
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Enhanced Topology Discovery Protocol for SDN

Ajeesh S
1
, Betty Mary Jacob

 2
, Nisha Mohan P M

3

1, 2, 3Mount Zion College of Engineering, Department of Computer Science and Engineering, Pathanamthitta, Kerala, India

Abstract: In software-defined networks (SDNs), the controller collects the topology information from the data plane and maintains an

abstract view of the entire network, which is crucial for the proper functioning of applications and network services. However, there is

still the need for an enhanced protocol for automatic discovery and mechanisms of auto configuration of network elements according to

new policies and business requirements. To overcome this challenge, this paper presents a novel protocol that, unlike existing

approaches, enables a distributed layer-2 discovery without the need for previous network configurations or controller knowledge of the

network. By using this mechanism, the SDN controller can discover the network view without incurring scalability issues, while taking

advantage of the shortest control paths toward each switch.

Keywords: Network management, protocols, software-defined networks, topology discovery

1. Introduction

To be able to address these high demands from users, net-

work operators will require emerging solutions to effectively

manage their network resources in a dynamic and flexible

manner. In addition, in order to deploy high-level policies in

traditional networks, operators need to configure each

element of the network. This often occurs via specific, low-

level commands from manufacturers because the plane that

determines how to manage traffic (the control plane) and the

plane that forwards traffic in accordance with the decisions

of the control plane (the forwarding plane) are vertically

integrated into a single network device.

The term ‘‘programmable networks’’ is usually employed to

describe the desired future of networking. In essence, a

network is said to be programmable if the behavior of its

network devices and its traffic control are managed by

software that operates independently from the network’s

physical infrastructure. Moving from closed, proprietary-

based computer hardware to software-oriented (and thus

programmable) networks provides the opportunity for net-

working innovation, making it possible and more straight-

forward to evolve network capabilities and deploy new

services.

2. Topology Discovery Service in SDN

In general, topology discovery is highly important in sev-

eral computer network areas such as routing, resource allo-

cation and configuration, Quality of Service (QoS), network

management, diagnosis and fault recovery, among others. For

this reason, discovering the current topology of a network is

a compulsory task for every network operator. Moreover,

collecting this real-time information efficiently and automat-

ically is critical for significant networking problems such as

enhancing network connectivity and resolving network

congestion. In order to improve the performance of these

network services, preserving an accurate view of the network

topology at all times is also an important task.

In order to discover the topology under OFDP, switches

require two major previous configurations. Firstly, every

switch has initially programmed the IP address and TCP port

of its controller to establish a connection as soon as the device

is turned on. Secondly, switches have preinstalled flow rules

to route directly to the controller via a packet-in message, any

LLDP packet received from another switch.

Using the IP address and TCP port programmed in advance,

the switch searches for its controller in the network and

attempts to establish a secure and encrypted connection

through a Transport Layer Security (TLS) session. The con-

troller as part of this initial handshake sends a feature request

message to the switch, which responds with a feature reply

message. With this message the switch informs the controller

about relevant parameters for the network discovery such as

the switch ID, a list of active ports with their corresponding

MAC addresses, among others.

In essence, under OpenFlow, switches are discovered and

added to the network view in the initial handshaking pro-

cess. Consequently, with OFDP the topology discovery is

reduced to discover the inter-connected links between the

switches. Moreover, sending messages periodically from the

controller to each OpenFlow switch increases the network

traffic and latency between the control plane and the for-

warding plane, and can also lead to network limitations and

outages

3. Enhanced Topology Discovery Protocol

Although SDN provides a flexible architecture by

centralizing network intelligence, the controller intervention

in those control tasks that only require local switch

knowledge is not always ideal. The execution of such tasks

(e.g. neighbor discovery) can be delegated to the forwarding

devices, which can gather the corresponding information and

send it to the controller. In this way, the controller remains

responsible for performing those tasks that require a global

network view and centralized control.

3.1 Programmable Network Infrastructure

The proposed solution can be implemented in a network

system following the recent design proposed by the SDN

paradigm. The overall system architecture for the proposed

solution is shown in Fig.. This network system embraces

Paper ID: ART20203623 DOI: 10.21275/ART20203623 1360

http://mzc-mis.in/employee/toprofile.php?empid=17

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

+

network control decoupled from forwarding devices and

leverages SDN controllers to provide an abstract view of the

entire network.

This proposal can be deployed in a network domain with

multiple SDN controllers through the use of a software agent

(e.g. eTDP client) running in each network device. As a result,

based on the topology information sent by switches each

SDN controller discovers and maintains an accurate network

view in the topology database. The stored information is

critical for the proper operation of other controller services

and supported network applications (e.g. traffic engineering,

3.2 Forwarding Network Device

The network devices may be any hardware-based (i.e.

switch or router) or software-based (logical or virtual- ized)

device configured to perform data forwarding functions

according to the routes specified by the SDN controller. Fig.

2 presents a schematic diagram of a network device.

The Topology Discovery Protocol Agent is the compo- nent

responsible for performing the proposed eTDP at each node,

which can be implemented using an agent-oriented approach.

These agents perform a local partial function of the entire

discovery process while interacting autonomously. This

capability of distributed operation allows the global

topology discovery task to evolve in a scalable and effective

way, without overburdening the SDN controller. Topology

information retrieved by each node during the eTDP oper-

ation is temporarily stored in the device memory and periodi-

cally sent to the controller of the corresponding SDN domain.

3.3 Control Frames Description

The eTDP communications are carried out using a stan- dard

network frame format for all data related to the proto- col.

This feature allows us to develop future extensions of the

protocol while maintaining compatibility with previous

versions. Moreover, the packets are encapsulated with their

corresponding headers (i.e. MAC or IP) for transmissions

over the network.

1) Message Header

These messages share a common header format, which

allows a node to be able to accept or relay (if applicable) mes-

sages of different types. This feature supports fine-grained

message forwarding using the powerful ‘‘match action’’

abstraction of SDN. The definitions of each field included in

the message headers are further described below:

 Proto Type: Protocol type (8 bits). This field uses a

specific hexadecimal number to denote the protocol type

so that any switch that supports this protocol can easily

identify eTDP messages in the network control frame.

 PDU Type: Packet data unit type (8 bits). This field

contains a value that specifies the type of message in the

payload. For example, type 0x01 denotes a topoRe- quest

frame, type 0x02 indicates an echoReply frame and type

0x03 corresponds to a topoReply frame.

 Message Length: Message size (16 bits). This field

indicates the message end in the byte stream, starting from

the first byte of the header.

As illustrated in Fig., the overall header size is 32 bits (i.e.

4 octets). Some field values (e.g. PDU Type and Message

Length) used in this fixed structure depend on the kind of

eTDP messages sent by the network nodes.

2) Topo Request

The topoRequest message is used by the SDN controller to

initiate the topology discovery process in the network. Fig.

presents the message format of a topoRequest.

Besides the header, this simple message only carries the ID

corresponding to the SDN controller that sends the

topoRequest message. This is the manner in which each SDN

controller announces its presence to every forwarding device

active in the network.

SDN Controller ID: Controller identifier (48 bits). The node

identifier used in the messages is the MAC address. If the

network controller has more than one interface, it must

choose the MAC address from one of its active interfaces.

This field has the

3) Echoreply

After receiving the topoRequest message, each network node

should automatically reply with an echoReply message. This

one-hop reply enables the exchange of local topology infor-

mation between neighbors and the establishment of a hierar-

chical control tree rooted at the SDN controllers. In Fig. 5

the frame format of an echoReply message is presented. As

shown, the value in the message header (i.e. PDU Type), has

changed to type 0x02 for indicating the echoReply message.

This message format was inspired by the use of Type-

Length-Value (TLV) structures for the exchange of local

neighbor information. Type-Length-Value structures have

Paper ID: ART20203623 DOI: 10.21275/ART20203623 1361

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

been widely exploited by several existing standardized proto-

cols such as LLDP. Intermediate System to Intermediate

System (IS-IS) and Remote Authentication Dial-In User

Service (RADIUS). among others. In this proposal we

utilized TLV as an efficient method for transmitting different

kinds of topology data inside the message body.

While the TLV type and length fields occupy the first two

octets of the TLV format, the value field may have a fixed or

variable size. In addition, it may include differ- ent types of

information, containing either binary or alpha- numeric data,

which is specified using the associated subtype identifiers

(e.g. port component, MAC or IP address, interface name,

locally assigned identifiers, etc.).

In addition, the echoReply message is used by forward- ing

devices as an acknowledgment to confirm or deny the

association in the control tree. In essence, each switch in the

network sends an echoReply message not only to announce

its topology information but to indicate its association with a

specific neighbor (i.e. other switch or SDN controller). To do

this, an additional association bit is included in this protocol

frame.

4) Topo Reply

The principal function of the topoReply message is to

guarantee the proper transmission of the topology network

state from the forwarding devices to the SDN controllers. To

achieve this, this message format is also based on the use of

TLV structures.

Fig. 6 shows a brief description of the topoReply message

following the basic TLV format. This message may contain

the five TLV types supported by the eTDP and presented in

Table 2. The first of these (i.e. TLV Node ID), which is

mandatory for every topoReply message, identifies the node

that sends this message, while the others are used to provide

information related to the connectivity with the node’s neigh-

bors.

Finally, we have also defined a pruning indicator in the

topoReply messages. This pruning indicator is used by the

nodes to notify whether they can reach the SDN con- trollers

through only the neighbors receiving this notification. Clearly,

nodes that have only one active port (i.e. leaf nodes) and

nodes with all its downstream ports pruned (i.e. v-leaf

nodes), will send the prune bit set within the topoReply

message. A description of this pruning bit is given below.

P: Pruning Indicator (1 bit). This one-bit field enables eTDP

nodes to announce to their neighbors whether they cannot

provide an alternative path to the SDN controllers.

Protocol Operation
The presented topology discovery mechanism is initialized by

each SDN controller sending a topoRequest message. This

multicast message is then propagated accross the network

creating a control tree topology rooted at the SDN controllers

for collecting network state data. Moreover, this control tree

also distributes the management of the physical infrastructure

among several SDN controllers.

With the exception of the SDN controller, nodes have one of

three roles, i.e. leaf, v-leaf or core, according to their position

in the network topology. Leaf nodes are the nodes in the

network that have only one neighbor. A node is v-leaf when

it has more than one neighbor but only one of them can

provide a path to the SDN controllers. The remaining

switches are denoted as core nodes.

Additionally, each active port takes one of four states related

to the control tree: standby, parent, child or pruned. Fig. 7

shows the port states for a given network device.

1) A standby port is an active port in the node that is not

used in the control tree.

2) A parent port is an upstream port in the control tree that

has first received the topoRequest message. Thus, each

node has only one parent port.

3) A child port is a downstream port of the control tree that

has received an echoReply message with the association

bit set.

4) A pruned port is a child port that has received a topoRe-

ply message stating that it is attached to a leaf or v-leaf

node.

4. Conclusions

In this paper we proposed a novel protocol for discover-

ing layer 2 infrastructures in large-scale SDN topologies.

To that end, the proposed eTDP hierarchically distributes

the discovery functions among switches supporting this

proto- col. Unlike existing approaches, this solution enables

auto- matic discovery of the network without requiring

previous IP configurations or controller knowledge of the

network. By using this mechanism, the SDN controller is

able to dis- cover the network topology and construct a

holistic network view without incurring scalability issues

while taking advan- tage of the shortest control paths to

each switch. Through experimental simulations with real-

world topologies, we have demonstrated that eTDP provides

a suitable approach for discovering the network topology

with discovery times of under 0.08 ms in the three

considered networks. The obtained results also show that

the overall number of packets gen- erated per switch is not

affected by increasing the number of SDN controllers.

Moreover, eTDP achieves noticeable improvements with

respect to OpenFlow-based approaches, with the most

significant reductions seen in comparison to the current

OFDP.

Paper ID: ART20203623 DOI: 10.21275/ART20203623 1362

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 12, December 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] T. Bakhshi, ‘‘State of the art and recent research

advances in software defined networking,’’ Wireless

Commun. Mobile Comput., vol. 2017, no. 4, Jan. 2017,

Art. no. 7191647.

[2] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li,

‘‘Software-defined net- working: State of the art and

research challenges,’’ CoRR, 2014. [Online]. Available:

http://arxiv.org/abs/1406.0124

[3] M. Aslan and A. Matrawy, ‘‘On the impact of network

state collection on the performance of SDN

applications,’’ IEEE Commun. Lett., vol. 20, no. 1, pp. 5–

8, Jan. 2016.

[4] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A.

Feldmann, ‘‘Log- ically centralized?: State distribution

trade-offs in software defined net- works,’’ in Proc. 1st

Workshop Hot Topics Softw. Defined Netw., Helsinki,

Finland, Aug. 2012, pp. 1–6.

[5] S. Khan, A. Gani, A. A. Wahab, M. Guizani, and M. K.

Khan, ‘‘Topology discovery in software defined

networks: Threats, taxonomy, and state- of-the-art,’’

IEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 303–

324, 1st Quart., 2017.

[6] POX. Network Software Platform. Accessed: Oct. 25,

2018. [Online]. Available: https://noxrepo.github.io/pox-

doc/html/

[7] RYU. Component-Based Software Defined Networking.

Accessed: Oct. 25, 2018. [Online]. Available:

https://osrg.github.io/ryu/

[8] T. Alharbi, M. Portmann, and F. Pakzad, ‘‘The

(in)security of topology discovery in software defined

networks,’’ in Proc. IEEE 40th Conf. Local Comput.

Netw. (LCN), Oct. 2015, pp. 502–505.

Paper ID: ART20203623 DOI: 10.21275/ART20203623 1363

http://arxiv.org/abs/1406.0124

