
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Pattern Recall Analysis of the Hopfield Neural

Network with a Genetic Algorithm

Susmita Mohapatra

Department of Computer Science, Utkal University, India

Abstract: This paper is focused on the implementation of Hybrid techniques to explore the optimal solution for real world pattern

association problems for which already some solutions exist but they are not efficient to obtain the desired solution for the problem as we can

get by using the neural network techniques with genetic algorithm. In present work we have made some comparisons between the existing

conventional and proposed evolutionary techniques and carried out the analysis. The results recommend that, in all cases, recalling of any

approximate pattern through genetic algorithm outperform the recalling of the same pattern through conventional Hebbian rule.

Keywords: Pattern Recall Analysis, Hopfield Neural Network, Genetic algorithm, Hebbian Learning Rule

1. Introduction

Pattern recognition is the study of how machines can observe

the environment, learn to distinguish patterns of interest from

their background, and make sound and reasonable decisions

about the categories of patterns. In spite of more than 50 years

of research, design of a general-purpose machine pattern

recognizer remains an elusive goal.

The inherent differences in information handling by human

beings and machines in the form of patterns and data, and their

functions in the form of understanding and recognition have

led us to identify and discuss several pattern recognition tasks

which human beings are able to perform very naturally and

effortlessly whereas we have no simple algorithms to

implement these tasks on a machine.

Neuro-computing concerns with processing of information

with its adaptation. Unlike its programmed computing

counterpart, a neuro-computing approach to information

processing first involves a learning process within an artificial

neural network (neuro-computers) or neural network

architecture that adaptively responds to inputs according to a

learning rule. Then, the trained neural network can be used to

perform certain tasks depending on the particular application.

2. Motivation and Problem Definition

As per the Hopfield analysis for pattern storage networks on

presentation of any prototype input pattern or the noisy form

of any stored pattern, the network is expected to recall the

corresponding stored pattern. But this cannot happen most of

the time due to problem of false minima if the size of the

network is large. It becomes more difficult when the test

patterns are overlapped version of the patterns used in the

training process. The ultimate goal is to impart a machine with

pattern recognition capabilities comparable to those of human

beings. This goal is difficult to achieve using most of the

conventional methods. It is for these reasons that the new

models of computation inspired by the structure and function

of the biological neural network are continuously evolved.

Such models for computing are based on Artificial Neural

Networks and Genetic Algorithms. In present thesis, our

objective is to enhance the performance of Hopfield neural

network, especially the capacity and the quality of the storing,

by making use of genetic algorithm.

Therefore, to accomplish the above objectives, firstly the

patterns of training set have been encoded in the neural

network using conventional Hebbian learning rule. It is

expected that all the patterns of training set has been

successfully stored as the associative memory feature of

Hopfield neural network. As a result of this learning process,

the expected optimized or sub-optimized weight matrix has

been obtained and then the genetic algorithm has been

employed to further optimize this weight matrix. In case of

genetic algorithm, the population of this approximate optimal

weight matrix has been evolved using the population

generation technique, crossover operator and fitness

evaluation functions, until the selection of the last weight

matrix or matrices has been performed. The performance of

this network is further improved for the efficient recalling by

evolving the obtained weight matrix with the genetic

algorithm. The results of various methods for recalling has

been compared and analyzed.

3. Pattern Recall Analysis using Hopfield Neural

Network with Genetic Algorithm

Artificial neural network (ANN) is a technique for creating

artificial intelligence in the machine. This is an attempt of the

modeling of the human brain in a serial machine for various

pattern recognition tasks. Pattern storage is one of the

techniques for the pattern recognition task that one would like

to realize using an ANN. The Hopfield neural network is a

simple feedback neural network which is able to store patterns

in a manner rather similar to the brain – the full pattern can be

recovered if the network is presented with only partial

information. Furthermore there is a degree of stability in the

system – if just a few of the connections between nodes are

Paper ID: ART20195546 10.21275/ART20195546 1794

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

severed, the recalled pattern is not too badly corrupted and the

network can respond with a best guess. Of course, a similar

phenomenon is observed with the brain. Here the network is

expected to store the pattern information (not data) for later

recall. Pattern storage is generally accomplished by a feedback

network consisting of processing units with non-linear bipolar

output functions. The stable states of the network represent the

stored patterns.

Neural networks are often used for pattern recognition and

classification. Hopfield proposed a fully connected neural

network model of associative memory in which we can store

information by distributing it among neurons, and recall it

from the dynamically relaxed neuron states. Hopfield used the

Hebbian learning rule, to prescribe the weight matrix.

Hopfield type networks will most likely be trapped in non-

optimal local minima close to the starting point, which is not

desired. The presence of false minima will increase the

probability of error in recall of the stored pattern. The problem

of false minima can be reduced by adopting the evolutionary

algorithm to accomplish the search for global minima.

Developed by Holland, an evolutionary searching (genetic

algorithm) is a biologically inspired search technique. In

simple terms, the technique involves generating a random

initial population of individuals, each of which represents a

potential solution to a problem. Each member of that

population’s fitness as a solution to the problem is evaluated

against some known criteria. Members of the population are

then selected for reproduction based upon that fitness, and a

new generation of potential solutions is generated from the

offspring of the fit individuals. The process of evaluation,

selection, and recombination is iterated until the population

converges to an acceptable solution.

Much work has been done on the evolution of neural networks

with GA. The first attempt to conjugate evolutionary

algorithms with Hopfield neural networks dealt with training

of connection weights. Evolution has been introduced in

neural networks at three levels: architectures, connection

weights and learning rules.

The population generation techniques (mutation and elitism)

are used in the parent weight matrix of feedback neural

network for evolving the population of weights after storing

all English alphabets using Hebbian learning rule. The

generated population (by using mutation and elitism) of the

weights is evaluated from the first fitness evaluation function.

The fixed-point stability is used as first fitness evaluation

function for the evaluation of individual weight population. A

Crossover operator takes first fittest weights as parents and

produces the next generation population of weights as

children. The stable state function is used as second fitness

evaluation function on crossover generated population of

weights for evaluation of individual weight population. This

process is continued until the optimal weight matrices are

found for recalling of already stored patterns. The evolution of

a network’s connection weights is an area of curiosity and the

centre of attention of this work.

his thesis is organized as follows: First, we present the

simulation design, and implementation details of the problem.

Secondly, a numerical example provides the details of the

example situation for model validation and verification. Then,

the experimental results and descriptions are presented. In the

end, we conclude the work and suggest new direction for

future research.

3.1. Simulation Design and Implementation Details

The experiments described in this segment have been designed

to evaluate the performance of a Hopfield neural network with

a genetic algorithm for the recalling of already stored English

alphabets.

3.1.1. Set of patterns used for training

The patterns used for the simulation are shown in Fig 1. Each

pattern consists of a 7×5 pixel matrix representing a letter of

the alphabet. White and black pixels are respectively assigned

corresponding values of -1 and +1.

Figure 1: Set of Patterns Used for Training

Now, the input pattern vector for the storage corresponding to

English letters is constituted with the series of bipolar values

+1 and -1. For example, the pattern vector for letter A can be

written as:

[-1-11-1-1-11-11-1-11-11-11-1-1-11111111-1-1-111-1-1-11]

In the general form we can represent the l
th

 pattern vector as

where l =1 to 26 and α1, α2, ... … … …, α35 are neurons.

3.1.2. Experiments

Four runs of the experiments were taken on same Hopfield

network architecture, i.e., 35 neuron’s network. Each run is

based on one of the two experiments - recalling English

alphabets with Hebbian rule and recalling the same alphabet

with genetic algorithm. The inputs for four different runs are

zero-, one-, two-, and three-bit errors induced randomly in the

pattern already stored in the network. In each experiment, the

Hebbian learning rule is used to store patterns in the Hebbian

neural network. The genetic operators used in each experiment

are summarized in Table 1.

Table 1: Genetic operators used in experiments
Training Algorithms Genetic Operator Used

Hebbian rule None

Genetic algorithm Population generation technique (mutation

+ elitism), crossover and fitness evaluation

technique

The parameters used in different runs of the experiments are

described in Table 2 and Table 3.

Paper ID: ART20195546 10.21275/ART20195546 1795

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 2: Parameters used for Hebbian learning rule
Parameter Value

Initial state of neurons
Randomly generated values

either -1 and +1

Threshold values of neurons 0.00

Table 3: Parameters used for Genetic Algorithm
Parameters Value

Initial state of neurons
Randomly generated

values either -1 and +1

Threshold values of neurons 0.00

Mutation population size N+1

Mutation probability 0.5

Crossover population size N * N

The task associated with the Hopfield neural networks in all

experiments is storing the English alphabets as input patterns

with the appropriate recalling of the same patterns with

induced noise.

3.2 The Hopfield Neural Network

The proposed Hopfield model consists of N (35 = 7 × 5)

neurons and N * N connection strengths. Each neuron can be

in one of the two states, i.e.±1, and L bipolar patterns are to be

memorized in associative memory.

For storing L patterns, we could choose a Hebbian rule given

by the summation of Hebbian terms for each pattern, i.e.

Hence, in order to store 26 letters of English alphabet (all

capitals) in a 35-unit bipolar Hopfield neural network, there

should be one stable state corresponding to each stored

pattern. Thus, the following activation dynamics equation

must be satisfied to accomplish the storage.

Now, the initial weights have been considered as wij ≈ 0 (near

to zero) for all i’s and j’s from the synaptic dynamics we

have:

Similarly for the L

th
 pattern

We can generalize this as

Then, after the learning for all the patterns, the final parent

weight matrix can be represented as

This square matrix is known as parent weight matrix for

storing the given input patterns. Hopfield suggested that the

maximum limit for the storage is 0.139 N in network with N

neurons, if a small error in recalling is allowed. Later, this was

theoretically calculated as p = 0.14 N by using the replica

method.

The Hebbian rule, which we are using for recalling letters of

English alphabets, can be defined diagrammatically in Figure

as

Figure 2: Flowchart of Hebbian Rule Implementation

3.3. The Genetic Algorithm Implementation

In this simulation, we are not storing the GAs with random

solutions, as it generally starts; instead we start with a sub-

optimal solution to achieve the optimal solution. In each

iteration, this problem of sub-optimal solution is modified

through uniform random mutations and discrete crossovers

and their fitness values are evaluated. According to the fitness

values, individuals of the next generation are selected using a

strategy in ES terminology. The cycle of reconstructing the

new population with better individuals and restarting the

search is repeated until an optimum solution is found. In this

process, the two fitness evaluation functions have been used.

The first fitness function is evaluating the best matrices of the

weights population on the basis of the settlement of network in

the stable state corresponding to the stored pattern on the

presentation of the already stored pattern as the input pattern.

The second evaluation function is selecting the weight

matrices on the basis of settlement of the network in the stable

state corresponding to the correct or exact stored pattern on the

presentation of prototype input pattern as the already stored

Paper ID: ART20195546 10.21275/ART20195546 1796

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

pattern. Thus in the recalling process, stable state of the

network corresponding to the stored pattern should be retained

for the selected weight vector on the presentation of prototype

input pattern.

In regard of two fitness functions, we wish to say that the first

fitness function determines the suitable weight matrices which

are responsible to generate the correct recalling of the stored

pattern for the input pattern that has been used in the training

set. It means that, at the first level of filtering only those

weight matrices will be selected which provide the correct

pattern association for the training pattern set. Thus, at this

level we will not use any test pattern, which involves the noise

in the original pattern. It only represents those weights which

exhibit the pattern association during the training of the

network and should carry in the next generation of the

population, whereas the second fitness evaluation function is

used after the crossover operator. The crossover operator has

been applied only on the chromosomes which have been

passed from the first fitness evaluation function. The second

fitness evaluation function has been applied to determine the

population of these weight matrices, which are responsible for

recalling of the approximate stored pattern on the presentation

of test pattern. The test patterns are considered here as noisy

prototype patterns of the training set patterns. Thus the second

fitness evaluation function is actually selecting the final

population of the chromosomes which are required for

generating the optimal solution.

The Evolutionary Algorithm, which we are using for recalling

the letters of English alphabets, can be defined

diagrammatically in Figure 6 as

Figure 3: Flowchart of Genetic Algorithm Implementation

3.3.1. The Population Generation Technique

The population generation technique produces the population

of N weight matrices of same order as the original parent

weight matrix. The original weight matrix remains unchanged

during the evaluation. The total number M (i.e. N + 1) of

chromosomes are produced after using the mutation and

elitism. Each chromosome is having a fixed length of N × N

alleles.

Each component of the original weight matrix, wij, i.e. SiSj, is

multiplied by one of these alleles. We denote the i
th

 allele of

the n
th

 chromosome as . Each chromosome modifies the

original weight matrix W
L
 and produces N weight matrices

slightly different from W
L
. The modification can be

represented as

where denotes i – j component of the n

th
 weight matrix in

the population.

3.3.2. The Pseudo-Code of the Population Generation

Technique

Step 1: Generate the mutation positions in the chromosome

randomly.

Step 2: Modify the parent chromosome shown in Figure 2 at

the positions generated in the step 1, using above equation

and {1, -1}.

Step 3: Repeat steps 1 and 2 until N number of mutated

chromosome populations have been created.

Step 4: Apply elitism to include parent chromosome in the

mutated populations, which makes the population count M

(i.e. N+1).

0 S1S2 …. S1SN S2S1 …. SNS1 SNS2 SNS3 …. 0

 Figure 4: Chromosome Representation

3.3.3. The First Fitness Evaluation

The first fitness evaluation function (f) is used for selecting the

good or efficient next generation of weight matrices.

Evaluation of f for each individual weight matrix is made with

a set of randomly pre-determined patterns X
L
. when one of the

stored patterns X
L

is given to the network as an initial state,

the state of neurons varies over time until X
L
 is a fixed point.

In order to store the pattern in the network, these two states

must be similar. The similarity as a function of time is defined

by

Here (t) is the state of the i

th
 neuron at time t. In

evaluating the fitness value, the temporal average overlap (z
L
)

is calculated for each stored pattern, as follows. First the total

of the inner products of the initial states and states is

calculated at each time of update not greater than a certain

time t0. After that, these values are summed up over whole set

of initial patterns, i.e.

Here t0 has been set to N (the number of processing units). We

must note that the fitness 1 implies that all the initial patterns

have been stored as fixed points. Thus, we consider only those

generated weight matrices that have the fitness evaluation

value 1. Hence, all the selected weight matrices will be

considered as the new generation of the population. These new

Paper ID: ART20195546 10.21275/ART20195546 1797

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

population will be used for generating the next better

population of weight matrices with the recombination or

crossover operator.

3.3.4. The Crossover Operator

Crossover is an operation which may be used to combine

multiple parents and make offsprings. This operator is

responsible for the recombination of the selected population of

weight matrices. This operator forms a new solution by taking

some parameters from one parent and exchanging with ones

from another at the very same point. Here, we are applying the

recombination with the uniform crossover. In this process, the

network selects randomly a string of non-zero chromosomes

from a selected weight matrix and exchanges it with string of

non-zero chromosomes from another selected weight matrix.

Thus, a large population of the weight matrices will be

generated. Hence, on applying this crossover operator with the

constraint that the number of chromosomes or components

selected for exchange should be equal for the two weight

matrices, the modification has been made in the selected

weight matrices as follows:

Here T is selected weight matrices from M generated matrices,

r = 1 to N×N, only for non-zero elements and and

denote i – j component of the n
th

 and k
th

 weight matrices in the

population. Thus, we have a new large population of K weight

matrices from the crossover as follows:

 3.3.5. The Steps for Crossover Operation

Step 1: Initialize the crossover population size limit with value

N*N.

Step 2: Extract two chromosomes from among the M

(i.e.N+1) chromosomes randomly.

Step 3: Obtain a random position in each extracted

chromosome for exchanging the values.

Step 4: Exchange the values between the chromosomes.

Step 5: Include both chromosomes in the crossover

population.

Step 6: Check whether the population size is equal to N*N. If

not, go to step2 again.

3.3.6. The Second Fitness Evaluation

In the process of recalling the stored pattern, corresponding to

a noisy letter of English alphabet input pattern, the best

suitable weight matrix or matrices will be selected from the

generated population of K weight matrices.

Let the state of the network corresponding to the already

stored l
th

 pattern is

This represents one of the stable states of the network which is

occupying the stored pattern L during the learning.

Let the prototype of presented input pattern be x
l+Є

. This

pattern represents the noisy or distorted form of the already

stored pattern x
l
. We have the population of K weight matrices

after the crossover operation. Now, we start selecting the

weight matrices from this population to evaluate it with this

fitness function. Let W
POP.k

 be the k
th

 weight matrix from the

generated population of weight matrices. Now, we assign this

selected matrix to the network and use the activation dynamics

to determine the output state of the network as

It implies that the network settles in the same stable state

which corresponds to the already stored pattern so that the

W
POP.k

 has been selected from the fitness function if it is able

to settle the network in the stable state of the already stored

pattern.

This process will continue for all the weight matrices from the

population. It is possible to obtain more than one optimal

weight matrices from the prototype pattern recalling.

4. A Numerical Example

Here, we are analyzing the performance of the proposed

method for pattern recalling with the help of an example. For

this, we consider the 26 capital letters of English alphabet (A -

Z), as represented in Fig 1, have been encoded in a 35 nodes

Hopfield neural network using the Hebbian learning rule

shown in section 3.1.1. The encoded patterns construct a sub-

optimal weight matrix of order 35, which is as represented by

equation. Now, the prototype of these letters without noise and

with noise – are presented to the network and attempt to recall

is made by both hebbian rule and genetic algorithm.

The letters are represented in the form of bipolar values either

+1 or -1. For example, the pattern vector for letter A can be

written as:

[-1-11-1-1-11-11-1-11-11-11-1-1-11111111-1-1-111-1-1-11]

Here, the noise means reverting a particular value from +1 to -

1 and vice-versa. For example, if a noise of two-bit is

introduced in the above pattern of letter A at position 3 and 5,

it becomes:

[-1-1-1-11-11-11-1-11-11-11-1-1-11111111-1-1-111-1-1-11]

This prototype pattern has been attempted to recall by Hebbian

rule, the flow graph for which is shown in Fig 2. The result

shows that the success of correct recall of letter A with two-bit

induced error using Hebbian rule is 0%.

The same prototype pattern has been attempted to recall by the

genetic algorithm, the flow graph for which is shown in Fig 3.

The GA implementation starts with the sub-optimal weight

matrix (parent weight matrix W
L
) obtained after storing all the

patterns using hebbian rule. The first operator applied is

Paper ID: ART20195546 10.21275/ART20195546 1798

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

mutation. During this operation, we obtain 35 weight matrices

of order 35 slightly different from parent weight matrix W
L

using equation 12. By virtue of next operator elitism, the

parent weight matrix is also included in the generated

population of matrices. It makes the total population of weight

matrices 36 i.e. 35+1. Now for the survival of fittest, a first

fitness function is applied to the above generated population of

36 weight matrices. This fitness function passes through only

those weight matrices through which all stored patterns can

correctly be recalled using equation 13 and 14. Only 30 such

weight matrices are qualified to be included in the next

generation. The next operator, crossover, after randomly

selecting two weight matrices from 30 weight matrices,

applies the crossover operator to generate next population

weight matrices using the steps described for crossover

operator in section 3.3.5. The limit of crossover population is

1225.

The second fitness function filters in those weight matrices

(out of this 1225 matrices) through which the prototype

presented is correctly recalled using hebbian rule. Four weight

matrices were qualified through this fitness function which

suggests that out of 1225 matrices only 4 weight matrices, the

network is converging for correct recall of a two-bit noise

induced prototype pattern of letter A. During the GA

implementation, it is not necessary that we get some weight

matrices, through which correct recalling is made, in the first

iteration only, instead it may take more than one iterations. If

it happens within 20 iterations, the success is count; otherwise,

we consider it as failure. In the particular example of letter A

with 2-bit induced noise, correct recalling could be made in

the 5
th

iteration. The result shows that the success of correct

recall of letter A with two-bit induced error using GA is

100%.

5. Results and Discussion

The results presented in this section have demonstrated that,

within the simulation framework presented above, large

significant difference exist between the performance of the

genetic algorithm and the conventional Hebbian rule for

recalling the letters of English alphabets which have been

stored in the Hopfield neural network using the Hebbian

learning rule. These results recommend that, in all cases,

recalling of any approximate pattern through genetic algorithm

outperform the recalling of the same pattern through

conventional Hebbian rule.

Table 4: Results for recalling letters of English alphabet with

no error
Letters Recalling success in (%) Letters Recalling success in (%)

Hebbian rule GA Hebbian rule GA

A 69.2 100 N 85.5 100

B 92.3 100 O 94.4 100

C 89.9 100 P 90.8 100

D 96.4 100 Q 80.5 100

E 87.4 100 R 92.5 100

F 86.6 100 S 86.5 100

G 89.4 100 T 93.6 100

H 91.3 100 U 86.3 100

I 100 100 V 84.3 100

J 91.8 100 W 95.4 100

K 76.6 100 X 87.4 100

L 76.1 100 Y 89.3 100

M 88.6 100 Z 84.2 100

Table 4 has the results for recalling the stored letters of

English alphabets using both the Hebbian rule and the genetic

algorithm, while there is no noise present in the input pattern.

In total 5000 times the recalling was made through both the

algorithms separately for each letter. During GA

implementation for single recall, the success is considered

only if the recalling of letter I made within 20 iterations, i.e.

mutation, elitism, first fitness evaluation function, crossover

and second fitness evaluation function.

Table 5-7 represent the results for recalling the corresponding

stored patterns while these are presented with induced noise.

In these cases, noise was created by reverting one-, two-, and

three-bits in the presented prototype input patterns of the

already stored patterns. These positions of the bit(s) to be

reverted to create noise are taken randomly.

Table 5: Results for recalling letters of English alphabet with

one-bit error
Letters Reverted Recalling

success in (%)

Letter Reverted Recalling

success in (%)

Hebbian

rule

GA Hebbian

rule

GA

A 1 4.1 100 N 35 1.2 100

B 1 4.8 100 O 2 1.6 100

C 4 2.6 100 P 5 3.1 100

D 1 3.8 100 Q 7 2.0 100

E 1 3.3 100 R 10 1.9 100

F 3 2.8 100 S 20 1.6 100

G 2 3.0 100 T 6 2.1 100

H 5 2.7 100 U 1 4.5 100

I 35 2.2 100 V 2 1.9 100

J 1 4.8 100 W 35 1.1 100

K 14 1.8 100 X 10 2.8 100

L 17 2.2 100 Y 33 2.6 100

M 31 1.7 100 Z 2 2.5 100

Paper ID: ART20195546 10.21275/ART20195546 1799

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Table 6: Results for recalling letters of English alphabet with

two-bit error
Letters Reverted Recalling

success in (%)

Letter Reverted Recalling

success in (%)

Hebbian

rule

GA Hebbian

rule

GA

A (1,2) 0.02 100 N (1,34) 0.02 100

B (1,4) 0.04 100 O (28,31) 0.02 100

C (2,32) 0.02 100 P (13,20) 0.02 100

D (1,20) 0.05 100 Q (8,13) 0.04 100

E (3,34) 0.02 100 R (3,33) 0.04 100

F (3,31) 0.01 100 S (2,35) 0.02 100

G (2,4) 0.06 100 T (1,3) 0.02 100

H (10,15) 0.04 100 U (8,14) 0.01 100

I (2,34) 0.05 100 V (1,4) 0.02 100

J (8,10) 0.02 100 W (2,4) 0.04 100

K (1,35) 0.02 100 X (1,5) 0.05 100

L (1,6) 0.04 100 Y (5,8) 0.02 100

M (3,6) 0.03 100 Z (1,3) 0.02 100

Table 7: Results for recalling letters of English alphabet with

three-bit error
Letter Reverted Recalling

success in (%)

Letters Reverted Recalling

success in (%)

Hebbian

rule

GA Hebbian

rule

GA

A (16,19,22) 0.00 72.5 N (1,5,35) 0.00 90.7

B (1,3,7) 0.01 90.2 O (4,7,10) 0.01 81.5

C (3,7,10) 0.00 74.2 P (6,10, 12) 0.00 78.8

D (3,10,4) 0.00 78.3 Q (9,12, 16) 0.00 75.5

E (2,4,6) 0.00 79.9 R (31,32,35) 0.00 9.30

F (6,18, 21) 0.00 69.9 S (2,6,8) 0.00 71.9

G (4,6,10) 0.00 77.6 T (28,31,33) 0.00 79.0

H (5,6,10) 0.00 78.3 U (31,32,34) 0.00 17.5

I (2,8,13) 0.00 73.5 V (10,11,15) 0.00 77.9

J (3,8,13) 0.00 28.4 W (10,11,15) 0.00 80.5

K (1,5,35) 0.00 58.4 X (7,9,12) 0.01 78.6

L (1,5,8) 0.00 11.1 Y (19,21,23) 0.00 57.1

M (31,33,35) 0.00 68.2 Z (26,31,33) 0.00 21.2

As far as the probability of a mutation operator of a genetic

algorithm is concerned, we have set it as 0.5 to avoid

randomness in the search process. This probability is set as a

constant for every experiment.

There are two basic advantages of the two fitness evaluation

functions:

1. The randomness of the GA has minimized, because the

population is filtered twice. Hence, the less number of

populations will be generated and the generated population

will be more fitted for the solution.

2. As the number of population has minimized, the searching

time will be also reduce. Thus, the GA has also improved in

its implementation because it is less random and consuming

less time for searching the optimal solution.

These results clearly indicate that Hebbian rule works well for

a noiseless pattern, for most of the cases, but its performance

degrades substantially and recalling success goes down to a

maximum of 4.8% in the case of one-bit error, 0.06% in the

case of two-bit error and 0.001% in the case of three-bit error

induced in the test pattern randomly. On the other hand, the

GA recalls the pattern successfully even when high noise is

present in the input pattern i.e. up to four- or five-bits.

Although due to limited resources, a very few experimental

runs were conducted for the input test patterns with four- or

five-bits induced noise and therefore these results are not

included in this section.

It has been claimed by that the capacity of deterministic

Hopfield model with hebbian rule is about 0.15N for the noisy

prototype input patterns, where N is the number of modes in

the network. If such a network is overloaded with a number of

patterns exceeding its capacity, its performance rapidly

deteriorates towards zero. Here, we are storing the 26

alphabets in a network of 35 nodes and the performance of the

GA suggests that on inducing five-bit error in presented

prototype input pattern the network is able to recall the stored

patterns. It implies that the network capacity has increased up

to 0.75N. Thus, the numbers of attractions exist here and

successfully explored during the recalling process. It is quite

obvious to understand that the GA has searched the suitable

optimal weight matrices which are responsible to generate

sufficiently large number of attractions. Hence, the hebbian

rule which has been used to encode the pattern information is

not the optimal weight matrix for finding the global minima of

the problem due to the limited capacity of the Hopfield model.

Thus the capacity has been increased with the GA by

exploring the optimal weight matrices for the encoded

patterns.

Figure 5-8 are presenting comparison chart of performance of

two algorithms, i.e. the Hebbian rule and the genetic algorithm

graphically based on results provided in Tables 4-7.

Figure 5: Comparison chart for table 4

Series 1: Percentage of Recalled Patterns using Hebbian Rule

Series 2: Percentage of Recalled Patterns using Genetic

Algorithm

Paper ID: ART20195546 10.21275/ART20195546 1800

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

Impact Factor (2018): 7.426

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 6: Comparison chart for Table 5

Figure 7: Comparison chart for Table 6

Figure 8: Comparison chart for Table 7

6. Conclusions

The simulation results, i.e. tables 4-7 indicate that the genetic

algorithm has more success rate than the Hebbian rule for

recalling the letters of English alphabet, which are containing

zero-, one-, two-, and three- bit errors from stored patterns in

the Hopfield neural network. Sometimes it has also been

observed that the performance of the GA was less than what

was expected to be. One of the reasons for this deviation may

be the position(s) of bits reverted to induce noise in the

recalling pattern. Another interesting observation is that there

is confusion while recalling some of the letters through both,

the Hebbian rule and the GA. For example, on inducing two-

bit error in letter D at positions (1, 5), (1, 2) and (31, 35), the

recalling was confused with letter O. Similarly, on induction

of three bit error in letter U at position (30, 32, 34), the

recalling was also made for letter V. The fact that the recalling

algorithms are based on the minimum hamming distance of

noisy pattern with stored pattern may be the reason of

confusion in recalling those pairs of letters that are having

similar minimum hamming distances.

It has been found that, the GA can give more than one

convergent weight matrices for any prototype input pattern in

comparison to the conventional Hebbian rule, if the prototype

input pattern is correctly recognized. For conventional

Hebbian recalling algorithm, if the prototype input patterns are

correctly recognized by the network, then only one

convergence matrix will be obtained. This shows the higher

accuracy rate in the pattern recognition with GA.

The direct application of GA to the pattern association has

been explored in this research. The aim is to introduce an

alternative approach to solve the pattern association problem.

The results from the experiments conducted on the algorithm

are quite encouraging. Nevertheless more work needs to be

perform especially on the tests for noisy input patterns. We

can also use this concept for pattern recognition in the case of

different objects, shapes, numerals and overlapped alphabet

etc.

References

[1] S. Kumar, (2004) Neural Networks: A classroom

approach, TMH.

[2] J. J. Hopfield, (1992) Neural Networks and Physical

Systems with Emergent Collective Computational

Abilities, in: Proceedings of the National Academy

Sciences, USA, Vol79, pp. 2554-2558.

[3] M. Manga, and M. P. Singh, (2006) Handwritten English

Vowels using Hybrid Evolutionary Feed-forward Neural

Network, Malaysian Journal of Computer Science, Vol.

19, No. 2, pp. 169-187.

[4] A. Imada & K. Araki, (1997) Applications of an

Evolutionary Strategy to the Hopfield Model of

Associative Memory, in: Proceedings of the IEEE

International Conference on Evolutionary Computation,

pp. 679-680.

Paper ID: ART20195546 10.21275/ART20195546 1801

