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Abstract: A new lifetime distribution, called the Exponentiated-epsilon distribution, is generated. It is based on the Exponentiated-G 

family of distributions. It has a flexible density function that is skewed depicting its ability to model data generating processes with 

varying complexities. It has bathtub-shaped and J-shaped hazard rate function within its parameter space. It is applied to two 

differentreal-life datasets and provided good fit. Consequently, it holds a good potential for modeling real-life data generation processes. 
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1. Introduction 
 

Generating probability distributions is a novel activity, with 

new distributions emerging almost on daily basis. This is a 

good development in statistical practice because it will 

create an avenue for the choice of better models among 

many to handle a problem situation. Nowadays, dynamic 

system modelers have a plethora of very similar probability 

density functions to fit to datasets, and then choose those 

densities that are adjudged the best by a combination of the 

many goodness-of-fit methods and model selection criteria. 

 

There are several methods of generating probability density 

functions in use. Lai [7] provided a list of them; for 

example, probability integral transform (PIT); linear, inverse 

or log transformation; transformation of the cumulative 

distribution function or the survival function; adding a 

constant to existing hazard rate function; method of 

compounding; adding a frailty or tilt parameter; 

exponentiation and double exponentiation. These methods 

generate useful distributions that are applied in reliability 

analysis, dynamic system simulation and modeling. 

Although some of the newly generated probability 

distributions do not have closed-form expressions for 

parameter estimates in terms of the values of the random 

variable, moments and other important properties, the 

development in, and existence of, user friendly computer 

softwarehas made their applications easier. 

 

In this study, a new probability density function called 

exponentiated epsilon distribution (later denoted by E-

epsilon distribution) is introduced, some of its properties 

studied and applied to real life datasets. 

 

2. Literature Review 
 

One of the early works that propelled the generation of 

probability distributions through exponentiation was carried 

out in the first half of the nineteenth century. Gompertz[4] 

and Verhulst [16] introduced the popular Gompertz-Verhulst 

model that was used to compare known mortality tables and 

to represent population growth. A pioneering commendation 

to the method of exponentiation is credited to Lehmann [8]. 

His work stirred the introduction of two probability density 

function generators; namely Lehmann Type I and Lehmann 

Type II generators. Lehmann Type I was linked directly to 

𝐸𝑥𝑝𝑐 𝐺 , from which cumulative distribution functionand 

probability density functionare generated from the root 

distribution 𝐺. Likewise, Lehmann Type II has the generator 

𝐸𝑥𝑝𝑐 1 − 𝐺 . 

 

There are many distributions and density functions 

generated following the introduction of this procedure. One 

of the earlier works is the exponentiated Weibull distribution 

credited to Mudholkar and Srivastava [11]. They showed 

that the distribution has a broad class of monotone failure 

rates than many distributions with bathtub shapes and 

unimodal failure rates. Its application in reliability and 

survival analysis were illustrated [12]. 

 

The two parameter exponentiated Pareto distribution was 

introduced[5]and suggested as a model for analyzing life-

time datasets. This distribution is shown to have a 

decreasing, upward and downward bathtub shaped failure 

rates, depending on the value of the shape parameter.  

Nadarajah and Gupta [13] introduced a very flexible family 

of gamma distributions, called the exponentiated gamma 

distribution, with the gamma distribution as a special case. 

The distribution generalizes the standard gamma distribution 

in the same way the exponentiated exponential distribution 

generalizes the standard exponential distribution. Statistical 

properties such as the hazard rate function, moment 

generating function, skewness, kurtosis, Shannon entropy, 

asymptotic distribution of the extreme order statistic, were 

provided. Many other distributions generated by 

exponentiation, and their applications, are also found in 

literature; for example, generalized logistic[9], generalized 

log-normal [15], exponentiated Gumbel [1] and 

exponentiated exponential [6] distributions. 

 

3. The Exponentiated- Epsilon Probability 

Density Function 
 

Let 𝑋 be a random variable characterized by the epsilon 

distribution, then the cumulative distribution and probability 

density functions of 𝑋 are given [3], respectively, by 
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Based on Lehmann Type I family of exponentiated 

distributions, a random variable, 𝑋, is said to be distributed 

according to the exponentiated-epsilon (hereafter E-epsilon) 

distribution if it has a cumulative distribution function given 

by 

 
Its corresponding probability density function is given by 

 
 

Proposition 
The E-epsilon probability density function given in equation 

(4) is unimodal. 

 

Proof 

We determine the limiting values of the density function in 

equation (4) at the extreme points in the range of the values 

of 𝑋. That is 

 

 
Also 

 
The function tends to zero at both the upper and lower limits 

in the range of values for which it is a true probability 

density function, this imply the E-epsilon density function is 

unimodal. 

 

The plots of E-epsilon probability density function (4) for 

varying parameter values are presented in Figure 1 below. 

 

 
Figure 1: Density plots of E-epsilon distribution at varying values of shape parameters 𝛼 and 𝜆 

 

4. Properties of the E-Epsilon Distribution 
 

4.1 Quantile Function 

 

For a random variable 𝑋 characterized by the E-epsilon 

distribution function in equation (3), its quantile function is 

given by 

 
 

4.2 Moments 

 

The 𝑟𝑡ℎ  moment of anE-epsilon distributed random variable 

𝑋 is given by 

 
Although the expression for the moments of anE-epsilon 

distributed random variable are is explicit, it can be evaluated 

easily when the values of the parameters are specified. This 

requires that the parameters be first estimated for a given 

dataset. 

 

4.3 Hazard Rate Function 

 

The hazard rate function for a random variable 𝑋 distributed 

according to E-epsilon distribution is given by 
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Plots of the E-epsilon hazard rate function atvarying shape 

parameter values are presented in Figure 1 below. 

 
Figure 2: E-epsilon hazard rate function curves at varying values of shape parameters 𝛼 and 𝜆 

 
4.4 Distribution of Order Statistics 

 

Let 𝑋1, 𝑋2, …, 𝑋𝑛  be 𝑛 identically and independently 

distributed E-epsilon random variables, and 𝑋 1 < 𝑋 2 <∙∙∙

< 𝑋 𝑛  be their ordered statistics. Then the distribution of the 

𝑟𝑡ℎ  ordered statistic is given by 

 

 
And when 𝑟 = 𝑛, we obtain from equation (8) the 

distribution of the largest observation in a sample of size 𝑛 

from the E-epsilon distribution, given by 

 
 

5. Applications 
 

5.1 The Data 

 

Two real life datasets are used to illustrate the practical 

applications of the E-epsilon probability distribution 

expressed in equation (4). The first data is thefracture 

toughness of Alumina (Al2O3) (in MPa/m2) obtained from 

[14]. The second dataset is the fatigue life (to the nearest 

thousand cycles) of 67 specimens of Alloy T7987 that failed 

before having accumulated 300 thousand cycles of testing. 

The data is obtained from [10]. These datasets are given in 

the Appendix. 

 

5.2 Parameter Estimation 

 

5.2.1 Fracture Toughness of AluminaDataset 

The probability density function of the E-epsilon distribution 

in equation (4) was fitted to the fracture dataset using the 

fitdistrplus [2] package implemented in the R statistical 

programming language. The results are presented in Table 1 

below. The plot of the density function at the estimated 

parameter values superimposed on the histogram for the data 

are presented in Figure 4 below. 

Table 1: E-epsilon fit of fracture toughness of Alumina (Al2O3) (in MPa/m2) 
Distribution 𝛼 (𝑠𝑒) 𝜆 (𝑠𝑒) 𝑑 (𝑠𝑒) LL value KS (CV) Remark 

E-epsilon 13.178 (1.814) 0.588 (0.136) 6.930 (1.840) -172.588 0.1014 (0.1247) Good fit 

se= standard error, LL = loglikelihood, KS = Kolmogorov-Smirnov stat. value, CV = critical value 
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Figure 4 : E-epsilondistribution plots of fracture toughness of 

Alumina 

 

5.2.2 Fatigue Life Specimens of Alloy T7987Dataset 

The density function was fitted to the fatigue time dataset (in 

thousand cycles) for specimens of Alloy T7987. The estimate 

of the parameters are given in Table 2 and the density plot at 

the estimated parameter values superimposed on the data 

histogram are presented in Figure5. 

 

 

 

 

 

 

 

 

 

 

Table 2: E-epsilon fit of Fatigue Life Data of 67 Specimens of Alloy T7987 
Distribution 𝛼   (𝑠𝑒) 𝜆   (𝑠𝑒) 𝑑 (𝑠𝑒) LL Value KS (CV) Remark 

E-epsilon 34.34 (2.080) 0.0238 (0.0052) 514.1 (40.2) - 347.1 0.0546 (0.1662) Good fit 

se= standard error, LL = loglikelihood, KS = Kolmogorov-Smirnov, CV = critical value 

 

 
Figure 5: E-epsilon distribution plots of Alloy T7987 

fatigue life (in thousand cycles) 
 

6. Discussion 
 

The plots of the density function of the E-epsilon 

distribution shown in Figure 1 suggest quite clearly that it 

has density function within its parameter space that can be 

used as a model for lifetime datasets. The bathtub and J-

shaped curves of its hazard rate function shown in Figure 2 

indicate clearly that it can serve as a more realistic hazard 

rate function model. The finite range of a random variable 

described according to the E-epsilon distribution, in 

conjunction with the bathtub and J-shapes of its explicit 

hazard rate function shows it is an attractive model for 

studying systems with finite lifetimes, for example life 

expectancy of humans and other biological organisms. 

The results of fitting the two datasets are quite good and 

precise estimates of the parameters were obtained for both 

datasets. The average fatigue life for the specimen of Alloy 

T7987 is estimated as 1.6545 × 105 cycles with absolute 

error < 4.4e-02 These affirms the usability of the E-epsilon 

distribution for lifetime data analysis. Furthermore, the 

density plots at the estimated parameter values presented in 

Figures 4 and 5 atteststo the results of the goodness-of-fit 

tests in Tables 1 and 2, respectively. 

 

7. Conclusion 
 

A new distribution called the E-epsilon distribution, is 

introduced. It has several shapes within its parameter space 

that is capable of describing many data generating 

processes. In particular, its hazard rate function shapes 

suggest that it can be used as a more realistic hazard 

function model in life sciences. Its application to fracture 

toughness and fatigue lifetime (in thousand cycles) datasets 

produced good fit. All these suggest that this distribution 

has an inherent great potential for real life applications. 
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Appendix 
 

Fracture toughness of Alumina (Al2O3) (in MPa/m2) 

obtained from Nadarajah & Kotz (2008) 

5.50, 5.00, 4.90, 6.40, 5.10, 5.20, 5.20, 5.00, 4.70, 4.00, 

4.50, 4.20, 4.10, 4.56, 5.01, 4.70, 3.13, 3.12, 2.68, 2.77, 

2.70, 2.36, 4.38, 5.73, 4.35, 6.81, 1.91, 2.66, 2.61, 1.68, 

2.04, 2.08, 2.13, 3.80, 3.73, 3.71, 3.28, 3.90, 4.00, 3.80, 

4.10, 3.90, 4.05, 4.00, 3.95, 4.00, 4.50, 4.50, 4.20, 4.55, 

4.65, 4.10, 4.25, 4.30, 4.50, 4.70, 5.15, 4.30, 4.50, 4.90, 

5.00, 5.35, 5.15, 5.25, 5.80, 5.85, 5.90, 5.75, 6.25, 6.05, 

5.90, 3.60, 4.10, 4.50, 5.30, 4.85, 5.30, 5.45, 5.10, 5.30, 

5.20, 5.30, 5.25, 4.75, 4.50, 4.20, 4.00, 4.15, 4.25, 4.30, 

3.75, 3.95, 3.51, 4.13, 5.40, 5.00, 2.10, 4.60, 3.20, 2.50, 

4.10, 3.50, 3.20, 3.30, 4.60, 4.30, 4.30, 4.50, 5.50, 4.60, 

4.90, 4.30, 3.00, 3.40, 3.70, 4.40, 4.90, 4.90, 5.00. 

Fatigue life (to the nearest thousand cycles) of 67 

Specimens of Alloy T7987 that failed before having 

accumulated 300 thousand cycles of testing obtained from 

Meeker & Escobar (1998, pp 149). 

94  96  99  99  104 108112 114  117  117  118  121  121  

123  129  131  133  135  136  139  139  140  141  141  143  

144  149  149  152  153  159  159  159  159  162  168 168  

169  170  170  171  172  173  176  177  180  180  184  187  

188  189  190  196  197 203 205 211 213 224 226 227 256 

257 269 271 274 291 
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