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Abstract: Topological transitivity is an important property in the setting of discrete dynamical systems, as it represents a type of 

complex global behavior, which is equivalent to some kind of chaos. This necessitates the study of conditions ensuring transitivity for 

various systems. Such conditions, for maps on intervals, have been in [1], [2], [3] etc. Since it is not always possible to exhibit dense 

orbits, or to construct a topological Conjugacy with known topologically transitive maps, these results have acquired practical value. In 

the present work, we provide elementary proofs for some known results in this context, and also improve them. A common idea in these 

results is roughly this: If the graph of f is sufficiently steep everywhere, then f is leo (see the definition below). The sufficient steepness is 

expressed in terms of the number of critical points in intervals J whose images f(J) almost cover the whole interval. Let 
1 nn fff   for 1n and 0f identity on [0, 1]. 1) A self-map f on a topological space X is said to be topologically 

transitive, if for every non-empty open sets U and V in X, there exists x in U and a natural number n such that Vxf n )(  i.e 

VUf n )( is non empty. 2) A point x in X is said to be a c-point for a self-map f on X, if either f is not continuous at x or in every 

neighbourhood of x,  f fails to be one-one. 3) Let J be an interval, and let J be partitioned into n intervals nZZZ ........,,, 21 , given 

by n-1 points 11 ........,,  ncc , and let JJf : be a map such that the restriction of f to each iZ  is continuous and strictly 

monotonic. Then f is said to be piecewise monotonic on J. 4) Let f, J, nZZZ ........,,, 21  be as above; then each jZ  is called lap of f. 

5) Let f, J be as above and let f have only finitely many points of nondifferentiability. Then f is said to be piecewise differentiable. 6) Let 

f, J be as above such that for every nonempty open set U there exists Nk  with )(UfJ k  finite. Then f is said to be locally 

eventually onto (abbreviated leo) on J.We note that f being leo implies that f is topologically transitive on J. Here, throughout this work, 

C is the set of all c-points for f and D is the set of all points of differentiability of f. Further we obtain the following theorems. 
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Theorem 1: Let Nn , 2n . Suppose that 

]1,0[]1,0[: f is a piecewise monotonic, piecewise 

differentiable map such that .)(inf 1 nxfDx   Moreover, 

assume that )(]1,0[ Jf is finite for any subinterval J of 

[0, 1] containing at least nc-points. Then f is leo. 

 

Proof: Let ,)(inf 1  nxfDx where  >0.If J is an 

interval contained in a lap, then 

tJJJJ  ........21 where each )int( iJ is 

contained in D. Also f(J) is connected and by an easy 

application of the mean value theorem, 
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where )(Al denotes the length of the subinterval A of [0, 1]. 

 

We claim that nCJf )(  or f (J) contains some 

interval L which is contained in some lap and satisfies 

).()1()( Jl
n
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  This is because, if 

1)(  nCJf  and if )()1())(( Jl
n
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
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for every interval L contained in the lap, then 

).()()()1())(( JlnJl
n

nJfl 


 a contradiction.  

 

Next, we claim that for each k there exists ki   with 

nCI  for some interval )(JfI i or )(Jf k

contains some interval kL which is contained in some lap 

and satisfies ).()1()( Jl
n

Ll k

k


 If  nCI  for 

some ki  and some interval )(JfI i , this is obvious. 

Otherwise, contains some interval 1kL which is contained 

in some lap and satisfies ).()1()( 1 Jl
n

Ll k

k


 Then 

nCLf k  )( 1  or )( 1kLf contains some interval 

kL  which is contained in some lap and satisfies 
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  As 

)()( 1 JfLf k

k  and )( 1kLf is an interval. This 

finishes the induction. 

 

Since ,)1(  kas
n

k
and since the length of 

subintervals of )(Jf k
cannot exceed 1, we have 

nCI  for some k and some interval ).(JfI k

Then by our hypothesis )(]1,0[ 1 Jf k is finite. Thus f is 

leo. 

 

Remark 1: Actually, we can strengthen the conclusion of 
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Theorem 1 as follows: Suppose that f satisfies the 

assumptions of Theorem 1, and let  be smaller than or 

equal to the minimum lap length. Let J be any interval of 

length  . Assume that k is an integer greater than or equal 

to 1))1/(log())
2

(log( 
n






, where   is the 

maximum lap length and ,)(inf 1  nxfDx  then 

)(]1,0[ Jf k  is finiteIt is proved in the following way. 

First note that J contains a subinterval 1J which is contained 

in a lap and satisfies .
2

)( 1


Jl The proof of Theorem 1 

shows that there exists 2 ki with nCI  for 

some interval )( 1JfI i or )( 1

2 Jf k
contains some 

interval K which is contained in some lap and satisfies 

).()1()( 1

2 Jl
n

Kl k


in the first case )(/]1,0[ 1 Jf i
 

is finite and therefore )(]1,0[ Jf k  is finite. Otherwise, 
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This implies that the 

closure of f(K) contains at least nc-points, and therefore 

)(]1,0[ Jf k  is finite. Obviously our Theorem 1 implies 

Theorem 1 of [2]. We give an example where Theorem 1 of 

[2] cannot be applied (because no lap is mapped onto [0, 1]), 

but our Theorem 1 is applicable. Let ]1,0[]1,0[: f  be 

such that, 

,
6

1
)

6

5
()

3

2
()

3

1
()

6

1
(

,
6

5
)

12

11
()

12

7
()

12

5
()

12

1
(,1)

4

3
()

4

1
(,0)1()

2

1
()0(





ffff

fffffffff
 

be linear on ]
12

1
,

12
[

kk
 for all  11,........,2,1,0k . No 

lap is mapped onto [0, 1].
 

  

Every interval containing at least 6 c-points is mapped onto 

[0, 1]. Also, 8)(1 xf whenever it exists. By Theorem 1, 

f is leo and therefore topologically transitive. 

  

The proof of the following theorem is analogous to the proof 

of Theorem 2 of [2]. Only a few modifications have to be 

done. Moreover, using the same techniques as in our proof 

of Theorem 1 we can simplify this proof avoiding the 

Markov diagram. As the resulting proof is only a small 

variation of the proof of Theorem 2 of [2] we omit it. 

 

Theorem 2: Let  ]1,0[]1,0[: f  be a piecewise 

monotonic, piecewise differentiable map. Suppose that 

)( cf  and  }1,0)( cf for each c-point c. Also, let 

2)(1 xf for all points x of differentiability of f.  Then f 

is leo, or else the image of the first lap or the image of the 

last lap or their union is invariant. 

Note that we need neither the restriction on the number of 

laps nor the additional conditions of Theorem 2 of [2]. 

 

Remark 2: A particular case of Theorem 2, when 

interpreted for maps on the circle, becomes more elegant. 

 

Let 
11: SSf   be a continuous piecewise 

differentiable map with finitely many c-points (i.e. critical 

points). As above denote by C the set of all c-points, and by 

D be the set of points, where f is differentiable. Let there 

exist c
1S that  .)(1 cCfC  

If 2)(1 xf for 

all Dx , then f is leo. Moreover, if 2)(1 xf  for all 

Dx , then f is leo or ),( 1ccf or ),( 1 ccf n or their 

union is invariant, where 
1c and nc  are critical points 

nearest to c, one on each side.  

 

Finally, we give another formulation of Theorem 3 in [2] 

and indicate how its proof can be simplified avoiding the 

Markov diagram. 

 

Theorem 3: Let  ]1,0[]1,0[: f  be a piecewise 

monotonic, piecewise differentiable map. Suppose that 

)( cf =0 for all points c that f(0+)=0, and that f is onto. If  

)(inf ' xfDx is strictly greater than the number of c-points 

in ],,0[  where  is the smallest c-point such that 

,1)( f then f is leo. 

 

Proof: If J is an interval containing 0, we claim that f(J) is 

an interval (though f may not be continuous on J). This is 

because f takes every interval which is contained in a lap to 

an interval containing 0 in its closure, and the union of any 

collection of intervals containing 0, is again an interval.This 

observation, together with the ideas of proofs of earlier 

theorems, will prove Theorem 3. Dually, we have another 

result when f satisfies f(c-)=1, for all c-points, with 

corresponding modifications in the statement. 

 

Remark 3: The results in [2] rely heavily on the results in 

[1], and use the complicated tools of Markov diagram; 

whereas the proofs in this paper are elementary. 
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