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Abstract: Competing risks are common in clinical research, as patients are subject to multiple potential failure events, both diseases 

related and otherwise. Competing risks methodology is being increasingly applied to cause of mortality data as a way of obtaining real 

world probabilities of mortality broken down by specific causes. For example, cancer patients with cardiovascular and other 

comorbidities are at concurrent risk of multiple adverse events. Regression models are employed to understand and exploit the 

relationship between the lifetime variable and the covariates. The most widely used regression models in competing risks are 

proportional because specific hazard model and proportional sub distribution hazard model. These models are frequently used in 

literatures and many authors have tried to differentiate and interpret both the models in different way. Several modeling approaches are 

available to evaluate the relationship of covariates to cause-specific failures with competing risk. Depending on which model is used, a 

distinctly different picture of the relationship of covariates to outcomes may be seen. It is important to choose a modeling approach that 

addresses the question of interest and subsequently interpret the results accordingly. We compared cause specific hazard model and sub 

distribution hazard model with flexible regression model to analyze and predict competing risk data in clinical trial applications using 

R software. These models are useful for a detailed analysis of how covariate effects predict the cumulative incidence, and allows for a 

time-varying effect of the covariates. From the above comparison, we can say that the choice of method for competing risk data in 

clinical trial should be guided by the scientific question. 
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1. Introduction 
 

Survival analysis is predominantly used in medical or 

clinical research when the primary interest is in observing 

time to event for primary survival endpoint of interest and 

censoring is independent of the primary event of interest. For 

example, time till death, appearance of some disease, relapse 

etc. However, in many cases, patients are at concurrent risk 

of more than one event and the happening of one of these 

events will obscured the happening of any other event. These 

types of events are in some sense compete each other for 

occurrence and is referred as competing risk events.  

 

Applying classical survival analysis to competing risk events 

is not appropriate and misguided us in a way that it treats 

competing events as censored and primary event is still 

possible and failure from the cause of interest is no longer 

possible or we just no longer observe it. In competing risk 

analysis, unlike the regular independent censoring, 

competing events are censored as occurrence of competing 

risks and the cause of interest are not independent. The 

standard competing risk endpoints of interest usually include 

overall survival from death or event from any cause, disease 

free survival i.e time to death or event, progression free 

survival i.e time to death or event when patient already 

suffered from disease or time to event i.e. time to the cause 

of interest. All of these endpoints are also known as 

composite endpoints that have all causes. Hence standard 

survival analysis can be applied to these composite endpoints 

as they are subject to independent censoring such as 

withdrawal or lost to follow up. However, analysis and 

interpretation of time to event endpoint is difficult as it can 

be censored by competing cause of failure in addition to 

independent censoring. For example, patients with 

atherosclerotic risk factors of myocardial infarction are at 

concurrent risk of venous thrombosis [1]. Cancer patients 

with cardiovascular and other comorbidities are at 

concurrent risk of multiple adverse outcomes. [2]. similarly, 

peritoneal dialysis patients are at risk of death associated 

with risk of renal transplantation or transfer to hemodialysis 

[3].  

 

2. Methods 
 

2.1 Competing Risk Framework 

 

Survival data are generally presented as a pair of (T,C), 

where T is the time at which event occurred and C is the 

censoring variable. When T is the time at which the event of 

interest is occurred, the censoring variable C is 1 and when T 

is the time at which the observation is censored, the 

censoring variable C is 0. The definition can be extended to 

the competing risks situation where j≥2 types of events are 

possible. The data are again presented as a pair of (T,Ci), 

though C will take on value i, where i is the type of first 

event observed (i=1,2,…..j). When T is the time at which the 

event of type i occurred the censoring variable C=i otherwise 

it is time of censoring and the censoring variable C = 0 [4,5]. 

Scrutinio et al [6] reported the results of a randomized, 

double blinded multicenter trial on patients with myocardial 

infraction (MI) treated with either ticlopidine or aspirin. In 

this trial, T is defined as the time from randomization to the 

first failure. The types of failure and therefore choices for C  

are cardiovascular death (i=1), non-vascular death (i=2), 

non-fatal MI (i=3), non-fatal stroke (i=4) and angina (i=5). 

 

In the traditional analysis of competing risks data, the events 

due to all other causes except the event due to cause of 

interest are combined and treated as censored under the 

assumption that the causes of events are independent of each 

other. Recently, many different models have been developed 

to assess the lifetimes of a specific risk in presence of the 
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other competing risk factors with assumption for the causes 

of failures to be dependent or independent. Two important 

concepts that are used to specify the distribution of the 

observable random pair (T, C) in competing risks set up are 

cause specific hazard rate functions (λj(t)) and cause specific 

sub distribution functions (cumulative incidence functions). 

The cause specific hazard may be better applicable for 

studying etiology of disease whereas sub distribution hazard 

are used in individual risk. 

 

2.2 Competing Risk Regression 

 

In survival studies, the focus of interest is to establish the 

relationship between failure time variable and covariates. 

The covariates or explanatory variables plays an important 

role in describing heterogeneity among failure time data in a 

population. Regression models are generally applicable to 

understand and determine the association between covariates 

and the failure time variable. For example, in a breast cancer 

study, factors such as age, tumor size, number of positive 

nodes can be considered as covariates. In some practical 

situations, the effect of covariates on failure time variable 

changes over time and such covariates are referred to as 

time-dependent or time varying covariates.  

 

Several different regression models have been developed for 

failure time data to evaluate time invariant and time 

dependent covariate that affect the survival of patient from 

the competing risk event. The statistical analysis and 

inferences related to competing risk data has been analyzed 

in different ways by different authors. In the model of cause-

specific hazard, there is no direct relation between the 

regression coefficients and the incidence of events as the 

effect of covariates on the competing event(s) is ignored, 

Prentice et al [7] proposed Cox-type regression on the cause-

specific hazard where competing events are treated as 

censored observations and assumptions and extension as 

known from classical Cox regression. Benichou and Gail [8] 

and Dorey [9] have derived the estimates of the cause-

specific hazard functions based on absolute risk regression. 

Unfortunately, hazard ratios as obtained by cause specific 

Cox regression analyses do not directly quantify the ability 

of the single markers to predict the unconditional absolute 

risk of an event of interest. Fine and Gray [10] introduced a 

regression approach focusing on sub distribution hazard. In 

the Fine and Gray model the regression coefficients are 

monotonously linked to the cumulative incidence function 

and the occurrence of competing events has an influence on 

the coefficients. Modified standard survival models can be 

fit to estimate the influence of the investigated covariates on 

the sub distribution hazard. Bryan et al [12] have discussed 

sub distribution hazard and cumulative incidence function 

for treating competing risks and their applications in 

regression settings. They have compared assumptions, uses 

and advantages of three different regression approaches viz, 

cause specific proportional hazard model, sub distribution 

proportional hazard model and parametric mixture model. 

The usage, interpretation and influence of covariate effect 

evaluated in of common competing risk regression models in 

relation to cause-specific hazard or on the cumulative 

incidence of the failure types have been discussed by James 

et al [12]. They also illustrate how covariate effects differ 

between these approaches in simulation studies. The 

difference, odds ratio and ratio between two cumulative 

incidence function has been investigated by Zhang et al. [13] 

Logistic risk regression is another useful model which can 

extend odds ratio to multiple regression in competing risks.  

However, relative absolute risks are easier to understand.  

 

Recently, there is a boom in predictive modelling in 

biomarker research. There is high demand for statistical 

techniques to quantify the predictive capability of genotype, 

phenotype, environmental factors and treatment in future 

disease course of patients. For example, a patient diagnosed 

with diabetes may be interested in the risk of mortality 

related to cardiovascular disease. It is of interest in a larger 

perspective to quantify how multiple risk factors change the 

predicted risk of death caused by cardiovascular diseases 

[14] Practical properties of different regression models 

specifically for predicting the individual risks of cancer 

patients have been reviewed and compared by Thomas et al. 

These models are not new, and the mathematical properties 

are well studied in the framework of the linear 

transformation model [15] 

 

In this article, we have reviewed and compared different 

competing risk regression approaches for estimation and 

assessment of covariate effects. We have chosen widely used 

cause specific hazard regression and sub distribution hazard 

regression and compared it with flexible hazard regression. 

  

2.3 Cause Specific Hazard Rate: 

 

The cause specific hazard functions plays an important role 

in competing risk framework as hazard rates can be 

estimated in the presence of censored observations. The 

cause-specific hazard rate for event type k provides an 

individual‟s probability for failing from an event of type k in 

an infinitesimal small time interval t to t+Δt given that failure 

has not occur from any event up to time t. For the cause 

specific hazard for event type k at time t individuals that 

failed from an event other than k prior to t removed from the 

remaining risk set. 

 

 
 

Cause specific hazard functions are well criticize in literature 

for its assumptions, interpretation and identifiability 

problems. Prentice et al. had proposed cause specific hazard 

function with time-dependent covariates for observable 

quantities where competing events are treated as censored 

observations. 

 

 
 

Where λk,0 (), is arbitrary and βk, k=1,…..,m are cause 

specific regression coefficients to be estimated from data 

using standard aymptotic likelihood methods. Here inference 

on the effects of treatments or exposure variables X required 

no strong modelling assumptions under same set of 

conditions as causes of failures are assumed to be 

independent Thus λk,0() functions can be estimated with 

assumptions and extension as known from classical Cox 
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regression. [7] 

 

2.4 Sub distribution Hazard Rate 

 

Cause specific hazard function is considered as standard 

analysis for competing risk data with the assumption that 

hazard rates are proportional but it does not provide direct 

interpretation of survival probabilities for a specific type of 

event. Thus, covariate effects testing on the sub distribution 

hazard function is not possible under cause specific hazard 

formulation and model selection issues and efficient 

prediction cannot be addressed directly. In order to define a 

“hazard-type” quantity that is directly linked to the 

cumulative incidence function, the marginal failure 

probabilities for a particular cause is intuitively appealing in 

the presence of competing risk data. Sub distribution hazard 

rate is introduced by Gray. For the sub distribution hazard 

rate, individuals for event type k at time t that failed from an 

event other than k prior to t remain in the risk set.[16] 

 

 
 

Fine and Gray proposed a semi-parametric Cox-type 

regression on the sub distribution hazard. Assumptions 

known from standard models are translated to sub 

distribution hazards (e.g. proportionality). The proportional 

sub distribution hazard is given as: 

 
 

where  is a completely unspecified, nonnegative 

function in t, the log(-log) transformation model results with 

h0(t) =log{  }.Thus the baseline hazard and 

regression coefficients have a straightforward interpretation 

and does not depend on the probabilistic structure of the sub 

distribution hazard from the Cox transformation model In 

applications, we anticipate time x covariate interactions. To 

address this issue, they have extended the model to the case 

of time varying covariates X(t), which are functions of the 

original, time-independent covariates X and t. [10] 

 

Direct link between regression coefficients and cumulative 

incidence: 

 

 
 

2.5 Flexible Risk Regression 

 

The cause specific hazard and cumulative incidence function 

for all causes are the standard approach and it contains the 

same information represented in different ways, thus leading 

to a different understanding of the subject matter. Scheike & 

Zhang consider a simple and flexible class of regression 

models that is easy to fit and also allows non-proportional 

hazards. It contains the Fine-Gray model as a special case 

which leads to a new simple goodness-of-fit procedure for 

the proportional sub distribution hazards assumption that 

aims in particular at representing time varying effects in the 

data that was not covered by the Cox type model. It fits a 

non-parametric, semi-parametric and parametric model for 

the cause-specific quantities. [17] 

 

A class of flexible models represented as: 

 
 

where h and g are known link functions and  and  are 

unknown regression coefficients. Where h() is a known link-

function h() and g(t, x, z) is known prediction-function for 

the probability of dying from cause 1 in a situation with 

competing causes of death. 

 

In this article we considered two classes of flexible models 

from timereg package 19.2 of R software [17]: 

 

1) The additive model where, 

h (x) = 1-exp(-x) and g(t, x, z) = xTA(t) + (diag(tp)z)Tβ. 

 

2) The proportional setting that includes the Fine & Gray 

(FG) "prop" model and some extensions where, 

h(x) =1-exp(-exp(x)) and g(t, x, z) = xTA(t) + (diag(tp)z)Tβ. 

 

The FG model is obtained when x = 1, but the baseline is 

parameterized as exp(A(t)).  

 

2.6 Example of Bone Marrow Transplantation Study: 

 

We analyzed data from 177 patients who received a stem cell 

transplant for acute leukemia. The aim of the analysis was to 

estimate the cumulative incidence of relapse in the presence 

of transplant-related death as competing events. The effect of 

predictive factors on relapse and its corresponding covariates 

such as Age, Sex, Disease (lymphoblastic or myeloblastic 

leukemia), Source of stem cells (bone marrow (BM) and 

peripheral blood (PB), or peripheral blood (PB)), and Phase 

at transplant (Relapse, CR1, CR2, CR3) were evaluated.  

 

3. Results  
 

The data set is available at http://www.stat.unipg.it/luca/R in 

the file „bmtcrr.csv‟ and the contained variables are 

summarized in Table 1  

 

 

 

 

 

Table 1: Variables in Bone Marrow transplant study data 
Variable Statistics 

Age 

N 177 

Mean (SD) 30.5(13.04) 

Min-Max 04-64 

Sex 

Male N (%) 100(56.5) 

Female N (%) 77(43.5) 

Disease 

ALL N (%) 73(41.2) 

AML N (%) 104(58.8) 

Phase 

CR1 N (%) 47(26.6) 

CR2 N (%) 45(25.4) 

CR3 N (%) 12(6.8) 

Relapse N (%) 73(41.2) 
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Status 

0 N (%) 46(26.0) 

1 N (%) 56(31.6) 

2 N (%) 75(42.4) 

Source 

BM+PB N (%) 21(11.9) 

PB N (%) 156(88.1) 

ftime 

N 177 

Median 6.6 

Min-Max 0.13-131.8 

 

Table 2: Cause Specific Hazard 

Cause 1: Death from treatment related causes 

 β Exp(β) Se(β) p-value 

platelet -0.51987 0.59460 0.18721 0.00549 ** 

age 0.40836 1.50435 0.08903 4.51e-06 *** 

tcell -0.65169 0.52116 0.27634 0.01836 * 

Cause 2: Relapse 

platelet -0.2346 0.7909 0.2321 0.312 

age 0.1425 1.1532 0.1118 0.202 

tcell 0.3015 1.3519 0.2827 0.286 

 

Table 3: Fine & Gray Sub distribution Hazard 

Cause 1: Death from treatment related causes 

 β Exp(β) Se(β) p-value 

platelet -0.426 0.653 0.1810 1.9e-02*** 

age 0.331 1.393 0.0799 3.4e-05*** 

tcell -0.583 0.558 0.2699 3.1e-02*** 

Cause 2: Relapse 

platelet -0.0587 0.943 0.230 0.800 

age -0.0212 0.979 0.121 0.860 

tcell 0.5225 1.686 0.282 0.064 

 

Table 4: Flexible Risk Regression-Additive Model 

Cause 1: Death from treatment related causes 

Variable Non-Parametric Model 

Test for constant effect 

Parametric Model 

Β (SE; P) 

platelet 0.01 -0.00667(0.00254;8.72e-03***) 

age 0.00 0.00617(0.00117;1.34e-07***) 

tcell 0.04 -0.00905(0.00307;3.18e-03***) 

Cause 2: Relapse 

platelet 0.26 -1.10e-04(0.001810; 0.952) 

age 0.37 5.26e-05(0.000884; 0.953) 

tcell 0.16 4.90e-03(0.003320; 0.141) 

 

 

Table 5: Flexible Risk Regression-Multiplicative Model 

Cause 1: Death from treatment related causes 

Variable Non-Parametric Model 

Test for constant effect 

Parametric Model 

Β (SE; P) 

platelet 0.16 -0.561 (0.2040;0.00605**) 

age 0.13 0.324 (0.0918;0.00041***) 

tcell 0.10 -0.694 (0.3030;0.02170*) 

Cause 2: Relapse 

platelet 0.05 -0.0926 (0.241;0.701) 

age 0.07 0.0294 (0.126;0.816) 

tcell 0.04 0.4170 (0.296; 0.159) 

 

4. Discussion  
 

Cause specific hazard and sub distribution hazard regression 

approach has been widely used in most of the published 

articles for competing risk analysis but has its own 

limitations and relationships. It is known from the literature 

that cause specific hazard regression method are to be used 

for etiology and sub distribution hazard regression method 

are to be used for prognosis.  

 

Both the methods uses different assumptions and may give 

different results. Flexible models for the cumulative 

incidence are very useful and also allows time varying 

covariates. It provides flexibility of non-parametric effects 

and it may lead to give different predictions for the 

cumulative incidence functions for the different causes. In 

our example, cause specific hazard and sub distribution 

hazard regression shows that out of all covariates, platelet, 

age & tcell are significantly affect the cause of death from 

treatment related causes and none of the covariates affect 

cause of relapse. Both the methods gives the same results 

with different degree of significance. Fine & gray sub 

distribution hazard is very sensitive and shows that platelet, 

age & tcell are highly significant. We have then used flexible 

risk regression nonparametric and parametric additive and 

multiplicative models and compare the results with cause 

specific hazard and sub distribution hazard regression. 

Flexible risk regression nonparametric and parametric 

additive models show the same as cause specific hazard 

regression and sub distribution hazard regression 

respectively for death from treatment related causes while 

with nonparametric and parametric multiplicative models 

gives different significance.  

 

5. Conclusion 
 

The selection of appropriate method shall be based on 

scientific question. Comparing the results of cause specific 

hazard, sub distribution hazard and flexible risk regression 

for competing risk analysis, the results reveal similar causes 

i.e. platelet, age & tcell in all the analysis with difference in 

level of significance. Hence it is quite difficult to say which 

link function should be preferred in flexible risk regression 

as per our understanding and experience while dealing with 

different models, the additive link function has the best 

numerical and small sample performance and is therefore to 

be preferred. Future research should continue to explore the 

differences in approaches and expand the tools to understand 

and implement competing risk methods for clinical trials. 
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