International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor (2018): 7.426

Compatible Uniformities on Pseudometric Spaces

Dr. S. M. Padhye¹, Priti. P. Umarkar²

¹Associate Professor, HOD, Department of Mathematics, Shri R.L.T. College of Science, Akola, Maharashtra, India

²Research student, Department of Mathematics, Shri R.L.T. College of Science, Akola, Maharashtra, India

Abstract: In this paper we construct different uniformities on a pseudo metric space which are compatible with the topology of the pseudo metric space. It is proved that on a pseudo metric space there may be unequal uniformities compatible with the topology out of which one is uniformly continuous uniformity while the other need not be.

Keywords: Pseudometric spaces, Completely regular space, Uniformity

1. Introduction

Let (X,d) be a pseudometric space. Then the product topology on $X \times X$ may be obtained by a pseudometric on X \times X defined d((x,y),(p,q)) = d(x,p) + d(y,q).

2. Definition

Compatible uniformity on a topological space. A uniformity on a topological space X is said to be compatible with the topology of X if the later coincides with the topology induced by the uniformity.

3. Main Result

We constructed had already different uniformities \mathcal{U} and \mathcal{U}_1 compatible with the topology of X [3] where \mathcal{U} is the uniformity generated by continues real valued functions on a topological space X and \mathcal{U}_1 is the uniformity generated by continues bounded real valued functions on X. Here we construct a uniformity on a pseudometric space (X,d) which is also uniformly continuous uniformity compatible with the topology of (X,d). Here (X,\mathcal{U}) is called uniformly continuous uniform space if every $\mathcal{T}_{\mathcal{U}}$ - continuous real valued function is \mathcal{U} uniformly continuous.

Theorem 01:-If (X, d) is a pseudo metric space and \mathcal{U} is the set of all neighborhoods of Δ in the product topology of $X \times X$ then U is a uniformity on X. Here Δ is diagonal in $X \times X$.

Proof

Let $\mathcal{U} = \{U/U \text{ is neighborhood of each point of } \Delta \text{ in } X \times X$ \mathcal{U} Show that \mathcal{U} is uniformity on \mathcal{X} .

- 1) If $U \in \mathcal{U}$ and $V \supset U$ then for every $x \in X$, U being a neighborhood of (x, x) so is V. Thus every subset of $X \times X$ containing a set from \mathcal{U} is in \mathcal{U} .
- The intersection of two sets of \mathcal{U} contains a set of \mathcal{U} .: Let U and V be neighborhoods of Δ in $X \times X$ and let $\in X$. Then there are $r_x > 0$ and $s_x > 0$ Such that $S_{r_x}^{(x,x)} \subset U$ and $S_{s_x}^{(x,x)} \subset V$.

Here
$$S_{r_x}^{(x,x)} = \{(p,q) \in X \times X / d((x,x),(p,q)) < r.\}$$

If
$$t_x = \min(r_x, s_x)$$
, $S_{t_x}^{(x,x)} \subset U \cap V$ i.e $U \cap V \in \mathcal{U}$

- Every set of \mathcal{U} contains the diagonal; It is obvious that every $V \in \mathcal{U}$ contains the diagonal.
- If $V \in \mathcal{U}$ then there exists $V' \in \mathcal{U}$ such that $V' \subset V^{-1}$; Suppose $\in \mathcal{U}$. Then for every $\in X$, there is $r_x > 0$ such that $S_{r_x}^{(x,x)} \subset V$.

Take $V' = \bigcup_{x \in X} S_{r_x}^{(x,x)}$. Thus obviously V' is neighborhood of each point $(x, x) \in X \times X$. Hence

Further if $(u, v) \in V'$, $(u, v) \in S_{r_x}^{(x,x)}$ for some $x \in X$. Since $S_{r_x}^{(x,x)} \subset V$ and $(v, u) \in S_{r_x}^{(x,x)}$, $(v, u) \in V$ i. e. $(u, v) \in V^{-1} \Rightarrow V' \subset V^{-1}$.

5) If $V \in \mathcal{U}$ then there exists $W \in \mathcal{U}$ such that $W \circ W \subset$

Let $V \in \mathcal{U}$. Then for every $\in X$, there is $r_x > 0$ such that

Let $W = \bigcup_{x \in X} S_{r_{x/2}}^{(x,x)}$ Then $W \in \mathcal{U}$. We show that $W \circ$

Suppose $(p,q) \in W \circ W$. Then there is $z \in X$ is such that $(p,z) \in S_{\frac{r_u}{2}}^{(u,u)}$ for some $u \in X$ i.e. $d(p,u) + d(z,u) < \frac{r_u}{2}$

and $(z,q) \in S_{\frac{r_v}{2}}^{(v,v)}$ for some $v \in X$ i.e. $d(z,v) + d(q,v) < \frac{r_v}{2} - \cdots - (2)$

Adding (1) and (2),

 $d(p,u) + d(z,u) + d(z,v) + d(q,v) < \frac{r_u}{2} + \frac{r_v}{2} - (3)$

If $r_v \le r_u$ then d(p, u) + d(q, u) < d(p, u) + d(q, v) + d(v, z) + d(z, u) $< \frac{r_u}{2} + \frac{r_v}{2} \le r_u \implies (p, q) \in S_{r_u}^{(u, u)}$ But $S_{r_u}^{(u, u)} \subset V$.

 $\dot{\cdot}(p,q)\in\ V$

Similarly if $r_u \leq r_v$ then $(p,q) \in S_{r_v}^{(v,v)} \subset V$, $\therefore (p,q) \in V$. Thus $W \circ W \subset V$.

Theorem 02:- If (X, \mathcal{T}) be a topological space such that neighborhoods of Δ form a uniformity \mathcal{U} on X then $\mathcal{T}_{\mathcal{U}} \subset \mathcal{T}$.

Proof: - Let $A \in \mathcal{T}_{\mathcal{U}}$. Then we show that $A \in \mathcal{T}$. Let $\in A$. Choose symmetric $U \in \mathcal{U}$ such that $x \in \mathcal{U}[x] \subset$

Since U is neighborhood of Δ , U is neighborhood of (y, y)for each $y \in X$.

397

Volume 8 Issue 3, March 2019

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

10.21275/ART20195563 Paper ID: ART20195563

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor (2018): 7.426

Hence U is neighborhood of (x, x). Choose open sets $G_1, G_2 \in \mathcal{T}$ such that

 $(x,x) \in G_1 \times G_2 \subset U$

Now we show that $x \in G_1 \subset U[x]$. Let $y \in G_1$.

Then $(y, x) \in G_1 \times G_2 \subset \bigcup$ i,e. $y \in U[x]$

i,e. $G_1 \subset U[x] \subset A$.

i.e A is neighborhood of each point of Δ .

Thus $A \in \mathcal{T}$. This proves that $\mathcal{T}_{\mathcal{U}} \subset \mathcal{T}$.

Theorem 03:- Let (X, \mathcal{T}) be a completely regular space such that neighborhoods of Δ form a uniformity \mathcal{U} on X.Then $\mathcal{T} \subset \mathcal{T}_{\mathcal{U}}$.

Proof: Suppose $G \in \mathcal{T}$ and $x \in G$. Since X is completely regular there exists a \mathcal{T} - continuous function $f: X \to [0,1]$ such that f(x) = 1 and

$$f(X-G)=0.$$

Take $U = (G \times G) \cup (G_1 \times G_2)$ where $G_1 = f^{-1}(\frac{-1}{2}, \frac{1}{2}) \in \mathcal{T}$.

We show that $U \in \mathcal{U}$ and $U[x] \subset G$. If $y \in G$

then $(x, y) \in G \times G \subset U$.

If $y \notin G$ then $f(y) = 0 :: y \in G_1$.

 $\therefore (y,y) \in G_1 \times G_1 \subset U.$

Thus *U* is neighborhood of each point of Δ .

Now we show that $U[x] \subset G$. For $y \in U[x]$

 $(x,y) \in U \Rightarrow (x,y) \in G \times G \text{ or } (x,y) \in G_1 \times G_1.$

If $(x, y) \in G \times G$, then $x \in G$ and $y \in G$. i.e. $y \in G$.

If $(x, y) \in G_1 \times G_1$ then $x \in G_1$ and $y \in G_1$.

Since $G_1 = f^{-1}(\frac{-1}{2}, \frac{1}{2})$ and $f(x) = 1, x \notin G_1$.

Thus $(x, y) \in G_1 \times G_1$ is not possible.

 $\therefore (x, y) \in G \times G \text{ and } U[x] \subset G \text{ i.e. } G \in \mathcal{T}_{\mathcal{U}}.$

Thus $\mathcal{T} \subset \mathcal{T}_{\mathcal{U}}$.

Theorem 04:- If (X, d) is a pseudo metric space and \mathcal{U} is the set of all neighborhoods of Δ in the product topology of $X \times X$ then topology of uniformity \mathcal{U} coincides with the original topology of (X, d).

Proof: By Theorem 1 \mathcal{U} becomes a uniformity on X.

By Theorem 2 topology generated by $\mathcal U$ is coarser than original topology of (X, d).

Since X is a pseudo metric space it is completely regular. Hence by theorem 4.1.4,

 $\mathcal{T} \subset \mathcal{T}_{\mathcal{U}}$. Thus $\mathcal{T}_{\mathcal{U}} = \mathcal{T}$.

Theorem05: Suppose (X, d) is a pseudo metric space. U_d is uniformity generated by d whose base is given by $\{(x,y) / (x,y) \}$ d(x,y) < r, r > 0 and \mathcal{U} is a uniformity on X consisting of all neighborhoods of Δ .Then $\mathcal{U}_d \subset \mathcal{U}$, but in general $U_d \neq U$.

Proof: Let $V \in \mathcal{U}_d$. Then there is r > 0 Such that $V \supset$ $\{(x,y) / d(x,y) < r\}.$

Put $U = \{(p,q) / d(p,q) < r\}.$

We show that *U* is neighborhood of (x, x) for each $x \in X$. Suppose $x \in X$. We show that $S_r^{(x,x)}$ which is a neighborhood of (x, x) is contained in U. Suppose (u, v) $\in S_r^{(x,x)}$. Then d(u,x) + d(v,x) < r

i.e. $d(u,v) \le d(u,x) + d(x,v) < r$ i.e d(u,v) < r. i.e $(u,v) \in U$. Thus $S_r^{(x,x)} \subset U$ i.e U is neighborhood of each point of Δ i.e, $U \in \mathcal{U}$.

Since $U \subset V$ and U is uniformity $: V \in U$. Thus $U_d \subset U$. Now to show that in general $U_d \neq U$,

We construct a pseudo metric space (X, d) where $\mathcal{U} \not\subset \mathcal{U} d$.

Take $X = \mathbf{R}$ and $d(x, y) = |x - y| x, y \in \mathbf{R}$.

Take $U = \{(x, y) / |x^2 - y^2| \le 1\}.$

Then we show that U is neighborhood of each point of Δ . So that $U \in \mathcal{U}$.

Suppose $x \in \mathbf{R}$. Take $r = \frac{1}{2(1+2|x|)}$. We claim that $S_r^{(x,x)} \subset$

Suppose $(u, v) \in S_r^{(x,x)}$. Then |u - x| + |v - x| < r $\Rightarrow |u - x| < r \text{ and } |v - x| < r$

Consider $|u^2 - v^2| = |u^2 - x^2 + x^2 - v^2|$

 $\leq |u^2 - x^2| + |v^2 - x^2|$

 $\leq |u-x| |u+x| + |v-x| |v+x|$

Now |u + x| = |u - x + 2x|

 $\leq |u-x| + 2|x|$

< r + 2|x|

Since r < 1, |u + x| < 1 + 2|x|

Similarly $|v+x| \le 1 + 2|x|$ Thus $|u^2 - v^2| < \frac{1}{2(1+2|x|)} (1+2|x|) + \frac{1}{2(1+2|x|)} (1+$

 $2|x|) \le \frac{1}{2} + \frac{1}{2} \le 1$

i.e $(u, v) \in U : U$ is neighborhood of each point of Δ .

Now we show that $U \notin \mathcal{U}_d$

i.e There does not exist s > o such that $\{(x, y) \mid |x - y| < s\}$

Thus we have to show that for every s > o

there exists (x_s, y_s) such that $|x_s - y_s| < s$

But $(x_s, y_s) \notin U$. For any s > o,

take $x_s = \frac{1}{s}$ and $y_s = \frac{1}{s} + \frac{s}{2}$.

Then $|x_s - y_s| = \left| \frac{1}{s} - \left(\frac{1}{s} + \frac{s}{2} \right) \right| < \left| \frac{s}{2} \right| < s$.

Also $|x_s^2 - y_s^2| = |(x_s + y_s)(x_s - y_s)|$ = $|x_s + y_s||x_s - y_s|$

 $= \left| \frac{1}{s} + \left(\frac{1}{s} + \frac{s}{2} \right) \right| \left| \frac{1}{s} - \left(\frac{1}{s} + \frac{s}{2} \right) \right|$ $= \left(\frac{2}{s} + \frac{s}{2} \right) \left(\frac{s}{2} \right) = 1 + \frac{s^2}{4} > 1$

 $|x_s|^2 - |y_s|^2 > 1 \text{ i.e. } (x_s, y_s) \notin U.$

This proves that $\mathcal{U} \nsubseteq \mathcal{U}_d$.

Theorem 06: Let (X, \mathcal{T}) be a completely regular space, such that neighborhoods of Δ form a uniformity \mathcal{U} . Then \mathcal{U} is compatible with T and (X, \mathcal{U}) is a uniformly continuous space.

Proof: By Theorem 4, \mathcal{U} is compatible with \mathcal{T} . To prove that f is \mathcal{U} -uniformly continuous real function if f is \mathcal{T} continuous real function. Suppose f is \mathcal{T} - continuous function and $\in >$ 0 is given. We have to find $U \in \mathcal{U}$ such that $(x, y) \in U \Rightarrow |f(x) - f(y)| < \epsilon$. For $x \in X$

Put $G_x = f^{-1}(f(x) - \frac{\epsilon}{2}, f(x) + \frac{\epsilon}{2})$. Since f is \mathcal{T} continuous

 G_x is an open set containing x. Take $U = U_{x \in X} G_x \times G_x$.

Volume 8 Issue 3, March 2019

www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20195563

International Journal of Science and Research (IJSR)

ISSN: 2319-7064 Impact Factor (2018): 7.426

Then *U* is neighborhood of each point (x, x) of Δ .

Now we show that $(u, v) \in U \Rightarrow |f(u) - f(v)| < \in$.

Let $(u, v) \in U$. Choose $x \in X$ such that $(u, v) \in G_x \times G_x$. Thus $u \in G_x$ and $v \in G_x$.

Since $G_x = f^{-1}(f(x) - \epsilon/2, f(x) + \epsilon/2)$ and $u \in G_x$, $v \in G_x$.

 $f(u) \in (f(x) - \in /2, f(x) + \in /2)$ and $f(v) \in (f(x) - \in /2, f(x) + \in /2)$.

i.e $|f(u) - f(x)| < \epsilon/2$ and $|f(v) - f(x)| < \epsilon/2$ Hence |f(u) - f(v)| = |f(u) - f(x) + f(x) - f(v)| $\leq |f(u) - f(x)| + |f(x) - f(v)|$

 $\leq |f(u) - f(x)| + |f(x) - f(v)|$ $< \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon.$

Thus there is $U \in \mathcal{U}$ such that $(x,y) \in U \Rightarrow |f(x) - f(y)| \le C$.

This proves that f is \mathcal{U} -uniformly continuous function.

Hence (X, \mathcal{U}) is a uniformly continuous uniform space.

Theorem 07:- Let (X, d) be a pseudo metric space and \mathcal{U} be the uniformity consisting of all neighborhoods of Δ . Then (X, \mathcal{U}) is a uniformly continuous space and (X, \mathcal{U}_d) need not be a uniformly continuous space.

Proof: - From Theorem 6 it follows that, (X, \mathcal{U}) is a uniformly continuous space.

Now we show that (X, \mathcal{U}_d) need not be a uniformly continuous space. Consider $X = \mathbf{R}$ and function $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = x^2$, $x \in \mathbf{R}$. f is continuous on \mathbf{R} . We show that f is not \mathcal{U}_d uniformly continuous function. For

any
$$\delta > 0$$
, take $x_{\delta} = \frac{1}{\delta}$ and $y_{\delta} = \frac{1}{\delta} + \frac{\delta}{2}$

Then $|x_{\delta} - y_{\delta}| = \frac{\delta}{2} < \delta$ But $|f(x_{\delta}) - f(y_{\delta})|$

$$= \left| \left(\frac{1}{\delta} \right)^2 - \left(\frac{1}{\delta} + \frac{\delta}{2} \right)^2 \right|$$

$$= \left| \frac{1}{\delta^2} - \frac{1}{\delta^2} - 2 \frac{1}{\delta} \frac{\delta}{2} - \frac{\delta^2}{4} \right|$$

$$= \left| \frac{\delta^2}{\delta^2} - \frac{\delta^2}{\delta^2} - 2\frac{\delta}{\delta^2} - \frac{1}{4} \right|$$

$$= \left| (1 + \frac{\delta^2}{4}) \right| = 1 + \frac{\delta^2}{4} \ge 1$$

Thus for $\in = 1$, there does not exist any $\delta > 0$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < 1$ is satisfied.

Thus for \in = 1, there does not exist any $\delta >$ 0 , $|x_{\delta} - y_{\delta}| < \delta$

 $\Rightarrow |f(x_{\delta}) - f(y_{\delta})| < \epsilon.$

i.e f is not \mathcal{U}_d uniformly continuous function.

 \therefore (\mathbf{R} , \mathcal{U}_d) is not uniformly continuous space.

4. Conclusion

It is proved that on a pseudo metric space there may be unequal uniformities compatible with the topology out of which one is uniformly continuous uniformity while the other need not be.

References

- [1] Bourbaki. Nicolas. "Elements of Mathematics General Topology (Part 1)", Addison Wesley Publishing Company, 1966.
- [2] Kelley, John. L., "General Topology", Affiliated East-West Press Pvt. Ltd. New Delhi. 1969.
- [3] Dr. S.M. Padhye and Priti.P. Umarkar., "Uniform structures Compatible With A Given Topological Space", IJIRSET, Vol. 03., Issue 12, pp. 18070 18074. Dec 2014.

Volume 8 Issue 3, March 2019 www.ijsr.net

Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20195563