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Abstract:A new three-dimensional chaotic system is presented with its basic properties such as equilibrium points, Lyapunov’s 

exponents and Kaplan-Yorke dimension. An Indirect Robust Adaptive Nonlinear Controller for complete synchronization and/or control 

of the new system considered with mismatch disturbancesis designed. The adaptive controller is designed such that it allows 

simultaneously accurate control and system identification. The same controller design approach proposed in this paper can be applied to 

the design of controllers for other nonlinear Multi-Input-Multi Output (MIMO) systems with parameters uncertainties. Using the 

Lyapunov’s method, the update rules for system identification are derived. MATLAB simulations results are presented to illustrate the 

efficiency of the proposed controller. 
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1. Introduction 
 

Since its description for the first time in 1963 by the 

physicist E. Lorenz as a deterministic nonperiodic flow, 

continuous chaos has gain considerable attention in different 

research areas such as communication technologies, biology, 

chemistry, power converters, economics, where chaotic 

systems are proven to be very useful [1-6]. Over the last 

decades until recently, several interesting chaotic systems 

with a lot of potential applications, such as the Rössler 

system,the Chen system, the Duffing forced oscillation 

system, the Lü-Chen system, the Vaidyanathan systems, etc., 

have been introduced [2,7-12].  

 

In various applications of chaotic systems, the possibility of 

controlling or ordering chaotic systems is very important for 

many practical reasons. For instance, in some cases, chaotic, 

messy, irregular, or disordered system response with little 

useful information content is unlikely to be undesirable, 

while in other cases (e.g. fluid mixing, random number 

generator, etc.) chaos is the desired system response [11].  

Therefore, the process of chaos control can be understood as 

a transition between chaos and order and, sometimes, from 

chaos to chaos (synchronization), depending on the 

application of interest [13, 14]. 
 

Chaotic systems are known to be highly sensitive to 

parameter changes. In most practical applications, these 

changes are challenging to avoid. They may be caused by 

several factors such as the system’s operating conditions, the 

environment, the temperature, just to name a few. Therefore, 

it is necessary to apply controllers to chaotic systems in order 

to ensure their good performances despite these perturbations 

for which the upper bounds are unknown, referred to as 

mismatched perturbations.   
 

Since the early nineties, the problem of chaos control has 

attracted attention of researchers and engineers. A particular 

technique has been introduced, which is widely used to 

design controllers with no requirement on prior knowledge 

of the system’s parameters. This technique is called adaptive 

control. Adaptive control can be either direct or indirect. In 

direct adaptive control, the controller’s parameters (the 

approximation of the nonlinear function related to the 

unknown parameters) are directly adjusted and no effort is 

made for identifying the plant parameters, while in indirect 

adaptive control the plant parameters are estimated and their 

values are used to adjust the controller [13]. Over the recent 

decades, many publications have been made where adaptive 

control of some existing and/or newly introduced chaotic 

systems have been addressed. In [6], a new two-scroll 

chaotic system is proposed with its qualitative properties. 

The authors also designed an indirect adaptive feedback 

controller, which stabilizes the states of the new system to 

zero even though the system’s parameters are unknown. In 

[2], two novel chaotic systems, characterized by a hyperbolic 

sinusoidal (or cosinusoidal) nonlinearity and two quadratic 

nonlinearities are presented with their qualitative analysis. 

Their feedback adaptive controllers are devised to bring them 

to synchronization even though the systems’ parameters are 

unknown. In [14] a new nonlinear controller is proposed for 

synchronization of the Lü chaotic system. In [15] nonlinear 

and linear active controllers are designed for synchronization 

of the chaotic system introduced in [8]. A comparative 

analysis is performed in order to assess the effectiveness of 

the two different controllers on the system. One of the 

conclusions from this analysis is that with the nonlinear 

controller, the synchronization error converges to the 

equilibrium point smoothly with a faster rate than with the 

active controller. In [16], synchronization of the Lorenz 

system is addressed with a Sliding Mode Control (SMC) 

approach based on optimal finite time convergent and 

integral sliding mode surface. The authors considered that 

perturbation on the system can be subdivided into two parts, 

which are the unmatched and the matched parts, and then 

designed a controller with regards to each of these parts. 
 

Compared to available published works, the contribution of 

this paper can be summarized as follows: 
 

(a) Introduction of a new chaotic system, which can lead to 

multiple potential applications, for instance in 

telecommunication systems, laser technology, 

chemistry, etc.  

(b) Design of an Indirect Robust Adaptive Sliding Mode 

Controller IRASMC for controlling the new chaotic 
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system. The designed controller can be used either for 

synchronizing the system with another different chaotic 

system, or for suppressing its chaotic behavior by 

forcing the system’s output to track a non-chaotic 

trajectory. No discontinuous function is used in the 

control law so that the chattering phenomenon (very 

high frequency, which can excite some unmodelled 

dynamics), which is the common drawback of the 

Sliding Mode Control approach, is avoided. The 

designed controller doesn’t need any prior information 

on the system’s parameters, and shows robustness 

against mismatched disturbance or unknown system’s 

parameters changes. Another advantage is that it also 

allows online identification of the system’s parameters.  

One important fact to be mentioned here is that the same 

controller’s design approach used here can be easily 

applied for the design of controllers for other chaotic 

systems or nonlinear square Multi Input Multi Output 

(MIMO) systems with parameters uncertainties.  

(c) Application of the design approach available in the 

literature for MIMO systems often used for chaos 

synchronization (see e.g. in [2,7,16]), to design another 

Indirect Adaptive Nonlinear Controller (IANC) for the 

same system and comparison of its performance with the 

IRASMC’s performances in terms of synchronization 

error, robustness and system identification ability. 

 

The rest of this paper is organized as follows: section 2 

presents the new chaotic system with some of its basic 

properties; in section 3, the IRASMC is designed for the new 

chaotic system; in section 4, using one of the traditional 

approaches for nonlinear controller design, the IANC is 

developed; section 5 presents the results of MATLAB 

simulations of the control systems designed in the two 

previous sections, and section 6 ends this paper with a 

conclusion. 

 

2. The New Chaotic System and Its Properties 
 

The chaotic system proposed in this paper is described as the 

following nonlinear autonomous continuous system of 

differential equations:  

 

 

𝑥  𝑡 = 𝑎 𝑦 𝑡 − 𝑥 𝑡  

𝑦  𝑡 = −𝑐𝑥 𝑡 + 𝑧 𝑡 4

𝑧  𝑡 = 𝑏𝑧 𝑡 − 𝑥 𝑡 𝑧 𝑡 

      (1) 

 

where 𝑎, 𝑏, and 𝑐 are positive constant parameters of the 

chaotic system, and 𝑥 𝑡 , 𝑦 𝑡  and 𝑧 𝑡  are the system’s state 

variables. 
 

Remark 1: For simplicity in notations, all the state variables 

will simply be written as 𝑥, 𝑦 and 𝑧 in all the subsequent 

parts. 
 

System (1) can be rewritten in the vector form as: 
 

𝑿 = 𝑭 𝑿          (2) 
 

 

where 𝑿𝑻 =  𝑥, 𝑦, 𝑧  and 𝑭 𝑿 =  𝑓1 𝑿 , 𝑓2 𝑿 , 𝑓3 𝑿  
𝑇  

with 𝑓1 𝑿 = 𝑎 𝑦 − 𝑥 , 𝑓2 𝑿 = −𝑐𝑥 + 𝑧4 and 𝑓3 𝑿 =
𝑏𝑧 − 𝑥𝑧.  
 

Whenparameters are chosen as 𝑎 = 1.8, 𝑏 = 3 and 𝑐 = 10, 

system (1) undergoes chaotic behavior. This can be observed 

in Fig. 1. This figure shows results of a MATLAB simulation 

of system (1) with the previously mentioned parameter 

values when initial condition are chosen as 0.1, 0.8, 1.2 .  
 

 
 

 
 

 

 

 
Fig. 1. (a) 3D view of the state variables 𝑥, 𝑦 and 𝑧; (b) (𝑥, 𝑦) phase 

portait; (c) (𝑦, 𝑧) phase portrait; (d) (𝑥, 𝑧) phase portrait 

2.1 System’s equilibrium points 

The equilibrium points are found by solving the equation 

𝑭 𝑿 = 𝟎to obtain: 

 

 

𝑥 = 𝑏    
𝑦 = 𝑏     

𝑧 = ± 𝑐𝑏 
1

4

              (3) 

 

The system’s real equilibrium points 

are: 𝐸1 0, 0,0 , 𝐸2 3,3,  30
4

  and  𝐸3 3,3, − 30
4

 . 
The Jacobian matrix of Eq. (2)is: 
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𝐽 𝑿 =

 
 
 
 
 
𝜕𝑓1 𝑋 

𝜕𝑥

𝜕𝑓1 𝑋 

𝜕𝑦

𝜕𝑓1 𝑋 

𝜕𝑧

𝜕𝑓2 𝑋 

𝜕𝑥

𝜕𝑓2 𝑋 

𝜕𝑦

𝜕𝑓2 𝑋 

𝜕𝑧

𝜕𝑓3 𝑋 

𝜕𝑥

𝜕𝑓3 𝑋 

𝜕𝑦

𝜕𝑓3 𝑋 

𝜕𝑧  
 
 
 
 

=  
−𝑎 𝑎 0
−𝑐 0 4𝑧3

−𝑧 0 𝑏 − 𝑥
 (4) 

 

For the equilibrium point  𝐸1 0,0,0  we have: 

 

𝐽 𝑬𝟏 =  
−1.8 1.8 0
−10 0 0

0 0 3
 (5) 

 

To find the Eigen value, let’s solve the characteristic 

equation 𝑑𝑒𝑡 𝜆𝐼 − 𝐽 𝑬𝟏  = 0, where 𝐼 is a 3 × 3 identity 

matrix. We obtain 𝜆1 = 3, 𝜆2 = −5.9 + 𝑗9.12 and 𝜆3 =
−5.9 − 𝑗9.12. As at this point one of the Eigen values has a 

positive real part while the others have negative real parts, 

the equilibrium point 𝐸1 is a saddle point. Hence this 

equilibrium point is unstable. 

 

Using (4) for the equilibrium points 𝐸2 3,3,2.3403  and 

 𝐸3 3,3, −2.3403 to get the Jacobian matrix, and solving the 

corresponding characteristic equation, we obtain the Eigen 

values as: 𝜆1 = −11.89,𝜆2 = 0.04 + 𝑗10.91 and 𝜆3 =
0.04 − 𝑗10.91. As only one of these Eigen values has a 

negative real part, the equilibrium points 𝐸2 3,3,2.3403  and 

 𝐸3 3,3, −2.3403  areunstable node for system (1). Hence, 

this system has no stable equilibrium points. 

 

2.2 Lyapunov Exponents and Lyapunov dimension 
 

In order to measure the exponential rates of divergence or 

convergence of nearby trajectories in the phase space, we 

need to find the Lyapunov exponents. These Lyapunov 

exponents are also a quantitative measure of the system’s 

sensitive dependence on the initial conditions. The system 

has multiple Lyapunov exponents; their number is equal to 

the dimension of the phase space. If one speaks about the 

Lyapunov exponent, the largest one is meant. The mean 

growth rate of the distance  𝛿𝑥 𝑡   𝛿𝑥0   between 

neighbouring trajectories is given by the largest Lyapunov 

exponent, which can be estimated for long (but not too long) 

time 𝑡 as [17]: 

 

𝜆 ≅
1

𝑡
ln

 𝛿𝑥 𝑡  

 𝛿𝑥0 
                (6a)                 

 

Using the algorithm presented in [18] with the time series 

data obtained in MATLAB for the system simulated with the 

initial condition [0.1 0.8 1.2] and the aforementioned set of 

parameters, we obtain three Lyapunov exponents as: 

𝐿1 = 2.9989, 𝐿2 = −0.9 and 𝐿3 = −0.8989. These results 

are depicted in Fig. 2, which shows the dynamics of the 

Lyapunov exponents. The Largest Lyapunov exponent of the 

system is 2.9977. It is known that any dissipative dynamical 

system must have at least one negative exponent [18]. As in 

this case there are two negative exponents, then system (1) is 

a dissipative system. The fact that we have at least one 

positive Lyapunov exponent is evidence that the attractor for 

this dissipative system is “chaotic”. The corresponding 

Kaplan-Yorke Lyapunov dimension is calculated as follows 

[2]: 
 

𝐷𝐿 = 2 +
𝐿1+𝐿2

 𝐿3 
= 4.3373(6b) 

This value of the Lyapunov dimension also provides 

information on the sensitivity of system (1) to changes in 

parameters and initial condition. The higher this value is, the 

higher is the sensitivity level. 

 

 
Fig. 2. Dynamics of the Lyapunov exponents 

 

3. Indirect Robust Adaptive Sliding Mode 

Chaos Controller (IRASMC) design 
3.1 Problem statement 

 

We consider the new choatic system as a square MIMO 

system given by the equations: 

 

 

𝑥 = 𝑎 𝑦 − 𝑥 + 𝑢1 𝑡 

𝑦 = −𝑐𝑥 + 𝑧4 + 𝑢2 𝑡 

𝑧 = 𝑏𝑧 − 𝑥𝑧 + 𝑢3 𝑡 

 (7) 

 

where 𝑎, 𝑏 and 𝑐 are uncertain parameters related to the first, 

the second and the third equation, respectively;𝑢1 𝑡 , 𝑢2 𝑡  
and 𝑢3 𝑡  are the three input or control signals forthe three 

subsystems corresponding to state variables 𝑥, 𝑦 and 𝑧, which 

are the system’s outputs.  
 

Assumption 1: All the states of system (7) are available 

through measurement. 
 

The goal is to design the controller 

𝒖 =  𝑢1 𝑡 , 𝑢2 𝑡 , 𝑢3 𝑡  
𝑇  such that the outputs 𝑥, 𝑦 and 𝑧 

are forced to track the desired trajectories 𝑥𝑑 , 𝑦𝑑  and 𝑧𝑑 , 

respectively, dispite the unknown system’s parameters.  
 

Let us denote 𝑒1 = 𝑥 − 𝑥𝑑 , 𝑒2 = 𝑦 − 𝑦𝑑  and 𝑒3 = 𝑧 − 𝑧𝑑  the 

tracking errors for the three ouputs. The control objective 

will be met only if lim𝑡→∞ 𝑒1 = 0, lim𝑡→∞ 𝑒2 = 0 and 

lim𝑡→∞ 𝑒3 = 0. While making sure this control objective is 

met, another problem that will be simultaneously addressed 

is the identification of the system’s parameters. 

 

3.2 Controller design 

In this subsection we present the design procedure for 

controller signals𝑢1 𝑡 , 𝑢2 𝑡  and 𝑢3 𝑡  such that the system 

stability is guaranteed regardless of the changes in the 

system’s parameters, which are to be identified. 
 

Let us select the sliding variable, which gives the error 

dynamics, as follows: 
 

𝒔 𝑡 =  

𝑠1 𝑡 

𝑠2 𝑡 

𝑠3 𝑡 
 =  

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

 ∙  

𝑒1 𝑡 

𝑒2 𝑡 

𝑒3 𝑡 
                

(8) 

0 500 1000 1500 2000
-3

-2

-1

0

1

2

3

Time

Ly
ap

un
ov

 e
xp

on
en

ts

 

 

L1=2.9988

L2=-0.9

L3=-0.8989

Paper ID: ART20203222 DOI: 10.21275/ART20203222 353



International Journal of Science and Research (IJSR) 
ISSN: 2319-7064 

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426 

Volume 8 Issue 12, December 2019 

www.ijsr.net 
Licensed Under Creative Commons Attribution CC BY 

where  𝜆1, 𝜆2, and 𝜆3 are positive design parameters.  
 

Let’s find the time derivative of the first component of vector 

𝒔 𝑡  as follows: 
 

𝑠 1 𝑡 = 𝜆1𝑒1  𝑡 = 𝜆1𝑎𝑦 − 𝜆1𝑎𝑥 + 𝜆1𝑢1 − 𝜆1𝑥 𝑑(9) 
 

If parameter 𝑎 is known, we can use the approach based on 

the reaching law to design a sliding mode controller [19]. Let 

us select a constant rate reaching given by the expression 

 

𝑠 1 𝑡 = −𝜆1𝜂𝑠1 𝑡 . Equalizingthis late expression with Eq. 

(9) we derive the first control law as: 
 

𝑢1 𝑡 = −𝑎 𝑦 − 𝑥 + 𝑥 𝑑 − 𝜂𝑠1 𝑡 (10) 
 

where 𝜂 > 0 is the constant rate. 
 

 As parameter 𝑎 is assumed to be unknown for system (7), 

the control law given by Eq. (10) cannot be implemented. 

Therefore we select the controller as follows: 
 

𝑢1 𝑡 = −𝑎  𝑡  𝑦 − 𝑥 + 𝑥 𝑑 − 𝜂𝑠1 𝑡 (11) 
 

where 𝑎  𝑡  is the estimate value of parameter 𝑎. 
 

Applying the controller given by Eq. (11) in Eq. (9) we 

obtain: 
 

𝑠 1 𝑡 = 𝜆1 𝑦 − 𝑥  𝑎 − 𝑎  𝑡  − 𝜂𝜆1𝑠1(12) 
 

Let us denote 𝑎  𝑡 = 𝑎 − 𝑎  𝑡  the error on parameter 𝑎 

approximation. Therefore Eq. (12) can be rewritten as: 
 

𝑠 1 𝑡 = 𝜆1 𝑦 − 𝑥 𝑎  𝑡 − 𝜂𝜆1𝑠1(13) 
 

The time derivative of the second component of vector 𝒔 𝒕  
is given by: 
 

𝑠 2 𝑡 = 𝜆1𝑒2  𝑡 = −𝜆2𝑐𝑥 + 𝜆2𝑧
4 + 𝜆2𝑢2 𝑡 − 𝜆2𝑦 𝑑(14) 

 

For this case, let us select a constant rate reaching given 

by𝑠 2 𝑡 = −𝜆2𝜂𝑠2 𝑡 . Equalizingthis late expression with 

Eq. (14) we derive the second control law as: 
 

𝑢2 𝑡 = 𝑐𝑥 − 𝑧4 + 𝑦 
𝑑
− 𝜂𝑠2   (15) 

 

As parameter 𝑐 is unknown for system (7), the control law 

given by Eq. (15) cannot be applied. Therefore we select the 

controller as follows: 
 

𝑢2 𝑡 = 𝑐  𝑡 𝑥 − 𝑧4 + 𝑦 
𝑑
− 𝜂𝑠2 𝑡 (16) 

 

where 𝑐  𝑡  is the estimate value of parameter 𝑐. 
 

Applying the controller given Eq. (16) in Eq. (14) we obtain: 
 

𝑠 2 𝑡 = −𝜆2𝑥 𝑐 − 𝑐  𝑡  − 𝜂𝜆2𝑠2 𝑡 (17) 
 

Let’s denote 𝑐  𝑡 = 𝑐 − 𝑐  𝑡  the error on parameter 𝑐 

approximation. Therefore Eq. (17) can be rewritten as: 
 

𝑠 2 𝑡 = −𝜆2𝑥𝑐  𝑡 − 𝜂𝜆2𝑠2(18) 
 

The time derivative of the third component of vector 𝑠 𝑡  is 

found as follows: 
 

𝑠 3 𝑡 = 𝜆1𝑒3  𝑡 = 𝜆3𝑏𝑧 − 𝜆3𝑥𝑧 + 𝜆3𝑢3 − 𝜆3𝑧 𝑑(19) 
 

For this case, let us select a constant rate reaching law given 

by𝑠 3 𝑡 = −𝜆3𝜂𝑠3 𝑡 . Equalizingthis late expression with 

Eq. (19), if parameter 𝑏 is known we derive the first control 

law as: 

 

𝑢3 𝑡 = −𝑏𝑧 + 𝑥𝑧 + 𝑧 𝑑 − 𝜂𝑠3(20) 
 

As parameter 𝑏 is unknown for system (7), the control law 

expressed by Eq. (20) cannot be applied. Therefore, we 

select the controller as follows: 
 

𝑢3 𝑡 = −𝑏  𝑡 𝑧 + 𝑥𝑧 + 𝑧 𝑑 − 𝜂𝑠3 𝑡 (21) 
 

where 𝑏  𝑡  is the estimate value of parameter 𝑏. 

 

Applying controller (21) in (19) we obtain: 
 

𝑠 3 𝑡 = 𝜆3𝑏𝑧 − 𝜆3𝑏 𝑧 − 𝜂𝜆3𝑠3 𝑡                                     (22) 
 

Let’s denote 𝑏  𝑡 = 𝑏 − 𝑏  𝑡  the error on parameter 𝑏 

approximation. Therefore (22) can be rewritten as: 
 

𝑠 3 𝑡 = 𝜆3𝑧𝑏  𝑡 − 𝜂𝜆3𝑠3 𝑡                                           (23) 
 

In order to select the parameter estimation update rules and 

to prove that applying controllers given by Eqs. (11), (16) 

and (21) the system stability is guaranteed, and the control 

objective is met in finite time, let’s selected the definite 

positive Lyapunov function as: 
 

𝑉 =
1

2
 𝑠1

2 + 𝑠2
2 + 𝑠3

2 + 𝑎 2 + 𝑏 2 + 𝑐 2         (24) 
 

where the independent variable (𝑡) is avoided for simplicity 

in notations, and check if 𝑉  𝑡 ≤ 0 for all 𝑡. 
 

Deriving the Lyapunov function (24) with respect to time 𝑡, 

and applying (13), (18), (23),𝑎  = −𝑎  , 𝑏  = −𝑏   and 𝑐  = −𝑐  , 
we obtain: 

 

𝑉 = 𝑠1𝑠 1 + 𝑠2𝑠 2 + 𝑠3𝑠 3 + 𝑎 𝑎  + 𝑏 𝑏  + 𝑐 𝑐   
= 𝑠1𝜆1 𝑦 − 𝑥 𝑎 − 𝜂𝜆1𝑠1

2 − 𝑠2𝜆2𝑥𝑐  

+𝑠3𝜆3𝑧𝑏 − 𝜂𝜆3𝑠3
3 − 𝑎 𝑎  − 𝑏 𝑏  − 𝑐 𝑐   

  

= 𝑎  𝑠1𝜆1 𝑦 − 𝑥 − 𝑎   − 𝑐  𝑠2𝜆2𝑥 + 𝑐    

+𝑏  𝑠3𝜆3𝑧 − 𝑏   − 𝜂𝜆1𝑠1
2 − 𝜂𝜆2𝑠2

2 − 𝜂𝜆3𝑠3
2         (25) 

 

By setting at zero each of the three first terms of (25) (so that 

the system’s stability will not affected by the parameters’ 

estimation errors), we derive the update rules for the 

estimates parameters 𝑎 , 𝑏  and 𝑐  as follows: 

𝑎  = 𝑠1𝜆1 𝑦 − 𝑥                                          (26)𝑏  = 𝑠3𝜆3𝑧                                                                    

(27)      

𝑐  = −𝑠2𝜆2𝑥 (28) 

Applying the update rules (26), (27) and (28) in (25) we 

obtain: 

𝑉 = −𝜂𝜆1𝑠1
2 − 𝜂𝜆2𝑠2

2 − 𝜂𝜆3𝑠3
2(29) 

 

As 𝜂, 𝜆1, 𝜆2 and 𝜆3 are positive constant design parameters, 

𝑉 ≤ 0, therefore the system stability is guaranteed despite 

changes in the system’s parameters, and lim𝑡→∞ 𝑒1 𝑡 = 0, 

lim𝑡→∞ 𝑒2 𝑡 = 0 and lim𝑡→∞ 𝑒3 𝑡 = 0. The system’s 

parameters are identified by solving Eqs. (26)-(28). 
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The functioning principle of the control system is 

summarized in Fig. 3 where all the components are 

represented. 

 
Figure 1:Block diagram of the IRASMC 

 

4. Indirect Adaptive Nonlinear Controller 

(IANC) design for Chaos synchronization 
 

In this section we design an Indirect Adaptive Nonlinear 

Controller (IANC) for system (7) using the same approach as 

in many publications about chaos synchronization (see in [2], 

[14], [20], for instance). 

 

We consider the master system being the homogenous 

system (1), rewritten as follows: 
 

 

𝑥 𝑚  𝑡 = 𝑎 𝑦𝑚  𝑡 − 𝑥𝑚  𝑡  

𝑦 𝑚 𝑡 = −𝑐𝑥𝑚  𝑡 + 𝑧𝑚  𝑡 
4

𝑧 𝑚  𝑡 = 𝑏𝑧𝑚  𝑡 − 𝑥𝑚  𝑡 𝑧𝑚  𝑡 

 (30)  

 

and the slave system being the nonhomogeneous system (7), 

rewritten as follows: 

 

 

𝑥 𝑠 𝑡 = 𝑎 𝑦𝑠 𝑡 − 𝑥𝑠 𝑡  + 𝑢1 𝑡 

𝑦 𝑠 𝑡 = −𝑐𝑥𝑠 𝑡 + 𝑧𝑠 𝑡 
4 + 𝑢2 𝑡 

𝑧 𝑠 𝑡 = 𝑏𝑧𝑠 𝑡 − 𝑥𝑠 𝑡 𝑧𝑠 𝑡 + 𝑢3 𝑡 

 (31) 

Remark 2: In the subsequent development, the independent 

variable 𝑡 will be ignored for simplicity in notation.  

Let’s define the synchronization errors as follows: 

𝑒1 = 𝑥𝑠 − 𝑥𝑚 (32) 

𝑒2 = 𝑦𝑠 − 𝑦𝑚 (33) 

𝑒3 = 𝑧𝑠 − 𝑧𝑚  (34) 
 

In order to find the expression for the synchronization errors 

dynamics, let’s use the time derivatives of (32), (33) and 

(34), and apply (30) and (31) as follows: 
 

 

𝑒 1 = 𝑥 𝑠 − 𝑥 𝑚 = 𝑎 𝑦𝑠 − 𝑦𝑚  − 𝑎 𝑥𝑠 − 𝑥𝑚  + 𝑢1

𝑒 2 = 𝑦 𝑠 − 𝑦 𝑚 = −𝑐 𝑥𝑠 − 𝑥𝑚  + 𝑧𝑠
4 − 𝑧𝑚

4 + 𝑢2

𝑒 3 = 𝑧 𝑠 − 𝑧 𝑚 = 𝑏 𝑧𝑠 − 𝑧𝑚  − 𝑥𝑠𝑧𝑠 + 𝑥𝑚𝑧𝑚 + 𝑢3

 (35) 

 

Using (32), (33) and (34) in (35) we obtain: 
 

 

𝑒 1 = 𝑎 𝑒2 − 𝑒1 + 𝑢1

𝑒 2 = −𝑐𝑒1 + 𝑒3 𝑧𝑠 + 𝑧𝑚   𝑧𝑠
2 + 𝑧𝑚

2  + 𝑢2

𝑒 3 = 𝑏𝑒3 − 𝑥𝑠𝑧𝑠 + 𝑥𝑚𝑧𝑚 + 𝑢3

 (36) 

 

As parameters 𝑎, 𝑏 and 𝑐 are unknown, using (36) equalized 

to zero, we can design the adaptive nonlinear controllers with 

the estimates parameters𝑎 , 𝑏  and 𝑐  as follows: 
 

𝑢1 = −𝑎  𝑒2 − 𝑒1 − 𝜆1𝑒1(37) 

𝑢2 = 𝑐 𝑒1 − 𝑒3 𝑧𝑠 + 𝑧𝑚   𝑧𝑠
2 + 𝑧𝑚

2  − 𝜆2𝑒2 (38) 

𝑢3 = −𝑏 𝑒3+𝑥𝑠𝑧𝑠 − 𝑥𝑚𝑧𝑚 − 𝜆3𝑒3 (39) 
 

where𝜆1, 𝜆2 and 𝜆3 are positive design paramters 

correponding to the rate of exponential convergence of slave 

system’s state to the trajectories of the master system’s 

states. 
 

Applying (37), (38) and (39) into (36) we obtain: 
 

 

𝑒 1 =  𝑎 − 𝑎   𝑒2 − 𝑒1 − 𝜆1𝑒1

𝑒 2 = − 𝑐 − 𝑐  𝑒1 − 𝜆2𝑒2

𝑒 3 =  𝑏 − 𝑏  𝑒3 − 𝜆3𝑒3

 (40) 

 

Let’s denote 𝑒𝑎 = 𝑎 − 𝑎 , 𝑒𝑏 = 𝑏 − 𝑏  and 𝑒𝑐 = 𝑐 − 𝑐  the 

parameter estimation errors and apply them in (40). We 

obtain:  

 

𝑒 1 = 𝑒𝑎 𝑒2 − 𝑒1 − 𝜆1𝑒1

𝑒 2 = −𝑒𝑐𝑒1 − 𝜆2𝑒2

𝑒 3 = 𝑒𝑏𝑒3 − 𝜆3𝑒3

  (41) 

 

In order to find the parameter estimates’ update rules and 

analyze the system’s stability if controllers (37), (38) and 

(39) are applied, we select a positive definite Lyapunov 

function as follows: 

𝑉 =
1

2
 𝑒1

2 + 𝑒2
2 + 𝑒3

2 + 𝑒𝑎
2 + 𝑒𝑏

2 + 𝑒𝑐
2           (42) 

 

and check if 𝑉  𝑡 ≤ 0 for all 𝑡.  
 

Using the time derivative of (42), applying (41) and 𝑒 𝑎 =

−𝑎  , 𝑒 𝑏 = −𝑏   and 𝑒 𝑐 = −𝑐   we obtain: 
 

𝑉 = 𝑒1𝑒 1 + 𝑒2𝑒 2 + 𝑒3𝑒 3 + 𝑒𝑎𝑒 𝑎 + 𝑒𝑏𝑒 𝑏 + 𝑒𝑐𝑒 𝑐  
 

𝑉 = 𝑒1  𝑒𝑎 𝑒2 − 𝑒1 − 𝜆1𝑒1 + 𝑒2 −𝑒𝑐𝑒1 − 𝜆2𝑒2  

                 +𝑒3 𝑒𝑏𝑒3 − 𝜆3𝑒3 − 𝑒𝑎𝑎  − 𝑒𝑏𝑏 
 − 𝑒𝑐𝑐   

= 𝑒𝑎 𝑒1 𝑒2 − 𝑒1 − 𝑎   + 𝑒𝑏  𝑒3
2 − 𝑏   − 𝑒𝑐 𝑒1𝑒2 + 𝑐    

          −𝜆1𝑒1
2 − 𝜆2𝑒2

2 − 𝜆3𝑒3
2                                                 

(43) 
 

By setting to zero each of the three first terms of (43), we 

derive the update rules as follows: 
 

𝑎  = 𝑒1 𝑒2 − 𝑒1  (44) 

𝑏  = 𝑒3
2                   (45) 

𝑐  = −𝑒1𝑒2                 (46) 
 

Applying (44), (45) and (46) in (47) we get: 

 

𝑉 = −𝜆1𝑒1
2 − 𝜆2𝑒2

2 − 𝜆3𝑒3
2 ≤ 0                                       (47) 

 

Therefore one can conclude that applying controllers (37), 

(38) and (39), and using the update rules (44), (45) and (46), 

the system’s stability and exponential convergence towards 

zero of synchronization errors are guaranteed. 

 

Remark 3: The design used for the IRASMC has the 

advantage that it allows the controller to be used to track any 

chaotic or non-chaotic trajectory, while this is not the case 

with the IANC designed in this section.  

 

5. Simulation 
 

We consider (7) as the slave system first controlled by the 

IRASMC designed in section 3, and then controlled by the 

IANC designed in section 4. For the IRASMC the control 

laws 𝑢1 𝑡 , 𝑢2 𝑡  and 𝑢3 𝑡  are given by (11), (16) and (21), 

respectively. For the IANC the control laws  𝑢1 𝑡 , 𝑢2 𝑡  
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and 𝑢3 𝑡  are given by (37), (38) and (39). For the two 

controllers, the design parameters are selected as 𝜆1 =

1, 𝜆2 = 1, 𝜆3 = 1 (from a trial and error process);  𝜂 = 6 for 

the IRASMC.  
 

Using the MATLAB solver for Ordinary Differential 

Equations (ODEs) ode45, with the integration step size 

selected as 𝑑𝑡 = 0.01, simulation is performed over a period 

from 0 to 50. During simulation, the controllers are not 

activated until the simulation time 15. The slave system is 

considered initially having nominal values for its parameters 

as 𝑎 = 1.8, 𝑏 = 3 and 𝑐 = 10. The initial state of this system 

is set as  10, −1.6, −1.2 . The initial values of the parameter 

estimates are selected randomly as 𝑎 = 3𝑏 = 1𝑐 = 4. In 

order to test the robustness of the control system, in case of 

slave system’s parameters changes, we assume that, for a 

given reason, at simulation time 𝑡 = 30 the values of the 

system’s parameters are increased by 25%. Therefore we 

have:  

 

𝑎 =  
1.8   𝑖𝑓 𝑡 < 30

2.25   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  

 

𝑏 =  
3   𝑖𝑓 𝑡 < 30

3.75   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  

 

𝑐 =  
10   𝑖𝑓 𝑡 < 30

12.5   𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
  

 
In order to prove the effectiveness of the IRASMC, we 

perform simulation for two different cases.  
 
 

Case 1: The control objective is complete synchronization of 

the slave system with the autonomous system (1) (master). 

The initial state of the master system (1) is selected 

as 1, 0.8, 1.2 . 
 

Fig. 4 and Fig. 5 show the results of simulation when the 

slave system is controlled by the IRASMC and by the IANC, 

respectively. In both figures, one can see that starting from 

different initial conditions, the states of the master and slave 

systems evolve on different trajectories before activation of 

the controllers. At simulation time 15 when the controllers 

are activated, the states of the slave system enter in complete 

synchronization with the states of the master system. From 

the simulation time 30 when the values of the slave system’s 

parameters are increased by 25%, the system controlled by 

the IRASMC keeps the synchronization error very close to 

zero (see Fig. 4 (d)) despite the disturbance. This is the 

evidence of the robustness of the control system in this case.  

In contrast, as it can be observed in Fig. 5 (d) the 

synchronization errors increase when the disturbance occurs 

in the system controlled by the IANC. Another benefit of 

using the IRASMC is that it allows online system 

identification. In fact, as shown on Fig. 4 (e), good 

approximations of the slave system’s parameters are 

obtained as 𝑎 = 1.8𝑏 = 2.9325𝑐 = 10.002  measured at 

𝑡 = 25, and 𝑎 = 2.2409𝑏 = 3.7531𝑐 = 12.5568  measured 

at 𝑡 = 50. 

 

In Fig. 5 (e) we can see that with the IANC the approximate 

values for the parameters are not accurate (their values are 

too different from the ones previously assumed for 

simulation). 

 

 

 

 

 

Figure 4. Simulation results when the IRASMC is used 

for complete synchronization. (a), (b) and (c): State 

variables of the master and slave systems before and after 

controller acivation; (d) Synchronization errors on the 

three state variables; (e) dynamics of the approximate 

values of paramters.  
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Figure 5. Simulation results when IANC is used for complete 

synchronization. (a), (b) and (c): State variables of the master 

and slave systems before and after controller acivation; (d) 

Synchronization errors on the three state variables; (e) 

dynamics of the approximate paramters. 
 

Case 2: The control objective is chaos suppression or forcing 

the system (7) state variables to track a non-chaotic 

trajectory. For the IRASMC, the design parameters are 

selected as𝜆1 = 5,𝜆2 = 5, 𝜆3 = 5 and 𝜂 = 6 (from a trial 

and error process). 

 

 

 
 

 

 

 
Figure 6: Simulation results when IRASMC is used for 

chaos suppression. (a), (b) and (c): State variables of the 

controlled system before and after controller acivation; (d) 

Tracking errors on the three state variables; (e) dynamics of 

the approximate paramters. 

 

Simulation is performed with the same initial conditions as 

in the previous case but with different desired trajectories. 

The desired trajectories are selected as 𝑥𝑚 = 5 sin 𝑡 , 
𝑦𝑚 = 20 cos 𝑡  and 𝑧𝑚 = −2 sin 𝑡 for the state variable 𝑥𝑠, 
𝑦𝑠 and 𝑧𝑠, respectively. Fig. 6 shows the simulation results. 

As one can observe, despite the parameter change or 

perturbation that occurs at the simulation time 15, the control 

system tracking errors is not affected.  
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This is the evidence of the robustness of the IRASMC and its 

effectiveness in suppressing chaos. As in the previous case, 

not only the control objective is met, but system 

identification is also successfully performed. The 

approximate values for the controlled system as found as 

𝑎 = 1.7988𝑏 =  2.9641𝑐 = 9.9324 measured at 𝑡 = 25, 

and 𝑎 = 2.2499, 𝑏 =  3.7123, 𝑐 = 12.4173 measured at 

𝑡 = 50. The dynamics of these approximations is shown in 

Fig. 6 (e). 

 

6. Conclusion 
 

A new three dimensional chaotic system is introduced with 

its basic properties. Assuming that its parameters are 

unknown, two types of indirect adaptive controllers are 

devised. Based on the Sliding Mode approach, a new 

controller is designed. In addition to the robustness property 

of this controller (the IRASMC) for systems with mismatch 

disturbances (unknown parameter changes), it also allows 

system identification whether it is used for complete 

synchronization or for chaos suppression. Performance it 

terms of accuracy is also good with the IRASMC. Another 

Indirect Nonlinear Controller (INC) is designed for the same 

new system and is proven to not be robust and to not allow 

accurate system identification. 
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