesian approach under quadratic loss function
can be suggested to estimate the parameter of Double
exponential distribution.
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