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Abstract: This paper is focused on the implementation of Hybrid techniques to explore the optimal solution for real world pattern 

association problems for which already some solutions exist but they are not efficient to obtain the desired solution for the problem as we can 

get by using the neural network techniques with genetic algorithm. In present work we have made some comparisons between the existing 

conventional and proposed evolutionary techniques and carried out the analysis. The results recommend that, in all cases, recalling of any 

approximate pattern through genetic algorithm outperform the recalling of the same pattern through conventional Hebbian rule. 

 

Keywords: Pattern Recall Analysis, Hopfield Neural Network, Genetic algorithm, Hebbian Learning Rule 

 

1. Introduction 
 

Pattern recognition is the study of how machines can observe 

the environment, learn to distinguish patterns of interest from 

their background, and make sound and reasonable decisions 

about the categories of patterns. In spite of more than 50 years 

of research, design of a general-purpose machine pattern 

recognizer remains an elusive goal. 

 

The inherent differences in information handling by human 

beings and machines in the form of patterns and data, and their 

functions in the form of understanding and recognition have 

led us to identify and discuss several pattern recognition tasks 

which human beings are able to perform very naturally and 

effortlessly whereas we have no simple algorithms to 

implement these tasks on a machine.  

 

Neuro-computing concerns with processing of information 

with its adaptation. Unlike its programmed computing 

counterpart, a neuro-computing approach to information 

processing first involves a learning process within an artificial 

neural network (neuro-computers) or neural network 

architecture that adaptively responds to inputs according to a 

learning rule. Then, the trained neural network can be used to 

perform certain tasks depending on the particular application.  

 

2. Motivation and Problem Definition 
 

As per the Hopfield analysis for pattern storage networks on 

presentation of any prototype input pattern or the noisy form 

of any stored pattern, the network is expected to recall the 

corresponding stored pattern. But this cannot happen most of 

the time due to problem of false minima if the size of the 

network is large. It becomes more difficult when the test 

patterns are overlapped version of the patterns used in the 

training process. The ultimate goal is to impart a machine with 

pattern recognition capabilities comparable to those of human 

beings. This goal is difficult to achieve using most of the 

conventional methods. It is for these reasons that the new 

models of computation inspired by the structure and function 

of the biological neural network are continuously evolved. 

Such models for computing are based on Artificial Neural 

Networks and Genetic Algorithms. In present thesis, our 

objective is to enhance the performance of Hopfield neural 

network, especially the capacity and the quality of the storing, 

by making use of genetic algorithm. 

 

Therefore, to accomplish the above objectives, firstly the 

patterns of training set have been encoded in the neural 

network using conventional Hebbian learning rule. It is 

expected that all the patterns of training set has been 

successfully stored as the associative memory feature of 

Hopfield neural network. As a result of this learning process, 

the expected optimized or sub-optimized weight matrix has 

been obtained and then the genetic algorithm has been 

employed to further optimize this weight matrix. In case of 

genetic algorithm, the population of this approximate optimal 

weight matrix has been evolved using the population 

generation technique, crossover operator and fitness 

evaluation functions, until the selection of the last weight 

matrix or matrices has been performed. The performance of 

this network is further improved for the efficient recalling by 

evolving the obtained weight matrix with the genetic 

algorithm. The results of various methods for recalling has 

been compared and analyzed. 

  

3. Pattern Recall Analysis using Hopfield Neural 

Network with Genetic Algorithm 
 

Artificial neural network (ANN) is a technique for creating 

artificial intelligence in the machine. This is an attempt of the 

modeling of the human brain in a serial machine for various 

pattern recognition tasks. Pattern storage is one of the 

techniques for the pattern recognition task that one would like 

to realize using an ANN. The Hopfield neural network is a 

simple feedback neural network which is able to store patterns 

in a manner rather similar to the brain – the full pattern can be 

recovered if the network is presented with only partial 

information. Furthermore there is a degree of stability in the 

system – if just a few of the connections between nodes are 

Paper ID: ART20195546 10.21275/ART20195546 1794 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor (2018): 7.426 

Volume 8 Issue 2, February 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

severed, the recalled pattern is not too badly corrupted and the 

network can respond with a best guess. Of course, a similar 

phenomenon is observed with the brain. Here the network is 

expected to store the pattern information (not data) for later 

recall. Pattern storage is generally accomplished by a feedback 

network consisting of processing units with non-linear bipolar 

output functions. The stable states of the network represent the 

stored patterns.  

 

Neural networks are often used for pattern recognition and 

classification.  Hopfield proposed a fully connected neural 

network model of associative memory in which we can store 

information by distributing it among neurons, and recall it 

from the dynamically relaxed neuron states. Hopfield used the 

Hebbian learning rule, to prescribe the weight matrix. 

Hopfield type networks will most likely be trapped in non-

optimal local minima close to the starting point, which is not 

desired. The presence of false minima will increase the 

probability of error in recall of the stored pattern. The problem 

of false minima can be reduced by adopting the evolutionary 

algorithm to accomplish the search for global minima. 

        
Developed by Holland, an evolutionary searching (genetic 

algorithm) is a biologically inspired search technique. In 

simple terms, the technique involves generating a random 

initial population of individuals, each of which represents a 

potential solution to a problem. Each member of that 

population’s fitness as a solution to the problem is evaluated 

against some known criteria. Members of the population are 

then selected for reproduction based upon that fitness, and a 

new generation of potential solutions is generated from the 

offspring of the fit individuals. The process of evaluation, 

selection, and recombination is iterated until the population 

converges to an acceptable solution. 

 

Much work has been done on the evolution of neural networks 

with GA. The first attempt to conjugate evolutionary 

algorithms with Hopfield neural networks dealt with training 

of connection weights. Evolution has been introduced in 

neural networks at three levels: architectures, connection 

weights and learning rules.  

 

The population generation techniques (mutation and elitism) 

are used in the parent weight matrix of feedback neural 

network for evolving the population of weights after storing 

all English alphabets using Hebbian learning rule. The 

generated population (by using mutation and elitism) of the 

weights is evaluated from the first fitness evaluation function. 

The fixed-point stability is used as first fitness evaluation 

function for the evaluation of individual weight population. A 

Crossover operator takes first fittest weights as parents and 

produces the next generation population of weights as 

children. The stable state function is used as second fitness 

evaluation function on crossover generated population of 

weights for evaluation of individual weight population. This 

process is continued until the optimal weight matrices are 

found for recalling of already stored patterns. The evolution of 

a network’s connection weights is an area of curiosity and the 

centre of attention of this work. 

his thesis is organized as follows: First, we present the 

simulation design, and implementation details of the problem. 

Secondly, a numerical example provides the details of the 

example situation for model validation and verification. Then, 

the experimental results and descriptions are presented. In the 

end, we conclude the work and suggest new direction for 

future research.  

 

3.1. Simulation Design and Implementation Details  
 

The experiments described in this segment have been designed 

to evaluate the performance of a Hopfield neural network with 

a genetic algorithm for the recalling of already stored English 

alphabets. 

 

3.1.1. Set of patterns used for training 

The patterns used for the simulation are shown in Fig 1. Each 

pattern consists of a 7×5 pixel matrix representing a letter of 

the alphabet. White and black pixels are respectively assigned 

corresponding values of -1 and +1.  
 

 
Figure 1: Set of Patterns Used for Training 

 

Now, the input pattern vector for the storage corresponding to 

English letters is constituted with the series of bipolar values 

+1 and -1. For example, the pattern vector for letter A can be 

written as: 

[-1-11-1-1-11-11-1-11-11-11-1-1-11111111-1-1-111-1-1-11] 

 

In the general form we can represent the l
th

 pattern vector as  

 
where l =1 to 26 and α1, α2, ... … … …, α35 are neurons. 

 

3.1.2. Experiments 

Four runs of the experiments were taken on same Hopfield 

network architecture, i.e., 35 neuron’s network. Each run is 

based on one of the two experiments - recalling English 

alphabets with Hebbian rule and recalling the same alphabet 

with genetic algorithm. The inputs for four different runs are 

zero-, one-, two-, and three-bit errors induced randomly in the 

pattern already stored in the network. In each experiment, the 

Hebbian learning rule is used to store patterns in the Hebbian 

neural network. The genetic operators used in each experiment 

are summarized in Table 1. 

 

Table 1: Genetic operators used in experiments 
Training Algorithms Genetic Operator Used 

Hebbian rule None 

Genetic algorithm Population generation technique (mutation 

+ elitism), crossover and fitness evaluation 

technique 

The parameters used in different runs of the experiments are 

described in Table 2 and Table 3. 

 

Paper ID: ART20195546 10.21275/ART20195546 1795 



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

Impact Factor (2018): 7.426 

Volume 8 Issue 2, February 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

Table 2: Parameters used for Hebbian learning rule 
Parameter Value 

Initial state of neurons 
Randomly generated values 

either -1 and +1 

Threshold values of neurons 0.00 

 

Table 3: Parameters used for Genetic Algorithm 
Parameters Value 

Initial state of neurons 
Randomly generated 

values either -1 and +1 

Threshold values of neurons 0.00 

Mutation population size N+1 

Mutation probability 0.5 

Crossover population size N * N 

 

The task associated with the Hopfield neural networks in all 

experiments is storing the English alphabets as input patterns 

with the appropriate recalling of the same patterns with 

induced noise. 

 

3.2 The Hopfield Neural Network 

 

The proposed Hopfield model consists of N (35 = 7 × 5) 

neurons and N * N connection strengths. Each neuron can be 

in one of the two states, i.e.±1, and L bipolar patterns are to be 

memorized in associative memory. 

 

For storing L patterns, we could choose a Hebbian rule given 

by the summation of Hebbian terms for each pattern, i.e. 

 
Hence, in order to store 26 letters of English alphabet (all 

capitals) in a 35-unit bipolar Hopfield neural network, there 

should be one stable state corresponding to each stored 

pattern. Thus, the following activation dynamics equation 

must be satisfied to accomplish the storage. 

 
Now, the initial weights have been considered as wij ≈ 0 (near 

to zero) for all i’s and  j’s from the synaptic dynamics we 

have: 

 
Similarly for the L

th
 pattern 

 
We can generalize this as  

 
 

    
Then, after the learning for all the patterns, the final parent 

weight matrix can be represented as  

 
 

This square matrix is known as parent weight matrix for 

storing the given input patterns. Hopfield suggested that the 

maximum limit for the storage is 0.139 N in network with N 

neurons, if a small error in recalling is allowed. Later, this was 

theoretically calculated as p = 0.14 N by using the replica 

method. 

 

The Hebbian rule, which we are using for recalling letters of 

English alphabets, can be defined diagrammatically in Figure 

as 

                                        

 
Figure 2: Flowchart of Hebbian Rule Implementation 

 

3.3. The Genetic Algorithm Implementation 

 

In this simulation, we are not storing the GAs with random 

solutions, as it generally starts; instead we start with a sub-

optimal solution to achieve the optimal solution. In each 

iteration, this problem of sub-optimal solution is modified 

through uniform random mutations and discrete crossovers 

and their fitness values are evaluated. According to the fitness 

values, individuals of the next generation are selected using a 

strategy in ES terminology. The cycle of reconstructing the 

new population with better individuals and restarting the 

search is repeated until an optimum solution is found. In this 

process, the two fitness evaluation functions have been used. 

The first fitness function is evaluating the best matrices of the 

weights population on the basis of the settlement of network in 

the stable state corresponding to the stored pattern on the 

presentation of the already stored pattern as the input pattern. 

The second evaluation function is selecting the weight 

matrices on the basis of settlement of the network in the stable 

state corresponding to the correct or exact stored pattern on the 

presentation of prototype input pattern as the already stored 
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pattern. Thus in the recalling process, stable state of the 

network corresponding to the stored pattern should be retained 

for the selected weight vector on the presentation of prototype 

input pattern. 

 

In regard of two fitness functions, we wish to say that the first 

fitness function determines the suitable weight matrices which 

are responsible to generate the correct recalling of the stored 

pattern for the input pattern that has been used in the training 

set. It means that, at the first level of filtering only those 

weight matrices will be selected which provide the correct 

pattern association for the training pattern set. Thus, at this 

level we will not use any test pattern, which involves the noise 

in the original pattern. It only represents those weights which 

exhibit the pattern association during the training of the 

network and should carry in the next generation of the 

population, whereas the second fitness evaluation function is 

used after the crossover operator. The crossover operator has 

been applied only on the chromosomes which have been 

passed from the first fitness evaluation function. The second 

fitness evaluation function has been applied to determine the 

population of these weight matrices, which are responsible for 

recalling of the approximate stored pattern on the presentation 

of test pattern. The test patterns are considered here as noisy 

prototype patterns of the training set patterns. Thus the second 

fitness evaluation function is actually selecting the final 

population of the chromosomes which are required for 

generating the optimal solution. 

 

The Evolutionary Algorithm, which we are using for recalling 

the letters of English alphabets, can be defined 

diagrammatically in Figure 6 as     

                                                                                

 
Figure 3: Flowchart of Genetic Algorithm Implementation 

 

3.3.1. The Population Generation Technique 

The population generation technique produces the population 

of N weight matrices of same order as the original parent 

weight matrix. The original weight matrix remains unchanged 

during the evaluation. The total number M (i.e. N + 1) of 

chromosomes are produced after using the mutation and 

elitism. Each chromosome is having a fixed length of N × N 

alleles. 

 

Each component of the original weight matrix, wij, i.e. SiSj, is 

multiplied by one of these alleles. We denote the i
th

 allele of 

the n
th

 chromosome as . Each chromosome modifies the 

original weight matrix W
L
 and produces N weight matrices 

slightly different from W
L
. The modification can be 

represented as 

 
where  denotes i – j component of the n

th
 weight matrix in 

the population. 

 

3.3.2. The Pseudo-Code of the Population Generation 

Technique 

Step 1: Generate the mutation positions in the chromosome 

randomly. 

Step 2: Modify the parent chromosome shown in Figure 2 at 

the positions generated in the step 1, using above equation 

and {1, -1}. 

Step 3: Repeat steps 1 and 2 until N number of mutated 

chromosome populations have been created. 

Step 4: Apply elitism to include parent chromosome in the 

mutated populations, which makes the population count M 

(i.e. N+1). 

 
0 S1S2 …. S1SN S2S1 …. SNS1 SNS2 SNS3 …. 0 

                Figure 4: Chromosome Representation 

 

3.3.3. The First Fitness Evaluation 

The first fitness evaluation function (f) is used for selecting the 

good or efficient next generation of weight matrices. 

Evaluation of f for each individual weight matrix is made with 

a set of randomly pre-determined patterns X
L
. when one of the 

stored patterns X
L 

is given to the network as an initial state, 

the state of neurons varies over time until X
L
 is a fixed point. 

In order to store the pattern in the network, these two states 

must be similar. The similarity as a function of time is defined 

by  

    
Here  ( t ) is the state of the i

th
 neuron at time t. In 

evaluating the fitness value, the temporal average overlap (z
L
) 

is calculated for each stored pattern, as follows. First the total 

of the inner products of the initial states and states is 

calculated at each time of update not greater than a certain 

time t0. After that, these values are summed up over whole set 

of initial patterns, i.e. 

 
Here t0 has been set to N (the number of processing units). We 

must note that the fitness 1 implies that all the initial patterns 

have been stored as fixed points. Thus, we consider only those 

generated weight matrices that have the fitness evaluation 

value 1. Hence, all the selected weight matrices will be 

considered as the new generation of the population. These new 
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population will be used for generating the next better 

population of weight matrices with the recombination or 

crossover operator. 

 

3.3.4. The Crossover Operator 

Crossover is an operation which may be used to combine 

multiple parents and make offsprings. This operator is 

responsible for the recombination of the selected population of 

weight matrices. This operator forms a new solution by taking 

some parameters from one parent and exchanging with ones 

from another at the very same point. Here, we are applying the 

recombination with the uniform crossover. In this process, the 

network selects randomly a string of non-zero chromosomes 

from a selected weight matrix and exchanges it with string of 

non-zero chromosomes from another selected weight matrix. 

Thus, a large population of the weight matrices will be 

generated. Hence, on applying this crossover operator with the 

constraint that the number of chromosomes or components 

selected for exchange should be equal for the two weight 

matrices, the modification has been made in the selected 

weight matrices as follows: 

 
 

Here T is selected weight matrices from M generated matrices, 

r = 1 to N×N, only for non-zero elements and  and  

denote i – j component of the n
th

 and k
th

 weight matrices in the 

population. Thus, we have a new large population of K weight 

matrices from the crossover as follows: 

 
       

 3.3.5. The Steps for Crossover Operation 

Step 1: Initialize the crossover population size limit with value 

N*N. 

Step 2: Extract two chromosomes from among the M 

(i.e.N+1) chromosomes randomly. 

Step 3: Obtain a random position in each extracted 

chromosome for exchanging the values. 

Step 4: Exchange the values between the chromosomes. 

Step 5: Include both chromosomes in the crossover 

population. 

Step 6: Check whether the population size is equal to N*N. If 

not, go to step2 again. 

 

3.3.6. The Second Fitness Evaluation 

In the process of recalling the stored pattern, corresponding to 

a noisy letter of English alphabet input pattern, the best 

suitable weight matrix or matrices will be selected from the 

generated population of K weight matrices. 

 

Let the state of the network corresponding to the already 

stored l
th

 pattern is 

 
This represents one of the stable states of the network which is 

occupying the stored pattern L during the learning. 

Let the prototype of presented input pattern be x
l+Є

. This 

pattern represents the noisy or distorted form of the already 

stored pattern x
l
. We have the population of K weight matrices 

after the crossover operation. Now, we start selecting the 

weight matrices from this population to evaluate it with this 

fitness function. Let W
POP.k

 be the k
th

 weight matrix from the 

generated population of weight matrices. Now, we assign this 

selected matrix to the network and use the activation dynamics 

to determine the output state of the network as 

 

 
 

It implies that the network settles in the same stable state 

which corresponds to the already stored pattern so that the 

W
POP.k

 has been selected from the fitness function if it is able 

to settle the network in the stable state of the already stored 

pattern. 

 
This process will continue for all the weight matrices from the 

population. It is possible to obtain more than one optimal 

weight matrices from the prototype pattern recalling. 

 

4. A Numerical Example 
 

Here, we are analyzing the performance of the proposed 

method for pattern recalling with the help of an example. For 

this, we consider the 26 capital letters of English alphabet (A - 

Z), as represented in Fig 1, have been encoded in a 35 nodes 

Hopfield neural network using the Hebbian learning rule 

shown in section 3.1.1. The encoded patterns construct a sub-

optimal weight matrix of order 35, which is as represented by 

equation. Now, the prototype of these letters without noise and 

with noise – are presented to the network and attempt to recall 

is made by both hebbian rule and genetic algorithm.  

 

The letters are represented in the form of bipolar values either 

+1 or -1. For example, the pattern vector for letter A can be 

written as: 

 

[-1-11-1-1-11-11-1-11-11-11-1-1-11111111-1-1-111-1-1-11] 

 

Here, the noise means reverting a particular value from +1 to -

1 and vice-versa. For example, if a noise of two-bit is 

introduced in the above pattern of letter A at position 3 and 5, 

it becomes: 

 

[-1-1-1-11-11-11-1-11-11-11-1-1-11111111-1-1-111-1-1-11] 

 

This prototype pattern has been attempted to recall by Hebbian 

rule, the flow graph for which is shown in Fig 2. The result 

shows that the success of correct recall of letter A with two-bit 

induced error using Hebbian rule is 0%. 

 

The same prototype pattern has been attempted to recall by the 

genetic algorithm, the flow graph for which is shown in Fig 3. 

The GA implementation starts with the sub-optimal weight 

matrix (parent weight matrix W
L
) obtained after storing all the 

patterns using hebbian rule. The first operator applied is 
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mutation. During this operation, we obtain 35 weight matrices 

of order 35 slightly different from parent weight matrix W
L
 

using equation 12. By virtue of next operator elitism, the 

parent weight matrix is also included in the generated 

population of matrices. It makes the total population of weight 

matrices 36 i.e. 35+1. Now for the survival of fittest, a first 

fitness function is applied to the above generated population of 

36 weight matrices. This fitness function passes through only 

those weight matrices through which all stored patterns can 

correctly be recalled using equation 13 and 14. Only 30 such 

weight matrices are qualified to be included in the next 

generation. The next operator, crossover, after randomly 

selecting two weight matrices from 30 weight matrices, 

applies the crossover operator to generate next population 

weight matrices using the steps described for crossover 

operator in section 3.3.5. The limit of crossover population is 

1225. 

 

The second fitness function filters in those weight matrices 

(out of this 1225 matrices) through which the prototype 

presented is correctly recalled using hebbian rule. Four weight 

matrices were qualified through this fitness function which 

suggests that out of 1225 matrices only 4 weight matrices, the 

network is converging for correct recall of a two-bit noise 

induced prototype pattern of letter A. During the GA 

implementation, it is not necessary that we get some weight 

matrices, through which correct recalling is made, in the first 

iteration only, instead it may take more than one iterations. If 

it happens within 20 iterations, the success is count; otherwise, 

we consider it as failure. In the particular example of letter A 

with 2-bit induced noise, correct recalling could be made in 

the 5
th 

iteration. The result shows that the success of correct 

recall of letter A with two-bit induced error using GA is 

100%. 

 

5. Results and Discussion 
 

The results presented in this section have demonstrated that, 

within the simulation framework presented above, large 

significant difference exist between the performance of the 

genetic algorithm and the conventional Hebbian rule for 

recalling the letters of English alphabets which have been 

stored in the Hopfield neural network using the Hebbian 

learning rule. These results recommend that, in all cases, 

recalling of any approximate pattern through genetic algorithm 

outperform the recalling of the same pattern through 

conventional Hebbian rule. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4: Results for recalling letters of English alphabet with 

no error 
Letters Recalling success in (%) Letters Recalling success in (%) 

Hebbian rule GA  Hebbian rule GA 

A 69.2 100 N 85.5 100 

B 92.3 100 O 94.4 100 

C 89.9 100 P 90.8 100 

D 96.4 100 Q 80.5 100 

E 87.4 100 R 92.5 100 

F 86.6 100 S 86.5 100 

G 89.4 100 T 93.6 100 

H 91.3 100 U 86.3 100 

I 100 100 V 84.3 100 

J 91.8 100 W 95.4 100 

K 76.6 100 X 87.4 100 

L 76.1 100 Y 89.3 100 

M 88.6 100 Z 84.2 100 

   

Table 4 has the results for recalling the stored letters of 

English alphabets using both the Hebbian rule and the genetic 

algorithm, while there is no noise present in the input pattern. 

In total 5000 times the recalling was made through both the 

algorithms separately for each letter. During GA 

implementation for single recall, the success is considered 

only if the recalling of letter I made within 20 iterations, i.e. 

mutation, elitism, first fitness evaluation function, crossover 

and second fitness evaluation function. 

 

Table 5-7 represent the results for recalling the corresponding 

stored patterns while these are presented with induced noise. 

In these cases, noise was created by reverting one-, two-, and 

three-bits in the presented prototype input patterns of the 

already stored patterns. These positions of the bit(s) to be 

reverted to create noise are taken randomly. 

 

Table 5: Results for recalling letters of English alphabet with 

one-bit error 
Letters Reverted Recalling 

success in (%) 

Letter Reverted Recalling 

success in (%) 

Hebbian 

rule 

GA Hebbian 

rule 

GA 

A 1 4.1 100 N 35 1.2 100 

B 1 4.8 100 O 2 1.6 100 

C 4 2.6 100 P 5 3.1 100 

D 1 3.8 100 Q 7 2.0 100 

E 1 3.3 100 R 10 1.9 100 

F 3 2.8 100 S 20 1.6 100 

G 2 3.0 100 T 6 2.1 100 

H 5 2.7 100 U 1 4.5 100 

I 35 2.2 100 V 2 1.9 100 

J 1 4.8 100 W 35 1.1 100 

K 14 1.8 100 X 10 2.8 100 

L 17 2.2 100 Y 33 2.6 100 

M 31 1.7 100 Z 2 2.5 100 
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Table 6: Results for recalling letters of English alphabet with 

two-bit error 
Letters Reverted Recalling 

success in (%) 

Letter Reverted Recalling 

success in (%) 

Hebbian 

rule 

GA Hebbian 

rule 

GA 

A (1,2) 0.02 100 N (1,34) 0.02 100 

B (1,4) 0.04 100 O (28,31) 0.02 100 

C (2,32) 0.02 100 P (13,20) 0.02 100 

D (1,20) 0.05 100 Q (8,13)   0.04 100 

E (3,34) 0.02 100 R (3,33) 0.04 100 

F (3,31) 0.01 100 S (2,35) 0.02 100 

G (2,4) 0.06 100 T (1,3)   0.02 100 

H (10,15) 0.04 100 U (8,14) 0.01 100 

I (2,34) 0.05 100 V (1,4) 0.02 100 

J (8,10) 0.02 100 W (2,4) 0.04 100 

K (1,35) 0.02 100 X (1,5) 0.05 100 

L    (1,6) 0.04 100 Y (5,8) 0.02 100 

M    (3,6) 0.03 100 Z (1,3) 0.02 100 

 

Table 7: Results for recalling letters of English alphabet with 

three-bit error 
Letter Reverted Recalling 

success in (%) 

Letters Reverted Recalling 

success in (%) 

Hebbian 

rule 

GA  Hebbian 

rule 

GA 

A (16,19,22) 0.00 72.5 N (1,5,35) 0.00 90.7 

B (1,3,7) 0.01 90.2 O (4,7,10) 0.01 81.5 

C (3,7,10) 0.00 74.2 P (6,10, 12) 0.00 78.8 

D (3,10,4) 0.00 78.3 Q (9,12, 16) 0.00 75.5 

E (2,4,6) 0.00 79.9 R (31,32,35) 0.00 9.30 

F (6,18, 21) 0.00 69.9 S (2,6,8) 0.00 71.9 

G (4,6,10) 0.00 77.6 T (28,31,33) 0.00 79.0 

H (5,6,10) 0.00 78.3 U (31,32,34) 0.00 17.5 

I (2,8,13) 0.00 73.5 V (10,11,15) 0.00 77.9 

J (3,8,13) 0.00 28.4 W (10,11,15) 0.00 80.5 

K (1,5,35) 0.00 58.4 X (7,9,12) 0.01 78.6 

L (1,5,8) 0.00 11.1 Y (19,21,23) 0.00 57.1 

M (31,33,35) 0.00 68.2 Z (26,31,33) 0.00 21.2 

 

As far as the probability of a mutation operator of a genetic 

algorithm is concerned, we have set it as 0.5 to avoid 

randomness in the search process. This probability is set as a 

constant for every experiment. 

 

There are two basic advantages of the two fitness evaluation 

functions: 

1. The randomness of the GA has minimized, because the 

population is filtered twice. Hence, the less number of 

populations will be generated and the generated population 

will be more fitted for the solution. 

 

2. As the number of population has minimized, the searching 

time will be also reduce. Thus, the GA has also improved in 

its implementation because it is less random and consuming 

less time for searching the optimal solution. 

 

These results clearly indicate that Hebbian rule works well for 

a noiseless pattern, for most of the cases, but its performance 

degrades substantially and recalling success goes down to a 

maximum of 4.8% in the case of one-bit error, 0.06% in the 

case of two-bit error and 0.001% in the case of three-bit error 

induced in the test pattern randomly. On the other hand, the 

GA recalls the pattern successfully even when high noise is 

present in the input pattern i.e. up to four- or five-bits. 

Although due to limited resources, a very few experimental 

runs were conducted for the input test patterns with four- or 

five-bits induced noise and therefore these results are not 

included in this section. 

 

It has been claimed by that the capacity of deterministic 

Hopfield model with hebbian rule is about 0.15N for the noisy 

prototype input patterns, where N is the number of modes in 

the network. If such a network is overloaded with a number of 

patterns exceeding its capacity, its performance rapidly 

deteriorates towards zero. Here, we are storing the 26 

alphabets in a network of 35 nodes and the performance of the 

GA suggests that on inducing five-bit error in presented 

prototype input pattern the network is able to recall the stored 

patterns. It implies that the network capacity has increased up 

to 0.75N. Thus, the numbers of attractions exist here and 

successfully explored during the recalling process. It is quite 

obvious to understand that the GA has searched the suitable 

optimal weight matrices which are responsible to generate 

sufficiently large number of attractions. Hence, the hebbian 

rule which has been used to encode the pattern information is 

not the optimal weight matrix for finding the global minima of 

the problem due to the limited capacity of the Hopfield model. 

Thus the capacity has been increased with the GA by 

exploring the optimal weight matrices for the encoded 

patterns. 

 

Figure 5-8 are presenting comparison chart of performance of 

two algorithms, i.e. the Hebbian rule and the genetic algorithm 

graphically based on results provided in Tables 4-7. 

 

 
Figure 5: Comparison chart for table 4 

 

Series 1: Percentage of Recalled Patterns using Hebbian Rule 

Series 2: Percentage of Recalled Patterns using Genetic 

Algorithm 
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Figure 6: Comparison chart for Table 5 

 

 
Figure 7: Comparison chart for Table 6 

 

 
Figure 8: Comparison chart for Table 7 

 

6. Conclusions 
 

The simulation results, i.e. tables 4-7 indicate that the genetic 

algorithm has more success rate than the Hebbian rule for 

recalling the letters of English alphabet, which are containing 

zero-, one-, two-, and three- bit errors from stored patterns in 

the Hopfield neural network. Sometimes it has also been 

observed that the performance of the GA was less than what 

was expected to be. One of the reasons for this deviation may 

be the position(s) of bits reverted to induce noise in the 

recalling pattern. Another interesting observation is that there 

is confusion while recalling some of the letters through both, 

the Hebbian rule and the GA. For example, on inducing two-

bit error in letter D at positions (1, 5), (1, 2) and (31, 35), the 

recalling was confused with letter O. Similarly, on induction 

of three bit error in letter U at position (30, 32, 34), the 

recalling was also made for letter V. The fact that the recalling 

algorithms are based on the minimum hamming distance of 

noisy pattern with stored pattern may be the reason of 

confusion in recalling those pairs of letters that are having 

similar minimum hamming distances. 

 

It has been found that, the GA can give more than one 

convergent weight matrices for any prototype input pattern in 

comparison to the conventional Hebbian rule, if the prototype 

input pattern is correctly recognized. For conventional 

Hebbian recalling algorithm, if the prototype input patterns are 

correctly recognized by the network, then only one 

convergence matrix will be obtained. This shows the higher 

accuracy rate in the pattern recognition with GA.  

 

The direct application of GA to the pattern association has 

been explored in this research. The aim is to introduce an 

alternative approach to solve the pattern association problem. 

The results from the experiments conducted on the algorithm 

are quite encouraging. Nevertheless more work needs to be 

perform especially on the tests for noisy input patterns. We 

can also use this concept for pattern recognition in the case of 

different objects, shapes, numerals and overlapped alphabet 

etc. 
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