Archform of Various Populations

Neelakantha Patil, Viswanath A, Venkata Naidu B, Sangamesh B.

Abstract: The way the teeth are aligned on the basal bone determines the archform of an individual. Archform varies between two groups and two individuals of the same group. Differences in the archform are seen between males and females. Mismatch of archform leads to expansion or contraction of archforms and hence a relapse of the corrected malocclusion due to functional instability or structural imbalance is a possibility. Evaluating the archform of an individual plays a key role for an Orthodontist in treatment planning and attaining a greater post treatment stability. Therefore, customizing the archwire according to the local ethnic population’s archform is important as it helps in achieving long term post treatment stability. There are studies done by various authors in evaluating and determining the archform for various populations. The archform derived for populations of Turkey, Iran, Japan, Korea, North American whites, Saudi Arabia, Yemen, Egypt, Israel, Bhutan, Malaysia, Caucasian, Italy and India simulate either; the MBT standard archwire forms with slight to moderate variations in the dimensions at canine, premolar or the molar depths or the pentamorphic archforms suggested by Roth. Even the archforms analysis done on various populations in India viz. Maratha, Aurangabad, Moradabad, Gujarat and South Indian population showed similarities with the MBT standard archforms with slight to moderate variations. The most commonly used archwires today are standardized for Caucasian population. Total of 34 archwire forms are commercially available marketed by 12 companies. This poster describes the various archform studies and provides a comparative assessment of the variations.

Keywords: archforms, mbt archforms, ovoid, ideal

1. Introduction

Dental arch form is the arch, formed by the buccal and facial surfaces of the teeth when viewed from their occlusal surfaces24. In the early stage of developing edgewise appliances, the importance of modifying the archwire form for each patient’s individual dental archform was recognized. However, during the 1970s, after the straightwire appliance was developed by Andrews, Roth designed an archform that was based mainly on his clinical experience; this subsequently became the standard archform for the new system25. Because introduction of the Roth archform occurred before publication of articles referencing nickel-titanium (NiTi) archwires, adjustment of each preformed stainless steel archwire to fit the individual patient’s dental archform originally adhered to a general procedure called “blanks”20.

There are variations seen in the archform of individuals compared within the same group or among groups. Hence, evaluating the archform of an individual plays a key role for an Orthodontist in treatment planning and attaining a greater stability. Mismatch of archform leads to excessive expansion or contraction of archforms and hence a relapse of the corrected malocclusion due to functional instability or structural imbalance is a possibility and may lead to an unnatural smile.

The archform evaluation of populations of North American whites and blacks, Caucasian, Japan, Korea, Turkey, Egypt, Iran, Japan, Saudi Arabia, Yemen, Israel, Bhutan, Malaysia, Italy, China, Nepal and India simulate either of the MBT standard archwire forms with slight variations in the dimensions at canine, premolar or the molar depths. Even the archform analysis done on various populations of India like Maratha, Aurangabad, Moradabad, Gujarat and Southern Indian population showed similarities with the MBT standard archforms with slight variations.

Therefore deriving an archform for every ethnic population will be beneficial for an Orthodontist in attaining greater post treatment stability.
that the most frequent archform encountered among all the
groups was the tapered one (62.5%) followed by the ovoid
(27.3%) and the square one (10.2%). Gender difference
influences on morphological structure was apparent.

Mohamed Bayome\(^6\) et. al., (2011) aimed at evaluating the
morphologic differences in the mandibular arches of
Egyptian and North American white subjects. Their results
showed that there was an even frequency distribution of the
3 archforms in the Egyptian group and on the other hand,
the most frequent archform was ovoid followed by tapered
and square in the white group. Yossi Gafni\(^7\) et.al., (2011) aimed
at identifying the archforms of Israeli subjects with dental
normocclusion and malocclusions and to clarify the
morphologic differences between Israeli and North
American white subjects with various malocclusions. Their
results showed that the most frequent mandibular archform
of the Israeli group was found to be ovoid as opposed to
tapered in the North American white group. Fabiane
LOULY\(^8\) et.al., (2011) evaluated dental arch dimensional
changes of Brazilian children. Dental casts were taken from
66 children (29 males; 37 females) with normal occlusion
selected among 1, 687 students aged 9, 10, 11 and 12 years.
Their results showed that only the maxillary anterior
segment length showed a significant increase from 10-12
years. They concluded that males had larger maxillary depth
than females and the predominant archform was elliptical.
Asma Shafique\(^9\) et.al., (2011) determined and compared the
frequency distribution and results of two methods
establishing morphology of the dental archform. It was
conducted on 250 patients visiting Lahore Medical and
Dental College, Lahore. The casts were measured and
photocopied, then superimposed on Orthoform templates to
determine the archforms. The dental arches were classified
into square, ovoid, and tapered forms to determine and
compare the frequency distributions between the two
methods. According to Noroozi’s mathematical model,
frequency distribution of ovoid, square and tapering
archforms was found to be 82%, 64% and 11.2% respectively
while according to orthoform templates those were 53.2%,
9.2% and 37.6% respectively. The ovoid archform was most
common archform according to both methods. Siti Adibah
Othman\(^10\) et.al., (2012) determined and compared the
frequency distribution of various arch shapes in ethnic
Malays and Malaysian Aborigines in Peninsular Malaysia
and investigated the morphological differences of archform
between these two ethnic groups. They examined 120 ethnic
Malay study models and 129 Malaysian Aboriginal study
models. They marked 18 buccal tips and incisor line angles
on each model, and digitized them using 2-dimensional
coordinate system. Dental arches were classified as square,
ovoid, or tapered by printing the scanned images and
superimposing Orthoform arch templates on them. Their
results showed that the most common maxillary arch shape
in both ethnic groups was ovoid, as was the most common
mandibular arch shape among ethnic Malay females. The
rarest arch shape was square.

Vishnu Jagdishbhai Patel\(^11\) et.al., (2012) determined the
maxillary and mandibular archform of Gujarati (Indian)
adults with normal occlusions. Fifty seven study models of
untreated individuals were examined. According to their
study, moving from anterior to posterior, both the arches
diverge proportionally, except in second molar area where
slight convergence toward midline was noted. Females had
proportionally narrower arch dimensions than those for
males. Five archforms were determined according to relative
deviations of various ratio combinations. Jeevan Maniklal
Khatri\(^12\) et.al., (2012) evaluated the nature of archform
among patients seeking orthodontic treatment at CSMSS
Dental College, Aurangabad, India and morphological
differences in archform among different classes of Angle’s
malocclusion classification. They randomly selected 200
patients with age range from 12 to 30 years. Their results
showed that commonest archform found was ovoid (50%),
followed by tapered (32.5%) and square (17.5%). When
male and female archforms were compared, it was found
that next to ovoid, square archforms were more common in
males and tapered were more common in females. No
correlation was found between Angle’s classification of
malocclusion and particular archform. Dr Rabindra Man
Shrestha\(^13\) (2013) analysed the dental archforms of Nepalese
adults and classified them into morphological types.
Predetermined transverse and sagittal dimensions on dental
stone models of one hundred Nepalese adults aged 17-32
years with normal occlusion and dentofacial proportion were
measured. The study compared the gender difference among
the Nepalese samples. Their results showed the distribution
of the Nepalese archform types as; 26% flat arch, 24% wide
arch, 19% pointed arch, 18% narrow arch and 13% mid
arch. Dr Nabil M. Al-Zubair\(^14\) (2013) assessed the dental
archforms of Yemeni adult sample. A total of 398 study
models were constructed and evaluated to do measurements
for both arches using a modified sliding caliper gauge. Their
results showed that Narrow form is the most prevalent
archform (30.9%) followed by wide form (23.9%), their
prominence appear more in females and the least prevalent
archform was the mid form (9.3%), while flat and pointed
forms were in between 18.3% and 17.6% respectively.
They concluded that five archforms: narrow, wide, mid, pointed
and flat were distinguished as unique forms for the dental
arches, with the predominance of the narrow archform were
found among Yemeni adults. Meenakshi Bishit\(^15\) et.al.,
evaluated the archform among Indian population at
Moradabad, India. Archform of these models was
determined with using 3M Unite template. Their results
showed that the most prevalent archform was ovoid (62.2%)
followed by the tapered (26.0%) and square (4.8%)
archform. It was found that there was significant correlation
between the face form and archform among the study
subjects.

Mandava Prasad\(^16\) et.al., (2013) investigated if dental arch
widths correlated with vertical facial types and if there are
any differences in arch widths between untreated male and
female adults in South Indian population. Lateral
cephalogram and dental casts were obtained from 180
untreated South Indian adults above 18 year old with no
cross bite, minimal crowding and spacing. The angle
between the anterior cranial base and the mandibular plane
was measured on lateral cephalogram of each patient. Dental
casts were used to obtain comprehensive dental
measurements including maxillary and mandibular inter
canine, inter premolar and inter molar widths, as well as
amount of crowding or spacing. Their results showed that
male arch widths were significantly larger than those of
Samples were categorized according to the adaptability of templates were overlaid on arches using special software. They examined 132 study models including 66 maxillary and 66 mandibular arches. Three square and 66 mandibular arches. Three square

orthodontists customizing shape of orthodontic archwires. The archwires were classified into three groups: small, medium, and large. After placement in the jig, the pooled archwire widths were found to be significantly narrower and wider at the canine and second premolar respectively, than at the dental arch, but not in the individual comparisons between groups. Mohammad Hossein Toodehzaem5 et.al., (2016) aimed at verifying the prevalence of three different morphologies of the mandibular and maxillary dental arch in natural normal occlusions and that may help guiding orthodontists customizing shape of orthodontic archwires. They examined 132 study models including 66 maxillary and 66 mandibular arches. Three square, ovoid, and tapered templates were overlaid on arches using special software. Samples were categorized according to the adaptability of templates on images. Inter canine and inter molar widths were also measured on casts and recorded. Ovoid was the most frequent form (54%) in \textit{Iranian} population. Tapered (36%) and square (10%) forms were on second and third

steps, respectively. R. Ferro22 et.al., (2017) evaluated the maxillary and mandibular archforms in an \textit{Italian} adolescents sample with normocclusion. The dental casts of 106 adolescents were taken. Twelve clinical bracket points were measured for each cast and six parameters were evaluated: intercanine and intermolar width, canine and molar depth, canine and molar ratio. Moreover, each cast was classified into tapered, ovoid, or square form. A similar ovoid (43.4%) and tapered (46.2%) archform was found, while the square form was the rarest (10.4%). Males exhibit higher dental arch values in comparison to females. They concluded that the individualisation of orthodontic therapy leads to more effective treatment by working within the subject’s natural dental arch shape. Haidi Omar23 et.al., (2018) determine the dental arch dimensions and archforms in a sample of \textit{Saudi} orthodontic patients. This study is a biometric analysis of dental casts of 149 young adults recruited from different orthodontic centers in Jeddah, Saudi Arabia. Dental arch measurements, including intercanine and inter-molar distance, were found to be significantly greater in males than females. The most prevalent dental archforms were narrow tapered (50.3%) and narrow ovoid (34.2%) respectively, referring to the Ricketts pentamorphic archform templates, narrow ovoid, ovoid, narrow tapered, tapered, and normal forms.

3. Discussion

There are studies conducted by various authors in evaluating and comparing the archforms of individuals with the commercially available archwire forms. Some populations simulated the available archwire forms and some simulated with mild to moderate variations in the dimensions at canine or premolar or molar depths.

The following are the studies done by authors comparing the archform of populations with the available standard archforms. Studies done by Yoon-Ah Kook4 et.al., and Sultan Olmez5 et.al., on evaluating the Korean and North American whites archforms and Turkish population archforms respectively, resulted that the Korean population has Squared archforms while North American whites has Tapered archforms and Turkish population has Tapered archform (62.5%).

Mohamed Bayome6 et.al., and Yossi Gafni7 et.al., evaluated the archforms between populations of Egypt and North American Whites and Israeli and North American white respectively. Egyptians show equal frequency of all three archform types whereas North American Whites showed more of Ovoid archform followed by Tapered and Squared according to Mohamed Bayome and Israeli population show Ovoid archform and North American whites show Tapered archform according to Yossi Gafni’s study.

Siti Adibah Othman10 et.al., compared the archforms of Malays and Malaysian Aborigines and said that the commonest archform was Ovoid.

Jeevan Manikdal Khatri12 et.al., and Meenakshi Bisht15 et.al., evaluated the archforms of people of Aurangabad and Moradabad, India and said that Ovoid was the common archform with 50% prevalence followed by Tapered and

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Volume 8 Issue 2, February 2019
Squared archforms in Aurangabad and Ovoid was the common archform with 62.2% prevalence followed by Tapered and Squared in Moradabad population.

Mohammad Hossein Toodehzaein et al. conducted a study on Iranian population and R. Ferro et al., on Italian population, compared the archforms of the population with the Orthoform template and said that Ovoid archform was more common with 54% of prevalence in Iranian population and Ovoid (43.4%) and Tapered (46.2%) archform was found, while the Square form was the rarest (10.4%) in Italian population.

Haidi Omar et al., determined the archforms in Saudi Orthodontic patients and compared with the Ricketts pentamorphicarchform template and concluded that narrow tapered is the most prevalent archform with 50% followed by narrow Ovoid with 34%.

The following are the studies where the archforms were evaluated and derived for the populations.

Benjamin G. Burris et al., stated that the American blacks have larger teeth than whites. Blacks, with a more square palate and significantly larger palatal index, were distinguished from whites primarily by greater intercanine and interpmolar widths.

Kunihiro Nojima et al., compared the archforms of Caucasian and Japanese population and said that the Caucasian population had a statistically significant decreased arch width and increased arch depth compared with the Japanese population.

Fabiane LOULY et al., evaluated dental arch dimensional changes of Brazilian children. Their results showed that only the maxillary anterior segment length showed a significant increase from 10-12 years. Males had larger maxillary depth than females at the age range evaluated. The predominant dental archform found was elliptical.

Vishnu Jagdishbhai Patel et al., determined the maxillary and mandibular archform of Gujarati (Indian) adults with normal occlusions. Their results showed that both the arches diverge proportionally, except in second molar area where slight convergence toward midline was noted. Five archforms were determined according to relative deviations of various ratio combinations.

Dr Rabindra Man Shrestha analysed the dental archforms of Nepalese adults and their results showed the distribution of the Nepalese archform types as: 26% flat arch, 24% wide arch, 19% pointed arch, 18% narrow arch and 13% mid arch.

Dr Nabil M. Al-Zubair assessed the dental archforms of Yemeni adults. Their results showed Narrow form is the most prevalent archform (30.9%) followed by wide form (23.9%), their prominence appear more in females and the least prevalent archform was the mid form (9.3%).

Mandava Prasad et al., investigated if dental arch widths correlated with vertical facial types and if there are any differences in arch widths between untreated male and female adults in South Indian population. He concluded that dental arch width is associated with gender, vertical facial morphology, and population groups. During orthodontic treatment, he suggests to use individualized arch wires according to each patient’s pre-treatment archform and widths.

Jasmeet Singh Sohli et al., conducted his study to evaluate the archform and dimension in a local population in southern India. The arch dimensions showed that males had significantly larger maxillary arch as compared to that of females. The results of his study seem to highlight the need for distinct idealized archforms for males and females. Nivedita Sahoo et al., compared and classified Indian and Bhutanese archforms of adults. The most important finding of their study is that the Bhutanese subjects have highest prevalence of wider archforms as compared to the Indian subjects.

4. Conclusion

- The universal ideal arch form is one of the most persistent but exclusive task for most of the orthodontic researchers.
- Although literature review illustrates divergent views on the shape of arch form, it is now generally believed that the arch shape is determined by an interplay between genetic and many varied environmental factors such as pressure from soft tissues; shape and position of jaws; alteration in eruptive mechanism and morphology of teeth.
- Concerning the orthodontic treatment, basic principle is that the patients original arch from should be preserved. Therefore, if the preformed arch wires are to be used, it is to be kept in the mind that their shape should be considered a starting point for the adjustment necessary for proper individualization as all the presently available preformed arch wire do not reflect these variations in the arch form.
- The preformed archwires will not suit the archforms of all the populations.
- The preformed archwires simulate the archforms of some ethnic population with mild to moderate dimensional variations at canine or premolar or molar depths.
- A common archwire for each ethnic population can be developed and used clinically but as previously said, there may be variations in the archform of individuals belonging to the same ethnic group, customising the archwire according to the archform of individual is the best way to attain greater post treatment stabilities.

References

Volume 8 Issue 2, February 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20194752 10.21275/ART20194752 382