
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Security Analysis of MongoDB and its Comparison

with Relational Databases

Sukriti Bharti

Master of Information System Management Carnegie Mellon University

Abstract: Although the world has been translating towards data focused operations for the past decades, the dependence of all

industries on data has exponentially grown in the last five years. The explosion of Big Data and increase in connected devices are the

reasons why there has been a shift from Relational databases to NOSQL databases, to handle huge amounts of unstructured data

generated. These databases trade consistency and security for performance and scalability. With handling such vast amounts of sensitive

data, security issues are a growing concern. This paper focuses on security analysis of MongoDB and draws comparisons of its security

features with the traditional relational databases.

Keywords: security, NOSQL, MongoDB, relational databases

1. Introduction

In the recent years, major companies have started adopting

different types of non-relational databases to cater to the

needs of the data and applications they serve. Each database

has a different data model and some unique selling points

and can be put into practice for specific business scenarios.

For e.g., if we wish to have persistent data sharing over

multiple processes or microservices, key-value store

databases are the best. If we wish to perform deep

relationship analysis, fraud detection etc., a graph database

works the best [1].

NOSQL databases can handle large volumes of structured,

semi-structured and unstructured data. They have high

scalability and reliability, support flexible schema, mostly do

not support ACID transactions like relational databases and

provide eventual consistency.

Any organization looking transition to a NOSQL database

must perform a detailed analysis of the features as well as the

security aspects of the database. Through the course of this

paper, we will focus our discussion around the features of

MongoDB. MongoDB has a document oriented model and

numerous security features, but to be able to make the best

use of it and to keep the data well protected, the database

administrator must do an intensive research suitable to their

use case.

2. Overview of MongoDB

MongoDB is a document-oriented database program, written

in C++ language. It is schema-free and works with JSON-

like documents. It supports complex hierarchies of data.

MongoDB‟s key features are:

a) Data Model
A record in MongoDB is a document, which is a data
structure composed of field and value pairs. MongoDB
documents are like JSON objects. The values of fields may
include other documents, arrays, and arrays of documents [3].
These documents are stored in collections that are analogous
to tables in relational databases.

Figure 1: Sample MongoDB JSON-like Document [3]

b) High performance
MongoDB provides high performance data persistence. It
provides support for embedded data models which reduces I/O
activity on database system. Since MongoDB works with
indexes, it results in faster queries [3].

For e.g., for MongoDB to retrieve a whole entity, it takes
about log(n)+1 I/O operations and if all indices reside in the
memory, it takes 1 operation only. On the other hand, if a
relational database has 20 tables, and even if the indices reside
in the memory, it would take 20 operations for retrieval [4].

c) Rich Query Language

MongoDB supports a rich query language to support CRUD

operations as well as Data Aggregation, Text Search and

Geospatial Queries. MongoDB has in-built methods like

insertOne(), insertMany(), find(), updateOne(), deleteMany()

etc. It also lets users write the data in bulk using writeBulk()

method [3].

Figure 2: Sample query for inserting data into a document

[3]

d) High Availability

MongoDB achieves high availability by using its replication

facility called the “Replica Set”. This essentially creates data

redundancy which in turn ensures high availability of the

data. It also provides automatic failover in case the data

handling is compensated.

Paper ID: ART20203689 DOI: 10.21275/ART20203689 1818

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 3: Replication in MongoDB [5]

e) Horizontal Scalability

MongoDB provides horizontal scalability with the key

concept of Sharding. Sharding means distributing the data

based on one of: location, alphabetical order, hashing etc. It

creates zones of data based on the shard key. In a balanced

cluster, MongoDB performs reads and writes only to those

shards that fall into a zone.

In the following image, „X‟ represents a shard key.

Figure 4: Zones in a sharded cluster [6]

3. Security Features of MongoDB

This section of the paper deals with analyzing the different
features that MongoDB provides for the security of data and
preventing attacks. MongoDB provides a checklist for
developers/database administrators that can be followed to
avoid the popular database attacks.

a) Authentication

Authentication means verifying the identity of the client.

This is important as we would like for each user to have a

personalized view of the data as well as safeguard everyone

else‟s data. MongoDB supports various authentication

mechanism and based on an organization‟s existing

mechanism, an appropriate mechanism can be chosen for

integration [6].

MongoDB‟s default authentication method is SCRAM

(Salted Challenge Response Authentication Mechanism) i.e.

SCRAM- SHA-1 (and SCRAM-SHA-256 for version 4.0).

SCRAM is based on Internet Engineering Task Force(IETF)

that defines best practices for authenticating users with

passwords [7]. SCRAM makes use of the provided

credentials to match with user‟s name, password and

authentication database.

Another mechanism supported by MongoDB is x.509

Certificate Authentication. This mechanism verifies an

organization/user by its valid certificate signed by a single

certificate authority. A single Certificate Authority (CA)

issues the certificate to both client as well as server. It must

contain the following [8]:

In this case, each MongoDB user must have a unique
certificate. MongoDB also supports LDAP Proxy
Authentication and Kerberos Authentication [6].

Figure 5: Sample set of messages exchanged during

authentication [9]

b) Authorization
Authorization is the next step to authentication. Now that we
have the verification of identity of the user in place, each user
can be identified with pre-defined roles. Based on these roles,
the access and privileges can be assigned. For e.g., a user who
needs to only build reports can be given the read access
whereas a user who needs the access to read as well as write
the data can be given both accesses. Database administrators
have the maximum capacity of operations and they can define
roles, accesses to those roles, etc. It is a good practice for
database admins to keep control of all roles and accesses so
that the system has better protection from hack attacks.

There are two types of roles, built-in and user-defined.
Built-in roles include readWrite, dbAdmin, dbOwner,
userAdmin etc. and user-defined roles are defined by
administrator as mentioned above. Access control is not
enabled by default and needs to be enabled by using
security, authorization setting [10].

c) Encryption

Encryption of data is performed in order to protect from

attacks. MongoDB encrypts its communication using

TLS/SSL protocol for all incoming and outgoing

connections, using certificates and public-private key pairs.

This is also called Data- in-motion Encryption.

For e.g., this encryption can be seen in Payment Credit Card

Industry (PCI) requires that credit card numbers be encrypted

in storage.

To encrypt and protect data, MongoDB uses AES256-CBC

symmetric key encryption. This is called Data-at-rest

Encryption. MongoDB also provides an option to turn

encryption on in “FIPS mode” that means that the encryption

we use is tested against National Institute of Standards and

Technology Federal Information Processing Standard (NIST

Paper ID: ART20203689 DOI: 10.21275/ART20203689 1819

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

FIPS) [11].

Figure 6: AES256-CBC Encryption [12]

d) Auditing

Auditing refers to the ability to see who did what in the

database and is one of the most important pieces of security.

MongoDB includes a system auditing facility that keeps a

track of events like access, configuration changes, user

operations, connection events etc. on an instance. This is

really use in capturing suspicious activity.

For e.g., if an attacker tries to log into an instance to impact

the data but has made multiple failed authentication attempts,

analyzing the system event of failed login can help in

identifying this malicious attack.

Another important aspect of auditing is analyzing the

performance of the database while carrying out DDL &

CRUD operations, authentication attempts, authorization

changes and replica set & sharded cluster operations [13].

The way MongoDB does this is by keeping track of the

timestamps. By default, it ignores certain operations and

completely ignores their logging. Although, it is

recommended that all the system events are logged so that if

anything goes wrong, we have a complete traceback for the

event.

The auditing system writes every audit event to an in-

memory buffer and periodically, MongoDB writes this buffer

to the disk. For the events of a single connection, if

MongoDB writes one event to the disk, it is guaranteed that

all the preceding events have also been written to the disk

[13]. This is called the Audit Guarantee.

A word of caution is that the DB may lose the events if the

server shuts down before it commits the events to the audit

log. The user might receive a confirmation of successful

completion of the operation, but its logs might be lost.

For example, while auditing an aggregation operation, the

server might crash after returning the result but before the

audit log flushes. To maintain durability, all DDL operations

are written to the disk immediately [13].

e) Network exposure

MongoDB‟s implementation should be done to sure it runs in

a trusted network environment. The number of instances

available for incoming connections should also be limited

and should only allow trusted clients to access the interface

and ports [14].

For the earlier versions of MongoDB (2.6 to 3.4), only the

binaries from MongoDB RPM and DEB would bind to

localhost by default. From version 3.6, MongoDB, mongos

and mongod, bind to localhost by default. This is good to

start with, but in practical sense, this implementation is not

common as DBs need to be accessed remotely. So before

binding to a publicly accessible IP address, security of the

cluster against unauthorized access should be ensured.

Once the instance has been hosted, network hardening

techniques of Firewall and Virtual Private Networks can be

implemented for better security. Firewall helps system

administrators to have a granular control over network

communication which helps in limiting incoming traffic on a

specific port and limiting incoming traffic from untrusted

hosts. On linux systems, iptables interface is used and on

windows system, netsh command line interface is used.

This goes without saying that for best results, administrator

must ensure traffic only from trusted sources and connection

to only trusted outputs [15].

VPN is used to link two networks over an encrypted and

limited-access trusted network. The protocol typically used

for MongoDB is TLS/SSL which has better performance

than IPSEC VPNs. VPNs provide certificate validations and

choice of encryption protocols, which requires authentication

and authorization as well. Since VPN provides a secure

tunnel, we can prevent tampering and man-in-the-middle

attacks using access control.

4. Comparison of MongoDB with relational

databases

a) Integrity

Both of the solutions have integrated complete logging but

only in Relational Databases it is activated by default.

Transactions and rollbacks maintain the consistency in the

relational databases better. MongoDB trades this consistency

with higher availability by supporting unacknowledged writes

[16].

b) Encryption
Relational Databases natively support encryption using
industry standard algorithms such as DES and AES whereas
MongoDB supports TLS/SSL and AE 256-CBC as
mentioned in the earlier sections.

c) Access Control

Relational Databases have a privilege- based access control

whereas MongoDB has role-based access control.

5. MongoDB Security Flaws

a) MongoDB Data Files

One of the most important flaws of MongoDB is that the

data files are unencrypted and there is not method to

automatically encrypt these files. This means that if any

attacker has access to the file system, they can directly

extract the information [16].

b) Weak Authentication:

By default, there are no password credentials when the DB is

installed. It is left to the developers to build-in the security.

This weak authentication between clients and servers had led

to a data breach in 2017 which saw about 30,000. MongoDB

instances exposed. This had primarily happened due to a

Paper ID: ART20203689 DOI: 10.21275/ART20203689 1820

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

default setting not being changed by the user [17]

c) Authorization

A user, when created, has a read-only access to all the data

available in the WHOLE database. This is very insecure as

any user will have the access to read the data even when they

aren‟t supposed to.

d) Potential for attacks

One of the attacks that MongoDB is prone to is JavaScript

Injection attacks. Since MongoDB primarily uses

JavaScript for internal scripting, a hacker can hide a

JavaScript code into a MongoDB query and corrupting the

database by, say, running the query multiple times instead of

just once [17]. For e.g., a user performs an operation of a

simple addition. But since the code is corrupted with the

injection, instead of performing the addition once, it will be

performed multiple times which will result in wrong output

and log values.

Another attack that is possible is HTTP trespassing. This

type of attack is executed by making alterations to the source

code of a website. Once the hacker has information about the

MongoDB database, like DB name, collection name, port,

username etc., they can easily attack and corrupt the database

[17].

Figure 7: Conceptual design of an injection attack [18]

6. Security Checklist to Address Concerns

MongoDB provides a list of practices that can be followed in

order to maintain a good security stature. The recommended

actions/best practices are follows:

 Enable access control

 Configure Role-based Access

 Encrypt network traffic

 Use data-at-rest encryption

 Configure system auditing

 Stay up to date with fixes

 Disable JavaScript execution

 Know your framework

 Server hardening practices

Apart from these best practices provided by MongoDB

documentation, MongoDB could really benefit from

defaulting to an effective and less costly authentication.

Currently, the authentication uses expensive hashing

algorithms

Another important step that can be taken to get rid of the

flaw of encryption is to implement application level

encryption, independent of the instances. This should be a

built-in encryption and shouldn‟t be in the hands of the

developers. If all the fields are encrypted at every single step,

it will achieve a considerably high grade of security [18].

7. Conclusion

At a glance, from all the security features provided by

MongoDB, it might seem like it has high security. To an

extent it does have good security features but the two major

areas that it needs to improve upon are the authentication and

encryption of in-motion and at-rest data.

MongoDB should promote the best practices of enabling all

the security features, as mentioned above in various section,

so that an incident like the breach and hacks that occurred in

2017 are not repeated.

Another good way ahead could be enabling all security

features by default and let the user “opt-out” of the ones that

are not applicable to their organizations. Instead of going for

“opting-in”, this approach ensures more security. Another

advantage of doing this would be that the administrators will

become aware of the different security features available to

them [18].

Reiterating the fact, MongoDB has security features that can

be really beneficial, but it still has a long way to go to strike

the right balance.

References

[1] Violino, Bob. “How to Choose the Right NoSQL

Database.” InfoWorld. InfoWorld, March 9, 2018.

https://www.infoworld.com/article/3260184/how-to-

choose-the-right-nosql-database.html.

[2] “(PDF) Security Issues in NoSQL Databases -

Researchgate.net.” Accessed December 2, 2019.

https://www.researchgate.net/publication/254018091_S

ecurity_Issues_in_NoSQL_Databases.

[3] “Introduction to MongoDB¶.” Introduction to

MongoDB - MongoDB Manual. Accessed December 2,

2019. https://docs.mongodb.com/manual/introduction/.

[4] Bukhsh, Imran Omar BukhshImran Omar. “MySQL vs

MongoDB 1000 Reads.” Stack Overflow, May 1, 1962.

https://stackoverflow.com/questions/9702643/mysql-

vs-mongodb-1000-reads.

[5] “Replication.” Replication - MongoDB Manual.

Accessed December 2, 2019.

https://docs.mongodb.com/manual/replication/.

[6] “Authentication.” Authentication - MongoDB Manual.

Accessed December 2, 2019.

https://docs.mongodb.com/manual/core/authentication/.

[7] “SCRAM.” SCRAM - MongoDB Manual. Accessed

December 2, 2019.

https://docs.mongodb.com/manual/core/security-

scram/.

[8] “X.509.” x.509 - MongoDB Manual. Accessed

December 2, 2019.

https://docs.mongodb.com/manual/core/security-

x.509/.

[9] Person. “Improved Password-Based Authentication in

MongoDB 3.0: SCRAM Explained - Pt. 1: MongoDB

Blog.” MongoDB. MongoDB, February 2, 2015.

Paper ID: ART20203689 DOI: 10.21275/ART20203689 1821

https://www.infoworld.com/article/3260184/how-to-choose-the-right-nosql-database.html
https://www.infoworld.com/article/3260184/how-to-choose-the-right-nosql-database.html
https://www.researchgate.net/publication/254018091_Security_Issues_in_NoSQL_Databases
https://www.researchgate.net/publication/254018091_Security_Issues_in_NoSQL_Databases
https://docs.mongodb.com/manual/introduction/
https://stackoverflow.com/questions/9702643/mysql-vs-mongodb-1000-reads
https://stackoverflow.com/questions/9702643/mysql-vs-mongodb-1000-reads
https://docs.mongodb.com/manual/replication/
https://docs.mongodb.com/manual/core/authentication/
https://docs.mongodb.com/manual/core/security-scram/
https://docs.mongodb.com/manual/core/security-scram/
https://docs.mongodb.com/manual/core/security-scram/
https://docs.mongodb.com/manual/core/security-x.509/
https://docs.mongodb.com/manual/core/security-x.509/

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

https://www.mongodb.com/blog/post/improved-

password-based-authentication-mongodb-30- scram-

explained-part-1.

[10] “Role-Based Access Control.” Role-Based Access

Control - MongoDB Manual. Accessed December 2,

2019.

https://docs.mongodb.com/manual/core/authorization/.

[11] Townsend Security. “The Definitive Guide to

Encryption Key Management Fundamentals.” Blog.

Accessed December 2, 2019.

https://info.townsendsecurity.com/definitive-guide-to-

encryption-key-management-fundamentals.

[12] “Block Cipher Modes of Operation.” Wikipedia.

Wikimedia Foundation, September 11, 2013.

https://en.wikipedia.org/wiki/Block_cipher_modes_of_

operation.

[13] “Auditing.” Auditing - MongoDB Manual. Accessed

December 2, 2019.

https://docs.mongodb.com/manual/core/auditing/.

[14] “Security Checklist.” Security Checklist - MongoDB

Manual. Accessed December 2, 2019.

https://docs.mongodb.com/manual/administration/secur

ity-checklist/.

[15] “Network and Configuration Hardening.” Network and

Configuration Hardening - MongoDB Manual.

Accessed December 2, 2019.

https://docs.mongodb.com/manual/core/security-

hardening/.

[16] “An Analysis and Overview of MongoDB Security”,

https://www.cs.rochester.edu/courses/261/fall2017/ter

mpaper/submissions/07/Paper.pdf

[17] “A Security Comparison between MySQL and

MongoDB”,

https://www.academia.edu/16557343/Mongo_vs_My_

SQL-Security

[18] “Possible Mitigation of NoSQL database Injections”,

https://www.stjoern.com/menu-db/nosql

Paper ID: ART20203689 DOI: 10.21275/ART20203689 1822

https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1
https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1
https://www.mongodb.com/blog/post/improved-password-based-authentication-mongodb-30-scram-explained-part-1
https://docs.mongodb.com/manual/core/authorization/
https://info.townsendsecurity.com/definitive-guide-to-encryption-key-management-fundamentals
https://info.townsendsecurity.com/definitive-guide-to-encryption-key-management-fundamentals
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://en.wikipedia.org/wiki/Block_cipher_modes_of_operation
https://docs.mongodb.com/manual/core/auditing/
https://docs.mongodb.com/manual/administration/security-checklist/
https://docs.mongodb.com/manual/administration/security-checklist/
https://docs.mongodb.com/manual/core/security-hardening/
https://docs.mongodb.com/manual/core/security-hardening/
https://www.cs.rochester.edu/courses/261/fall2017/termpaper/submissions/07/Paper.pdf
https://www.cs.rochester.edu/courses/261/fall2017/termpaper/submissions/07/Paper.pdf
https://www.academia.edu/16557343/Mongo_vs_My_SQL-Security
https://www.academia.edu/16557343/Mongo_vs_My_SQL-Security
https://www.academia.edu/16557343/Mongo_vs_My_SQL-Security
https://www.stjoern.com/menu-db/nosql

