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Abstract:  Non-uniform pipes conveying fluids are widely used in various industrial fields. Also, contraction and expansion pipes are 

used at inlet and outlet of industrial plants equipment like pumps and compressors. There equipments produce vibrations which badly 

affect pipes. It is the aim of this proposed research work to study the relative influence of the various parameters on the vibration 

characteristics of the pipes and their relation to the pipe shape parameters like inlet diameter to outlet diameter, expansion or 

contraction position along the pipe, and contraction or expansion length. Numerous research works have been put forward to treat the 

dynamics of pipelines subject to different loading conditions and structural constraints. In this work various pipe shapes are studied 

and compared to the straight pipe as a reference. The governing equations of motion for a pipe conveying fluid were solved using 

BVP4C in MATLAB software 
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1. Introduction 
 

Pipes conveying fluids are an important research subject of 

interest for engineers due to its widely usage in engineering 

applications. Pipes used in transferring fluids between 

equipment like in the petrochemicals processes, Fertilizers 

plant and also transferring fluids for a long distance like 

LPG pipelines, water pipelines between cities in most 

practices’ pipes are exposed to vibrations caused by rotary 

equipment like pumps, compressors or by wind. There force 

cause stresses in pipe sections which in some cases lead the 

pipe material to fail. 

 

Ismael et al (1981) studied the dynamics of annulus pipe 

conveying fluid and described it by means of transfer matrix 

method. They found that the outer and the inner pipes of the 

annular may vibrate individually in different mode shapes. 

Wang and Bloom (1999) carried out research topic related 

directly to the concentric pipe system designs in silo or other 

mixing units. It has been found that concentric pipe mixers 

have a long suspended inner pipe. Aldraihem and Baz 

(2004) investigated the dynamic stability and response of 

stepped tubes subjected to a stream of moving objects.  

Ibrahim (2010) carried out dynamic and stability analysis for 

pipes conveying fluid together with curved and articulated 

pipes. Different types of modelling, dynamic analyses, and 

stability of pipes conveying fluid with different boundary 

conditions have been assessed. Ibrahim (2010) Worked on 

the problem of fluid elastic instability in single- and two- 

phase flows and fretting wear in process equipment, such as 

heat exchangers and steam generators. Tawfik et al (2009) 

studied the vibrated pipe conveying fluid with sudden 

enlargement and exposed to heat flux. The governing 

equations of motion for this system are derived by using 

beam theory. They found that the fluid forces (Coriolis and 

Compressive) greatly affect the response of the undamped 

pipe under vibration. Chen (1975) presented a linear theory 

to account for the motions of extensible curved pipes 

conveying fluid. Based on the theory, the flow-induced 

deformations are obtained in closed form.  Olunloyo et al 

(2007) studied the energy method and they were invoked to 

derive the governing equations including the effects of 

external temperature variation along the length of the pre-

stressed and pressurized pipe. Simha and Kameswara(2001) 

developed a finite element program for rotationally 

restrained long pipes with internal flow and resting on 

Winkler foundation. They found that in all cases, the natural 

frequency parameter decreases with increasing flow velocity 

parameter and increase consistently with increasing 

foundation stiffness parameter. Reddy and Wang (2004) 

worked on complete set of equations of motion governing 

fluid- conveying beams are derived using the dynamic 

version of the principle of virtual displacements. Equations 

for both the Euler—Bernoulli and Timoshenko beam 

theories were developed. Stein and Tobriner(1970) worked 

on numerical solution to the equation of motion that 

describes the behavior of an elastically supported pipe of 

infinite length conveying an ideal pressurized fluid. 

Baheli(2012) studied the dynamic behaviour of pipe 

conveying fluid at different cross section. Three kinds of 

supports are used, which are flexible, simply and rigid 

supports. He found that the values of the natural frequencies 

for flexible support are less than those for simply and rigid 

supports. Fernad et al (1999) carried out simplified method 

for evaluating the fundamental frequency for the bending 

vibrations of cracked Euler- Bernoulli beams are presented. 

Its validity is confirmed by comparison with numerical 

simulation results. Fengchun, et al (2010) studied the effects 

of the non-propagating open cracks on the dynamic 

behaviours of a cantilevered pipe conveying fluid. They 

concluded that the equations of motion for the cantilevered 

pipes conveying fluid with an arbitrary number of cracks are 

developed based on the extended Lagrange equations for 

systems containing non-material volumes. Yoon, et al 
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(2007), studied the influence of two open cracks on the 

dynamic behaviour of a double cracked simply supported 

beam.  Yoon and son (2014) studied the effect of the open 

crack and the moving mass on the dynamic behaviour of 

simply supported pipe conveying fluid, they found that 

When the crack position exists in canter of the pipe 

conveying fluid, its frequency has the smallest value. 

Murigendrappa et al (2014) worked on a technique based on 

measurement of change of natural frequencies to detect 

multiple cracks in long pipes containing fluid at different 

pressures.  Al-Sahib et al (2010) studied conveying turbulent 

steady water with different velocities and boundary 

conditions; the main summarized conclusions are the natural 

frequencies of a welded pipe with steady flow decreases 

with increasing the fluid flow velocity in both clamped-

clamped and clamped-pinned boundary conditions. Kuiper 

et al (2004) worked on analytical proof of stability of a 

clamped-pinned pipe conveying fluid at a low speed is 

given. The results show this approach could keep stable 

even for long period of time and is much more rapid than 

traditional Runge-Kutta method. Shuai-jun et al (2014) 

considered the effects of pipe wall thickness, fluid pressure 

and velocity, which describe the fluid–structure interaction 

behaviour of pipelines.  The theoretical results show that the 

effect of the variation of support position and stiffness is 

dominant for the lower flexural modes and the higher 

torsional modes. Tornabene et al (2010) studied the stability 

of a cantilever pipe conveying fluid by means of the 

generalized differential quadrature method. Czerwiñski and 

£uczko(2012) developed on analysis of a model describing 

the vibrations of simply supported straight pipes conveying 

periodically pulsatingfluid. They concluded that the 

considered geometrically non-linear model allows 

estimating the value of the vibration in the regions of 

parametric resonance and for flow velocity higher than the 

critical. Zhang et al (1999) discussed a finite element model 

in which flowing fluid and moving pipes have been fully 

coupled using the Eulerian approach and the concept of 

fictitious loads for the kinematic corrections. Mediano-

valiente and Garc´ia-planas, (2014)studied non-linear 

dynamic model for a pipe conveying fluid. Moreover, a 

linearization method had been done by approximation of the 

non-linear system to the linear gyroscopic system. Boiangiu 

et al (2014) they solved the differential equations for free 

bending vibrations of straight beams with variable cross 

section Bessel’s functions. Fresquet et al (2015) studied, the 

increasing complexity found in onshore and offshore wells 

demands profound knowledge on the performance to fatigue 

of threaded connections used in the different stages of 

hydrocarbons exploitation. The tabulated results obtained by 

this method were compared against FEA results as well as 

experimental results obtained during resonant bending tests, 

showing very good matching. Coşkun et al (2011) solved the 

vibration problems of uniform and nonuniform Euler-

Bernoulli beams analytically or approximately for various 

end conditions. Al-Hashimy et al (2014) studied the 

Vibration characteristics of pipe conveying fluid with 

sudden enlargement-sudden contraction were. they 

concluded that the natural frequencies for pipe system 

conveying fluid is less than the natural frequencies for pipe 

system without fluid. Ritto et al (2014) Studied the problem 

of a pipe conveying fluid of interest in several engineering 

applications, such as micro-systems or drill-string dynamics.  

Collet and Källman(2017) studied pipe vibrations 

Measurements. They concluded that Each pipe vibration 

problem is unique and requires a deep understanding of 

active process events 

 

2. Mathematical Model  
 

Consider a pipe of variable cross-section A(x), length L, 

modulus of elasticity E, and its second moment of area I(x). 

A fluid flow through the pipe having a density 𝞺f (see 

Figure1), the pipe is vibrated due to an exciting force fex 

(t,x). Figure (2) shows the forces acting on elements of fluid 

and pipe. Resolving the forces on fluid element along and 

perpendicular to the tangent to the center line of the 

deflected element taking into account,
∂(AP )

∂x
+ q s = 0  . 

Figure 1: Layout of the pipegeometry and exciting force 

 

for small deformations and neglect
∂y

∂x

∂ AP  

∂x
 .     The forces on 

the element of the pipe normal to the pipe axis accelerate the 

pipe element―(b) in Figure 2‖ in the Y direction. For small  

deformations: U
∂y

∂x

∂U

∂x
 is negligible, where S is the inner 

perimeter of the pipe, and q is the shear stress on the internal 

surface of the pipe. The equations governing the force on the 

tube element are derived as follows: Where ρp  is the Density 

of the empty pipe. The bending moment  M  in the pipe, the 

transverse shear force Q and the pipe deformation is related 

by the transverse shear force in the pipe and T is the 

longitudinal tension in the pipe. 

 

E
∂2

∂x2  I
∂2y

∂x2 +  ρfAU2 + PA− T 
∂2y

∂x2 +  ρp Ap+ρf𝐴 
∂2y

∂t2 +

 2UρfA 
∂2y

∂x ∂t
= Fex .           (1)    

 

AP is the area of the pipe, A inner area of pipe at any 

distance x, I   is the second moment of area  

Ap =
π

4
 d + 2tp 

2
−
π

4
d2tp ≪  

di
2  

Ap = A
di

d x 
 
4tp

di
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Figure 2: Forces and Moments acting on Elements of Fluid 

and Pipe. 

 

2.1 The Flow in the pipe 

 

Consider in viscid flow along the pipe and Euler momentum 

equation is to be applied   

ρfU
dU

dx
= −

dp

dx
But      Q𝑓  is the volume flow rate and that is 

constant due to continuity consideration, Ai is the area  of 

pipe at inlet , 

ρf
Q𝑓

A

d

dx
 

Q𝑓

A
 = −

dp

dx
 ,  P

P

Pi
= ρfQ𝑓

2  
1

A3 dA
A

A i
, therefore, 

P = Pi +
ρf

2
Q𝑓

2  
1

A i
2 −

1

A2 and,U =
Q𝑓

A
 

d

dx
 PA− T = 0,  thus  PA− T = constant ,     

PA− T = PiAi − Ti    (2)                                                                                                                 

 

2.2 Dimensionless variables 

 

x∗ =
x

L
     ,      y∗ =

y

L
 ,      t∗ =  

EIi

 ρf +ρp  A i L4 

1
2 

t   ,  

P∗ = P
 

EIi

A i L2 
 ,     T∗ = T

 
EIi

L2 
 ,  U∗ = U

1

L
 

EIi

ρf A i
 

1
2  
,     

 or  U∗ =
Q𝑓

∗

A∗    ,  A∗ =
A

A i
 ,  tp

∗ =
tp

di
,   Ap

∗ =
Ap

A i
= 4A∗ tp

∗

d∗ ,  

d∗ =
d x 

di
,   d𝑜

∗ =
do

di
,  I∗ =

2d.tp  2d2+4d.tp  

2di .tp  2di
2+4di .tp  

 

Differentiating  I∗ twice w.r.t. x∗we have, 

dI∗

dx∗
=

 3
2 A∗

1
2 +2tp

∗ 

 1+2tp
∗ 

dA∗

dx∗
     ,  

d2I∗

dx∗2 =   3
2 A∗

1
2 

+ 2tp
∗ 

d2A∗

dx∗2

+ 3
4 A∗

−1
2 
 

dA∗

dx∗
 

2

 
1

 1 + 2tp
∗ 

 

Fex
∗ =

Fex

 
EIi

L3 
 ,  C =

ρp

ρf

, β =
1

ρp
ρf
 +1

=
1

C+1
,   α =

 4C∗tp
∗ +1

C+1
 

Substituting into Eqn. (1), 
∂2

∂x2  I∗
∂2y∗

∂x∗2 +  A∗U∗2 + P∗A∗ − T∗ 
∂2y∗

∂x∗2 + A∗α
∂2y∗

∂t∗2 +

2U∗A∗β
1

2 
∂2y∗

∂x∗ ∂t∗
= Fex

∗                      (3) 

The boundary conditions (Fixed-Fixed support) are 

y∗ 0, t∗ = y∗ 1, t∗ = 0,  
∂y∗

∂x∗
|x∗=0 =

∂y∗

∂x∗
|x∗=1 = 0 

The exciting force F*is a function of x*and t*. So, for 

sinusoidal excitation, the dimensionless exciting force may 

be put in the following form: 

Fex
∗ = f ∗ x∗ ei𝛀t∗, Where  Ω is dimensionless circular 

frequency. 𝛀 =
𝛚

 
E Ii

 ρ f +ρp  A i L4 

1
2 
 

Let y∗ = Y x∗ ei𝛀t∗  ,  

Where Y x∗  is the complex dimensionless amplitude. 
d2

dx2  I∗
d2Y

dx∗2 +  A∗U∗2 + P∗A∗ − T∗ 
d2Y

dx∗2 − 𝛀𝟐A∗αY +

2i𝛀U∗A∗β
1

2 
dY

dx∗
= f ∗             (4) 

Y 0 = Y 1 = 0,   
dY

dx∗
|x∗=0 =

dY

dx∗
|x∗=1 = 0 

Let  Y = yr + iyi .  So, 
d2

dx2  I∗
d2yr

dx∗2 +  A∗U∗2 + P∗A∗ − T∗ 
d2yr

dx∗2 − 𝛀𝟐A∗αyr −

2𝛀U∗A∗β
1

2 
dyi

dx∗
= f ∗       (5) 

d2

dx2  I∗
d2yi

dx∗2 +  A∗U∗2 + P∗A∗ − T∗ 
d2yi

dx∗2 − 𝛀𝟐A∗αyi +

2𝛀U∗A∗β
1

2 
dyr

dx∗
= 0                      (6) 

yr 0 = yr 1 = yi 0 = yi 1 = 0,
dyr

dx∗
|x∗=0 =

dyr

dx∗
|x∗=1 =

dyi

dx∗
|x∗=0 =

dyi

dx∗
|x∗=1 = 0 

That is, P∗A∗ − T∗ =  PiAi − Ti  
L2

EIi
 = λ 

Where λ is a constant. 

So,     yr
′′′′ +  

2

I∗

dI∗

dx∗
 yr

‴ +
1

I∗
 A∗U∗2 + λ +

d2I∗

dx∗2 yr
″ −

𝛀𝟐 A∗

I∗
αyr − 2𝛀U∗ A∗

I∗
β

1
2 yi

′ =
f∗

I∗
               (7) 

 

Where the primes donate differential w.r.t. x 

C1 =
2

I∗

dI∗

dx∗
, C2 =

1

I∗
 A∗U∗2 + λ +

d2I∗

dx∗2 ,  

C3 = 𝛀𝟐 A∗

I∗
α,  C4 = 2𝛀U∗ A∗

I∗
β

1
2 ,C5 =

f∗

I∗
 

Equations5 and 6 becomes, 

yr
′′′′ + C1yr

‴ + C2yr
″ − C3yr − C4yi

′ = C5                 (8) 

yi
′′′′ + C1yi

‴ + C2yi
″ − C3yi + C4yr

′ = 0                      (9) 

With boundary conditions 

yr 0 = yr 1 = yi 0 = yi 1 = 0,  

yr
′ 0 = yr

′ 1 = yi
′ 0 = yi

′ 1 = 0 

The solution to equation (8) and (9) may be put in the 

following form 

y∗ = Re Y x∗ ei𝛀t∗ , 

y∗ = yrcos𝛀t∗ + yisin𝛀t∗     (10) 

y∗ =   yr
2 + yi

2  cosΦ cos𝛀t∗ − sinΦ sin𝛀t∗ ,  

y∗ = 𝑍 cos 𝛀t∗ + Φ    (11) 
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𝑍 =  yr
2 + yi

2, Φ = tan−1 yi

yr
 

Where 𝑍 is the amplitude of oscillation and  Φ is the phase 

shift, 

 

2.3 Pipe geometry  

 

Let the variation of pipe diameter be given by the following 

polynomial   

d∗ = b5x∗5 + b4x∗4 + b3x∗3 + b2x∗2 + b1x∗ + b0      (12) 
Conditions  

x∗ = 0, d∗ =
di

∗

2
, 

d d∗ 

dx
= 0, 

d2 d∗ 

dx2 = 0 

x∗ = L, d∗ =
do

∗

2
, 

d d∗ 

dx
= 0, 

d2 d∗ 

dx2 = 0 

Thus, b0 =
di

∗

2
,b1 = 0, b2 = 0 

Applying those boundary conditions that we have: 

The first derivative of d∗ 
d d∗ 

dx∗
= 5b5 x∗ − Li

∗ 4 + 4b4 x∗ − Li
∗ 3 + 3b3 x∗ − Li

∗ 2                                                                 

(13) 

d∗ = b5 x∗ − Li
∗ 5 + b4 x∗ − Li

∗ 4 + b3 x∗ − Li
∗ 3 +

di
∗

2
                                                                   

(14) 
The second Derivative of d∗ 
d2 d∗ 

dx∗2 = 20 x∗ − Li
∗ 3 + 12b4 x∗ − Li

∗ 2 + 6b3 x∗ − Li
∗                                                                   

(15) 

 

2.4 Exciting force acting on the pipe  

 

Assuming the dimensionless exciting force f ∗to take the 

following form 
f ∗

f ∗max
 = n +  1 − n [sin πx∗ ]2m   (16) 

 

Where n and m are the force control parameters 

 

2.5 Numerical solution  

 

The fourth order equations 8 and 9 are to be transformed to 

eight first-order equations prior to a numerical solution 

using the MATLAB code BVP4C for solving the boundary 

value problem. And using he coefficient C1, C2, C3 and C4 

may be rewritten as. 

C1 =
2

I∗

dI∗

dx∗
,    C2 =

1

I∗
 

Q∗2

A∗ + λ +
d2I∗

dx∗2 ,   C3 = 𝛀𝟐 A∗

I∗
α,   

C4 = 2
Q∗

I∗
β

1
2 𝛀 

The parameters that influence the pipe vibration response 

are 
do

di
  ,  𝛀, Q∗ and λ. 

 

3. Results and Discussion 
 

The results are based on a pipe material of steel with a 

modulus of elasticity of 210GPa and density of 7850 kg/m
3
. 

Also, the pipe length L is 10 m and the pipe thickness are 12 

mm. Moreover, the fluid used in this study in all cases is 

water having a density equal to 1000 kg/m
3
, pressure at 

entrance of 2 bar and the flow velocity is .48 m/s. The 

exciting force has a maximum amplitude in the middle of 

the pipe and it has a maximum of 1000 N for all of the cases. 

Cases having different pipe shapes are classified as pipes 

with expansion cross-section and pipes with contraction 

cross-section. The expansion or contraction area having a 

varying length Lci which has three values .01, 0.1 and 0.2 of 

the pipe lengths. The position of expansion/contraction cross 

section along the pipe Li was varied using three values 0.2, 

0.5 and 0.8 of the pipe length L. Moreover, the pipe 

diameter ratio was studied using three ratios. These pipe 

shape parameters variation allowed to study of 27 expansion 

pipe cases and the same number of cases for contraction 

pipe shape to be carried out. All cases compared with 

straight pipe results as a reference case. The frequency 

changing up to 300 Hz was considered.  

 

3.1. Pipe with expansion cross section area  

 

The cases to be considered are those having a constant outlet 

diameter of pipe do equal 400 mm and the entry diameter of 

pipe di is varied to get three pipe diameter ratios 

di/do=.4,.6and .8,The expansion region also has three 

positions 0.2, 0.5 and 0.8 of the pipe length and 

dimensionless expansion length Lci as 0.01, 0.1 and 0.2. 

cases are compared with straight pipe as reference case. 

 

Figures (3), (7) and (11) shows vibration Amplitude Y* 

versus dimensionless frequency Ω at different entry and 

expansion length having diameter ratio di/do=0.4, 0 .6 and 

0.8 respectively. 

 

It is noticed that the results are consistent and increasing 

dimensionless frequency Ω has no effect on dimensionless 

vibration amplitude Y*. vibration amplitude Y* increases 

with the increase in expansion length Lci for all values of 

expansion entry length Li. Moreover, all cases have lower 

vibration amplitude than straight pipe. While the entry 

length Li and the expansion dimensionless length Lci 

increases the vibration amplitude value get close to the 

straight pipe value. 

 

Figure (4), (8) and (12) Show pressure gradient variation 

along pipe length having diameter ratio di/do=0.4,0 .6 and 

0.8 respectively. It is notice that pressure gradient duration 

increases with increasing the expansion dimensionless 

length Lci. An adverse pressure gradient take place over the 

entry expansion dimensionless length Lci and it is probably 

the reason for increasing vibration amplitude with the 

expansion dimensionless length Lci. changing the entry 

length Li doesn't have any similar effect on the pressure 

gradient. 

 

Figure (5), (9) and (13) show Vibration velocity versus 

frequency at different entry length and expansion length 

having a diameter ratio di/do= 0.4, 0.6 and 0.8 respectively. 

It’s noties that these  cases having vibration velocity within 

the acceptable range at all frequencies value. And all cases 

have vibration velocity lower that the straight pipe value.  

 

Figure (6), (10) and (14) show the effect of changing 

expansion length Lci on vibration amplitude Y*at diameter 

ratio di/do=.4, .6 and .8 respectively. it is notices that at 

expansion length Lci=0 it expresses about straight pipe. So, 

the expansion length Lci decreases the vibration amplitude 

Y* 

 

Generally, changing the entry Li length and expansion length 

Lci have a significant effect on dimensionless vibration 
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amplitude Y*. Increasing the diameter ratio come upon 

increasing in vibration amplitude and vibration velocity. 

Increasing frequency has no effect on dimensionless 

vibration amplitude Y* or vibration velocity. also, expansion 

cases have lower vibration amplitude and vibration velocity 

than the straight pipe. 

 

 
Figure 3: Vibration Amplitude Y* versus dimensionless 

frequency Ω at different entry and expansion length having a 

diameter ratio di/do=.4 

 
Figure 4: Pressure gradient variation along pipe length at 

different entry and expansion lengths, having a diameter 

ratio di/do=.4 

 
Figure 5: Vibration velocity mm\sec RMS versus frequency 

Hz at different entry and expansion length having a diameter 

ratio di/do=.4 

 
Figure 6: Effect of dimensionless expansion length Lci on vibration Amplitude Y* for different expansion position having a 

diameter ratio di/do=.4 
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Figure 7: Vibration amplitude Y* verses dimensionless Ω at 

different entry and expansion length having a diameter ratio 

di/do=.6 

 
Figure 8: Pressure gradient variation along pipelength at 

different entry and expansion lengths having a diameter ratio 

di/do=.6 

 

 
Figure 9: Vibration velocity mm\sec RMS versus frequency 

Hz at different entry and expansion length having a diameter 

ratio di/do=.6 
 

 

 
Figure 10: Effect of dimensionless expansion length Lcion vibration Amplitude Y* for different expansion position having a 

diameter ratio di/do=.6 
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Figure 11: Vibration amplitude Y* versus dimensionless 

frequency Ω at different entry and expansion length having a 

diameter ratio di/do=.8 

 
Figure 12: Pressure gradient variation along pipe length at 

different entry and Contraction lengths having a diameter 

ratio di/do=.8  

 
Figure 13: Vibration velocity mm\sec RMS versus 

frequency Hz at different entry and expansion length having 

a diameter ratio di/do=.8 

 

 

 

 

 
Figure 14: Effect of dimensionless expansion length Lci on vibration Amplitude Y* for different expansion position having a 

diameter ratio di/do=.8 
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3.2. Pipe with contraction cross section area  

 

In this case contraction pipe have a constant inlet diameter of 

pipe di equal 400mm and the outlet diameter of pipe do is to 

be varried to get three pipe diameter ratios di/do=1.25, 1.5 

and 2.5, also the contraction region having three positions Li 

0.2, 0.5 and 0.8 of the pipe length and dimensionless 

contraction length Lci are 0.01, 0.1 and 0.2, also, in all 

contraction pipe cases study, frequency changing up to300 

Hz too to avoid of vibration Induced Fatigue Failure. All 

contraction cases compared with straght pipe as a reference. 

 

Figures (15), (19) and (23) shows vibration amplitude Y* 

versus dimensionless frequency Ω at different entry and 

contraction length having diameter ratio di/do=1.25, 1.5 and 

2.5 respectively. 

 

It is noticed that the results are consistent and increasing 

dimensionless frequency Ω has no effect on vibration 

amplitude Y*. vibration amplitude Y* increases with 

decreasing contraction length Lci for all values of contraction 

entry length Li. Moreover, all cases have higher vibration 

amplitude than straight pipe. While the entry length Li and 

the contraction dimensionless length Lci decreasing the 

vibration amplitude value get close to the straight pipe value. 

 

Figure (16), (20) and (24) show pressure gradient variation 

along pipe length having diameter ratio di/do=1.25, 1.5 and 

2.5 respectively. It is notice that pressure gradient duration 

decreases with increasing the contraction dimensionless 

length Lci. An adverse pressure gradient take place over the 

entry contraction dimensionless length Lci and it is probably 

the reason for decreasing vibration amplitude with the 

contraction dimensionless length Lci. Changing the entry 

length Li doesn't have any similar effect on the pressure 

gradient. 

 

Figure (17), (21) and (25) show Vibration velocity versus 

frequency at different entry length and contraction length 

having a diameter ratio di/do=1.25, 1.5 and 2.5 respectively. 

It’s noties that these  cases having vibration velocity 

withinthe acceptable range at all frequencies value. And all 

cases have vibration velocity lower that the straight pipe 

value. 

 

Figure (18), (22) and (26) show the effect of changing 

contraction length Lci on vibration amplitude Y*at diameter 

ratio di/do=.4, .6 and .8 =1.25, 1.5 and 2.5 respectively. it is 

notices that at contraction length Lci=0 it expresses about 

straight pipe. So, the contraction length Lci increases the 

vibration amplitude Y*. 
 

 
Figure 15: Vibration amplitude Y* verses dimensionless 

frequency Ω at different entry and contraction length having 

a diameter ratio di/do=1.25 

 
Figure 16: Pressure gradient variation along pipe length at 

different entry and Contraction lengths having a diameter 

ratio di/do=1.25 

 

 
Figure 17:Vibration velocity mm\sec RMS versus frequency 

Hz at different entry and contraction length having a 

diameter ratio di/do=1.25 
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Figure 18: Effect of dimensionless contraction length Lci on vibration Amplitude Y* for different contraction position 

having a diameter ratio di/do =1.25 

 
Figure 19: Vibration Amplitude Y* verses dimensionless 

frequency Ω at different entry and contraction length having 

a diameter ratio di/do =1.5 

 

Figure 20: Pressure gradient variation along pipe length at 

different entry and Contraction lengths, having a  diameter 

ratio di/do =1.5 

 
Figure 21: Vibration velocity mm\sec RMS versus 

frequency Hz at different entry and contraction length having 

a diameter ratio di/do =1.5 
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Figure 22: Effect of dimensionless contraction length Lci on vibration Amplitude Y* for different contraction position 

having a diameter ratio di/do =1.5 

 
Figure 23: Vibration amplitude Y* versus dimensionless Ω 

at different entry and contraction lengths having a diameter 

ratio di/do =2.5 

 

Figure 24: Pressure gradient variation along pipe length at 

different entry and contraction lengths having a diameter 

ratio di/do =2.5 

 
Figure 25: Vibration velocity mm\sec RMS versus 

frequency Hz at different entry and contraction length having 

a diameter ratio di/do =2.5 
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Figure 26: Effect of dimensionless contraction length Lci on vibration Amplitude Y* for different contraction position 

having a diameter ratio di/do =1.5 

 

Generally, changing the entry Li length and Contraction 

length Lci have a significant effect on dimensionless 

vibration amplitude Y*. Also, increasing the diameter ratio 

come upon increasing in vibration amplitude and vibration 

velocity. Increasing frequency has no effect on 

dimensionless vibration amplitude Y* or vibration velocity. 

Moreover, contraction cases have higher vibration amplitude 

and vibration velocity than the straight pipe. 

 

3.3. Comparison between expansion and contraction 

pipes 
 

For clearing the results. Expansion and contraction results 

showed together at the same frequency because changing 

frequency has no effect on vibration amplitude Y*. Also, the 

comparing has done at the same diameter ratio for expansion 

and contraction cases. and it’s noticed that the dimensionless 

expansion or contraction length Lci=0 is expresses the 

straight pipe. 

 

Figure (27), shows the effect of dimensionless expansion or 

contraction length Lci on vibration amplitude Y* for different 

position having a diameter ratio di/do=.4 and 2.5. Also, 

Figure (28), shows the effect of dimensionless expansion or 

contraction length Lci on vibration amplitude Y* for different  

 

 

 
Figure 27: Effect of dimensionless expansion or contraction length Lci on vibration amplitude Y* for different position 

having a diameter ratio di/do =.4 and 2.5 
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Figure 28: Effect of dimensionless expansion or contraction length Lcion vibration amplitude Y* for different position 

having a diameter ratio di/do =.6 and 1.5 
 

 
Figure 29: Effect of dimensionless expansion or contraction length Lcion vibration amplitude Y* for different position 

having a diameter ratio di/do =.8 and 1.25 

 

position having a diameter ratio di/do=.6 and 1.5. Moreover, 

Figure (29), shows the effect of dimensionless expansion or 

contraction length Lci on vibration amplitude Y* for 

different position having a diameter ratio di/do=.8 and 1.25. 

 

There is common result between these figures like the 

contraction causes an increase in vibration amplitude Y* 

that’s opposite the expansion which causes a decrease in 

vibration amplitude Y*. Also. Increasing the dimensionless 

entry length Li Causes decrease in vibration amplitude Y*. 

on the contrary, Increasing the dimensionless entry length Li 

Causes an increase in vibration amplitude Y*. Moreover, 

increasing diameter ratio at contraction cases causes a 

decrease in vibration amplitude Y* on the contrary the 

expansion cases which increases vibration amplitude Y*. 

 

Generally, changing the entry Li length and Contraction 

length Lci have a significant effect on dimensionless 

vibration amplitude Y*. Also, increasing the diameter ratio 

come upon 

 

increasing in vibration amplitude and vibration velocity. 

Increasing frequency has no effect on dimensionless 

vibration amplitude Y* or vibration velocity. Moreover, 

contraction cases have higher vibration amplitude and 

vibration velocity than the straight pipe. 
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4. Conclusions 
 

Increasing the frequency has no effect on the vibration 

amplitude in all cases which studied. 

 

While studying expansion cases, the expansion decreasing 

the vibration amplitude Y*. Also, the vibration amplitude 

Y* decreased by increasing diameter ratio, increasing the 

dimensionless entry length Li or decreasing the 

dimensionless expansion length Lci. These factors have a 

simile effect on Vibration velocity. Pressure gradient too 

decreases by increasing the dimensionless expansion length 

Lci or increasing the diameter ratio or both. So, it’s clear 

that, the expansion should be sudden and placed at the 

beginning of the pipe. Moreover.  

 

While studying contraction cases, the contraction increases 

the vibration amplitude Y*. Also, the vibration amplitude 

Y* increases by decreasing diameter ratio, decreasing the 

dimensionless entry length Li or increasing the 

dimensionless Contraction length Lci. These factors have a 

simile effect on Vibration velocity. Pressure gradient too 

increased by decreasing the dimensionless expansion length 

Lci or decreasing the diameter ratio or both. In other words, 

the contraction should be gradually placed at the end of the 

pipe to get the lowest vibration amplitude. 

 

According to the previous comparison between expansion 

and contraction cases in straight pipes. Expansion cases are 

more efficient because they have lower vibration amplitude 

and vibration velocity. On the other side, contraction cases 

have higher vibration amplitude and vibration velocity. 
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