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Abstract: The main objective of this paper is to study the Bayes estimators of the parameter of Double Exponential distribution under 

different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator 

(MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the 

problem to solve it accurately. Here the conjugate (Gamma) prior is used as the prior distribution of Double Exponential distribution for 

finding the Bayes estimator. In our study, we used different symmetric (squared error and quadratic) and asymmetric (MLINEX and 

NLINEX) loss functions. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically. 
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1. Introduction  
 

Double exponential distribution is a very popular continuous 

probability distribution. It has generally two parameters. One 

is location parameter θ and the other is scale parameter λ. 

Practically location parameter has limited use. Here only 

scale parameter is considered to estimate. A continuous 

random variable X is said to have Double exponential ),(   

distribution if its probability density function (pdf) is given 

by [1] 
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Where,   is the location parameter and is the scale 

parameter.  

Replacing 


1
by p we get,  
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Double exponential distribution is used in hydrology to 

extreme events such as annual maximum one- day rainfall, 

temperature and river discharges. This distribution has also 

been used in speech recognition to model priors on discrete 

Furrier transform (DFT) coefficients and in joint 

photographic experts group (JPEG) image compression to 

model AC coefficients generated by a discrete cosine 

transform (DCT) [2]. Here we are interested to find the 

Bayes estimator of scale parameter  under different loss 

functions. 
 

2. Literature Survey 
 

Double exponential distribution plays an important role in 

data analysis. Many authors have developed inference 

procedures for exponential model. For example, Rahman et 

al. (2012) studied the Bayes estimators under conjugate prior 

for power function distribution [9]. Kulldorff (1961) devoted 

a large part of book to the estimation of the parameters of the 

exponential distribution based on completely or partially 

grouped data [11]. Sarhan (2003) obtained the empirical 

Bayes estimators of exponential model [12]. Janeen (2004) 

discussed the empirical Bayes estimators of the parameter of 

exponential distribution based on record values [14]. To 

more details the work of Balakrishnan et al. and Al-Hemyari 

of exponential distribution [13, 14] can be seen. 
 

3. Prior and Posterior Density Function of 

Parameter p 
 

Considering a gamma prior for the parameter p having 

density function [6] 

(3)                        0, , ; )( 1 
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Then the posterior density function of parameter p for the 

given random sample x is given by [5] 
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This implies that 
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4. Different Estimators of Parameter p 
 

Here, Bayes estimator of the parameter p for different loss 

functions along with maximum likelihood estimator has been 

determined. 

 

4.1 Maximum Likelihood Estimator (MLE) of Parameter 

λ 

 

Suppose, ),......,,( 21 nXXXX  is a random sample of 

size n drawn from Double exponential distribution. Let 

),......,,( 21 nxxx  is the observe value of

),......,,( 21 nXXX . Then the likelihood function of the 

parameter  for the random sample ),......,,( 21 nxxx , is 

given by [5] 
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The natural logarithm of likelihood function is given by 
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Now the MLE of  is obtained by solving [5] the following 

equation 
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 is the MLE of parameter  

where, θ is known. 

 

4.2. Bayes Estimator of Parameter   for Squared Error 

(SE) Loss Function 

Here we have determined Bayes estimator of 
p

1


 for 

squared error loss function [6] defined by                                                      

(5)                                               )(),( 2ppppL 


For squared error loss function Bayes estimator is the mean 

of posterior density function, so from (4) the Bayes estimator 

of p is given by
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is the 

Bayes estimator of  under squared error loss function. 
 

4.3. Bayes Estimator of Parameter   for Quadratic Loss 

(QL) Function 

 
Let, the quadratic loss function is defined as [7]
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Under this loss function the Bayes estimator of p
 is 

obtained by solving the equation
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1
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the Bayes estimator of  under quadratic loss function. 
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4.4. Bayes Estimator of Parameter   for MLINEX Loss 

Function 

 
Let, the MLINEX loss function [7] is defined as 
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For MLINEX loss function the Bayes estimator of 
p

1
  is 

obtained by   (8)                         )/(
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Therefore from (8) we get, 
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is the Bayes  

estimator of  under MLINEX loss function. 

 

4.5. Bayes Estimator of Parameter   for NLINEX Loss 

Function 

 

Let, the NLINEX loss function [8] of the form

  (9)    0,0,1)exp()( 2  ckcDcDcDkDL

Here, D represents the estimation error i.e., ppD 
^

.  

For NLINEX loss function Bayes estimator of 
p

1
 is [6] 

given by 

(10)    )2/()](2)}{exp([ln
^

 cpEcpEp ppBNL                               
 

Where, (.)pE stands for posterior expectation 
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Putting (11) and (12) in (10) we obtain 
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Bayes estimator of  under NLINEX loss function. 

 

5. Empirical Study 
 

In order to compare estimators MLE



 , BSE



 , BQL



 , BML





and BNL



 we have considered MSE of the estimators. The 

MSE of estimator 


  is defined as

22 )]([)(][)(


  BiasVarEMSE . In this 

study 10,000 Samples have generated for each case. To 

obtain the variance of


 , we have used the true (assume) 

value of the parameter  under consideration. Again we 

have obtained the estimated value, bias and MSE of the 
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estimators by using R- Code simulation from the Double 

exponential distribution. The results and their graphs using 

MS- Excel are presented below: 

 
Table 1: Estimated value, Bias and MSE of different 

estimators of parameter   of Double exponential 

distribution when 1c and 1,1,2,1  
 

n Criteria 

MLE

^

  BSE

^

  BQL

^

  BML

^

  BNL

^

  

5 Estimated Value 

Bias 

MSE 

0.504 

-0.301 

0.215 

0.807 

-0.090 

0.093 

0.953 

-0.366 

0.332 

1.045 

-0.096 

0.132 

1.023 

-0.063 

0.089 

10 Estimated Value 

Bias 

MSE 

0.769 

-0.309 

0.157 

0.592 

-0.188 

0.087 

1.159 

-0.009 

0.073 

0.889 

-0.111 

0.073 

1.059 

-0.176 

0.081 

15 Estimated Value 

Bias 

MSE 

0.450 

-0.304 

0.133 

0.694 

-0.225 

0.086 

0.785 

-0.117 

0.060 

0.574 

-0.175 

0.071 

1.324 

-0.215 

0.081 

20 Estimated Value 

Bias 

MSE 

0.558 

-0.305 

0.124 

0.721 

-0.245 

0.088 

0.877 

-0.165 

0.060 

0.965 

-0.208 

0.073 

0.904 

-0.239 

0.085 

25 Estimated Value 

Bias 

MSE 

0.440 

-0.307 

0.118 

0.850 

-0.257 

0.089 

0.777 

-0.197 

0.065 

0.664 

-0.227 

0.076 

0.789 

-0.249 

0.085 

30 Estimated Value 

Bias 

MSE 

0.858 

-0.306 

0.114 

0.916 

-0.266 

0.089 

0.924 

-0.215 

0.068 

0.791 

-0.238 

0.077 

0.657 

-0.259 

0.086 

 

 
Figure 1: Graph of MSEs of different estimators of 

parameter   for Double exponential distribution under 

different sample size.
 

 

Table 2: Estimated value, Bias and MSE of different 

estimators of parameter   of Double exponential 

distribution when 2c and 2,3,2,20  n  

  Criteria 

MLE

^

  BSE

^

  BQL

^

  BML

^

  BNL

^

  

1.0 Estimated Value 

Bias 

MSE 

0.355 

-1.307 

1.739 

0.501 

-1.235 

1.550 

0.654 

-1.156 

1.368 

0.601 

-1.178 

1.417 

0.552 

-1.209 

1.489 

1.5 Estimated Value 

Bias 

MSE 

0.855 

-0.959 

0.989 

0.912 

-0.917 

0.896 

0.796 

-0.814 

0.729 

0.721 

-0.840 

0.772 

0.828 

-0.891 

0.852 

2.0 Estimated Value 

Bias 

MSE 

0.845 

-0.611 

0.492 

1.407 

-0.600 

0.463 

1.445 

-0.461 

0.334 

1.337 

-0.499 

0.365 

1.285 

-0.583 

0.439 

2.5 Estimated Value 

Bias 

MSE 

2.506 

-0.277 

0.277 

1.943 

-0.295 

0.245 

2.673 

-0.127 

0.203 

1.948 

-0.159 

0.209 

1.661 

-0.260 

0.228 

 

 
Figure 2: Graph of MSEs of different estimators of parameter 

  of Double exponential distribution.
 

 

Table 3: Estimated value, Bias and MSE of different 

estimators of parameter   of Double exponential distribution 

where 1c and 1,1,1,10  n  

  Criteria 

MLE

^

  BSE

^

  BQL

^

  BML

^

  BNL

^

  

-2.0 Estimated Value 

Bias 

MSE 

0.799 

-0.309 

0.157 

0.776 

-0.280 

0.130 

0.791 

-0.118 

0.088 

0.859 

-0.205 

0.104 

0.561 

-0.262 

0.119 

-1.5 Estimated Value 

Bias 

MSE 

0.795 

-0.306 

0.155 

0.682 

-0.279 

0.129 

0.634 

-0.118 

0.088 

0.424 

-0.203 

0.103 

0.478 

-0.260 

0.119 

-1.0 Estimated Value 

Bias 

MSE 

0.601 

-0.304 

0.154 

0.670 

-0.277 

0.127 

0.797 

-0.118 

0.086 

0.765 

-0.204 

0.104 

0.578 

-0.261 

0.121 

1.0 Estimated Value 

Bias 

MSE 

0.720 

-0.311 

0.156 

0.631 

-0.279 

0.127 

0.837 

-0.116 

0.088 

0.890 

-0.205 

0.104 

0.627 

-0.262 

0.120 

1.5 Estimated Value 

Bias 

MSE 

0.676 

-0.303 

0.154 

0.583 

-0.282 

0.129 

0.653 

-0.114 

0.092 

0.728 

-0.207 

0.1031 

0.668 

-0.265 

0.120 

2.0 Estimated Value 

Bias 

MSE 

0.862 

-0.304 

0.153 

0.822 

-0.280 

0.129 

0.796 

-0.116 

0.089 

0.534 

-0.206 

0.102 

0.687 

-0.267 

0.121 

 

 
Figure 3: Graph of MSEs of different estimators of 

parameter   for Double exponential distribution.
 

 

6. Real Study  
 

For fitting Double exponential distribution, temperature data 

have been used in this paper. Monthly maximum temperature 

(in 
0
C) data in 2012 in Sylhet have been chosen. 
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Table 4: Estimated value, Bias and MSE of different 

estimators of parameter   of Double exponential 

distribution when 2c and 2,3,2,12  n  

  Criteria 
MLE

^

  BSE

^

  
BQL

^

  BML

^

  BNL

^

  

1.0 Estimated Value 

Bias 

MSE 

29 

28 

784 

25 

24 

579 

29 

28 

798 

28 

27 

735 

25 

24 

581 

1.5 Estimated Value 

Bias 

MSE 

29 

27 

756 

25 

23 

555 

29 

27 

770 

28 

26 

707 

25 

23 

557 

2.0 Estimated Value 

Bias 

MSE 

29 

27 

729 

25 

23 

532 

29 

27 

742 

28 

26 

681 

25 

23 

533 

2.5 Estimated Value 

Bias 

MSE 

29 

26 

702 

25 

22 

509 

29 

26 

715 

28 

25 

655 

25 

22 

511 

 

 
Figure 4: Graph of MSEs of different estimators of 

parameter   of Double exponential distribution 

 

Result and Discussion 
 

Table 1 shows the variation in the performance of the 

estimators for varying sample size. It has been seen that the 

biases and MSEs of MLE



  remain the largest for almost 

all cases (figure 1). Now we compare the rest of the 

estimators. The bias of all other estimators shows negatively 

increasing trend except for some cases. For sample size 

greater than 5 the bias of BQL



   is smaller than all other 

estimators. But when sample size is 5 bias of BML



 and bias 

of BNL



 dominate the bias of BQL



 . Again the estimated bias 

for the two estimators BSE



  and BNL



   shows more or less 

similar pattern. When sample size increases the MSEs of 

estimators decreases. The MSEs of BQL



  decreases sharply 

at the beginning and then it follows a parallel trend. For 

sample size greater than 5 the MSEs of all estimators are 

larger than that of BQL



 . Again the MSEs of BSE



  and 

BNL



  show approximately similar pattern (figure 1). Table 2 

shows variation in the estimators, biases and MSEs with 

respect to scale parameter λ. Bias and MSEs of all 

estimators’ decreases with increasing λ except for MLE



  and 

these are least for BQL



 (figure 2). Table 3 shows the 

variation in the estimators, biases and MSEs with respect to 

the location parameter . The values of    has no effect on 

bias and MSE whether it is positive or negative. In this case 

the bias and MSE of BQL

^

 is least than all other estimators 

(figure 3). Again for varying θ, BSE

^

  and BNL

^

 are close to 

one another. Table 4 shows variation in estimators; biases 

and MSEs with respect to scale parameter λ for real data. 

MSEs of all estimators’ decreases with increasing λ and these 

are least for BSE



 (figure 4). Also bias of all estimators’ 

decreases and remain same for some cases with increasing λ 

and these are least for both  ,BSE



 BSE



 . Again for varying 

λ, bias of both BSE

^

  and BNL

^

 show similar pattern. 

 

8. Conclusion 

 
In this study, we have considered the Bayesian estimation 

approach to estimate the scale parameter of Double 

exponential distribution. In Bayesian approach, squared 

error, quadratic, MLINEX and NLINEX loss functions have 

been used. We conducted a comprehensive simulation and 

real data to judge the relative performance of the Bayes 

estimator under different loss functions at different sample 

sizes and varied parameters of prior distribution. From above 

analysis and graphical presentation we conclude that Bayes 

estimator under Quadratic loss function is better than all 

other estimators for simulated data. Also it is seen that Bayes 

estimator under NLINEX loss function is close to Bayes 

estimator under Squared Error (SE) loss function for real 

data. Finally conclude that, non-classical estimator (the class 

of Bayes estimator) is better than classical estimator (MLE). 

Therefore, Bayesian approach under quadratic loss function 

can be suggested to estimate the parameter of Double 

exponential distribution. 
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