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Abstract: Since the advent of pairing based cryptography, much research has been done on the efficient computations of elliptic curve 

pairings with even embedding degrees. However, little work has been done on the cases of odd embedding degrees and the existing few 

are to be improved. Thus, Fouotsa & al. have lead on the computation of optimal ate pairings on elliptic curves of embedding degrees k 

= 9; 15 and 27 which have twists of order three in [1]. According to our research, work does not exist on the case of embedding degree k 

= 21. This paper considers the computation of optimal ate pairings on elliptic curves of embedding degree k = 21 which have twists of 

order three too. Mainly, we provide a detailed arithmetic and cost estimation of operations in the tower field of the corresponding 

extension fields. Using the lattice-based method, we obtained good results of the final exponentiation and improved the theoretical cost 

for the Miller step at the 192-bits security level. 
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1. Introduction and state of the art 
 

Pairings are bilinear applications defined on groups of 

rational points of elliptic or hyperelliptic curves. Thanks to 

the pairings, several cryptographic protocols have been 

developed such as the Identity-Based cryptosystem [2], the 

Identity-Based Encryption [3], the Identity-Based undeniable 

signature [4], short signatures [5] or Broadcast Encryption 

[6]. Let E be an elliptic curve defined over a finite field qF
 

and r a large prime divisor of the order of the group 
 qFE

, 

the embedding degree of E relatively to r is the smallest 

integer k such that 
1kqr

, that is, 
1kqr

 but r does not 

divide any 
 111  kiqi ,,, 

. We used Optimal Ate 

Pairing as a pairing that is one of the most used in 

cryptography. 

 

Its computation goes through the application of Miller’s 

algorithm [7] and a final exponentiation. An efficient 

computation of the pairings requires a construction of 

pairing-friendly elliptic curves over qF
 with an embedding 

degree k (see for example [8] and [9]) and efficient 

arithmetic in the towers associated with 
kq

F
. Following 

several work on the reduction of the Miller loop, the final 

exponentiation step has become a difficult task. In this 

article, we focus on Barretto, Lynn and Scott Elliptic Curves 

of embedding degree k = 21. 

These curves admit twists of order 3 which make it possible 

to make the computations in the sub-fields and also lead to 

the technique of elimination of the denominator. 

 

Table 1: Bit sizes of curves parameters and corresponding 

embedding degrees to obtain commonly desired levels of 

security. 

Security 

level 
Bits length of r Bits length of kq  k1 k2 

80 160 960 – 1280 6 – 8 3 – 4 

128 256 3000 – 5000 12 – 20 6 – 10 

192 384 8000 – 10000 20 – 26 10 – 13 

256 512 14000 – 18000 28 – 36 14 – 18 

 

This article is organized as follows: 

 

In section 2, we make the state of the art on the work done 

on the Optimal Ate Pairing on elliptic curves. 

 

In Section 3, we detail the arithmetic in the tower fields of 

21q
F

, and we compute the costs of the square in 
21q

F
, 

cyclotomic inversion and Frobenius operators. 

 

In Section 4, we present the optimal Ate pairing and we talk 

about the Miller loop and estimate the cost of computing the 

final exponentiation using the LLL algorithm to reduce the 

cost of the computation. 

 

Section 5 concerns the conclusion of the presentation and the 

prospects for future work on security. 

 

2. State of the Art 
 

2.1 LLL’s Algorithm 

 

The reduction of lattices consists in transforming any lattice 

into a one in which the vectors are rather short and almost 

orthogonal. This is a classic problem in mathematics that 

goes back to Lagrange and Gauss for rank 2 lattices. Lenstra, 

Lenstra and Lovász [10] invented a very efficient algorithm 

for the reduction of lattices with larger dimensions. This 

algorithm is known as LLL and has been used to solve a lot 

of problems. 
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Theorem 2.1 (Orthogonalization method of Gram-Schmidt). 

Let V be a vector subspace of dimension n and  nbb ,,1  a 

basis of V. We consider the vector family  ** ,, nbb 1  defined 

by 








1

1

11

i

j

jjiii bmbbbb ;, *
,

**   with for  ij    

**

*

,
,

,

jj

ji

ji
bb

bb
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Then  ** ,, nbb 1  is a orthogonal basis of V. 

 

Definition 2.1. (The reduction of Lenstra, Lenstra and 

Lovász). 

A basis  nbb ,,1  is LLL-reduce if, the basis  ** ,, nbb 1  

produced by the Gram-Schmidt orthogonalization method 

verifies 

,,, nijform ji  1
2

1
 

.,*
,

** niforbmbb ijiij   1
4

3 2

11

2

1
 

 

2.2 Miller’s Algorithm 

 

Let E be an elliptic curve defined over qF , a finite field of 

characteristic q > 3 and r a large prime factor of the curve 

group order. The Tate reduced pairing er is a bilinear and 

non-degenerate application defined as: 

     

    r

q

Pr

rqqr

k

k

QfQP

rFErFEe

1



,,

:





 

where r is the group of r-th roots of the unit in *
kq

F . 

Set    PiPi :  the endomorphism defined on  qFE  which 

consists of adding P to itself i–1 times. Consider the 

endomorphism of Frobenius        qq
qqq yxyxFEFE ,,,:   

where qF  means the finite field closing qF . The cardinal of 

E is obtained according to q and the trace of the 

endomorphism of Frobenius t as follows: 

  tqFE# q  1 and q  has exactly two eigenvalues which 

are 1 and q. Which allows us to consider 

        rFEKerrFEGP qqq  11  and 

     qKerrFEGQ qq  2 . In [11], a variant of the 

Tate pairing called Ate pairing  is defined as below: 

    r

q

Qt

rA

k

PfPQ

GGe

1

1

12







,,

:





 

Optimal ate pairing have needs for a function fm;U(V), with m 

 Z, which is computed efficiently using Miller’s algorithm . 

To compute f := fm;U(V), Miller uses the double-and-add 

method as addition string for m (See [12, Chapter 9] for 

more informations). Write m as linear combination of 

powers of 2, that is 022 01  mmmm n
n   with 

 101 ,,im , the Miller’s algorithm (modified) which 

computes effectively   r

q

Um

k

Vf
1

,  of two points U and V is 

given as follows: 

 

Algorithm 1 : Miller’s Algorithm 

1. Set 1f  and UR   

2. For i = n – 1 to 0 : 

a)  Vhff RR, 2  

RR 2  Doubling Step 

b) If 1im  then : 

 Vhff UR,  

URR   Addition Step 

End if 

c) If 1im  then : 

 Vhff UR,/  

URR   Addition Step 

End if 

3. Return r

qk

fe

1

            Final Exponentiation 

 

To reduce the length of the Miller loop to improve pairing 

computations, we use the generalized method developed by 

Vercauteren, [13]. 

 

2.3 Final exponentiation and the lattice-based method 

for calculating it 

 

After getting the function from the Miller loop, the result is 

raised to the power 
r

q k 1
. This step is called the final 

exponentiation (line 3 in the Miller’s algorithm). It can be 

seen that this exponent can be divided into two parts as 

follows: 

 

 

r

q

q

q

r

q k

k

kk 







 11
 

where  xk  is the k-th cyclotomic polynomial. The final 

exponentiation is therefore computed as 

 

 
r

q

q

q

r

q

k

k

kk

ff























 11
. The computation of the first part 

 q

q

k

k

fA 

1

  is generally less expensive since it requires little 

multiplication, inversion and q-th powering in kq
F . The 

second part 

 
r

qk

A



, more difficult, is called the hard part. 

We use the more efficient method described by Fuentes et 

al., [14] based on that developed by Scott et al. [15] to the 

hard part. 

 

3. Arithmetic in the tower fields of 
21q

F
 

 

Although the pairing is computed as an element of the kq
F  

extension, the optimization of this computation uses the 

subfield arithmetic of kq
F  which are organized as a tower 

extension. In this section, we recall the round of finite field 
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extensions 21q
F  and we detail the explicit costs of arithmetic 

operations. 

 

Let q be a prime number other than 2, and n; m > 0 two 

integers. The easiest way to build a tower fields nmq
F   over 

nq
F  would be to use a binomial mx  which is irreducible 

over nq
F  and successively add the roots of the root 

previously obtained until the tower has been completely 

constructed as the general method described by Benger & 

Scott [16]. 

 

To apply this theory on 
21q

F
, let’s take qF  such as 

7x  be irreducible in qF . A tower extension for 21q
F  can 

be constructed as follows: 

 uFF qq
7   with 7u

 

 vFF
qq 721    with uv 3   where  7q

Fu 
 

 

3.1 Squaring in 
21q

F
 

 

Let 21q
2

210 Fva  va  a  a   with 7q210 Fa,a ,a  . We 

have : 2
210

2 vA  vA  A  a   where : 
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Indeed, 
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because .uv 3  

      2
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 with 7u  

The computation of the square costs 3m + 3c + 3a. 

Considering that   2222 yxyxxy  , we obtain: 
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The computation of the square costs 6c + 12a. 

 

3.2 Cyclotomic inversion 

 

Let 21q
Fa   as defined in the sub section 3.1.1, in the 

cyclotomic subgroup  7
3 q

G


. Then, a satisfies 11714

qqa
 
 

and so, 
7147141 qqqq aaaa   . To compute the 

cyclotomic inversion in 21q
F , just determine the two factors 

and make their product. For that, we need to know the value 

of   vvvvv

q

qq

q
3

1

7

1

3

1
3

1
3

1
3

7

77

7























  . 

Set 
3

1

7

1

7 

















q

 . We have 1  and 13  . Therefore 

  is a cubic primitive root of unity in 7q
F . We obtain 

vvq 
7

. If necessary, the value of 
14qv  is obtained as 

follows: 

  vvvvvv qqq
q

qq 2777
7

714
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The computation of cyclotomic inversion costs 3c + 3a + 

3m in 7q
F  . 

 

3.3 Computation of Frobenius operators 

 

The iq  Frobenius is the application 
iq

qq
i aaFF ,: 2121  . 

Set 21
2

210 q
Fvavaaa   with 7210 q

Faaa ,, . 

    .
qqqqqq vavaaaa 2

210   

;6
6

5
5

4
4

3
3

2
21000 7 uguguguguguggaFa

q


  .,,,; 610  iFg qi  

Then, we obtain: 
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133 
q
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means that   is a primitive cubic root of unity in qF  and 
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q

u . We 

have 1  and 13  . Then   is a primitive cubic root of 

unity in qF  and vvq  . 
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We can compute the existing products first ji  in the 

expression of qa . Set 

.;

;;;;

30
22

53
2

4

2
30

2
21

2
0

bbbbb

bbbbb








 

What costs 2c + 4m. 

Putting these values in the place of their corresponding in 
qa , we obtain: 
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The computation of q-Frobenius costs   am 63274  . 

Adding the previous cost, we have 18m + 18a + 2c + 4m. 

That is a total cost of 22m + 18a + 2c in qF . 

 

We have the same cost for 2q , 3q , 4q , 5q , 6q , 8q , 9q , 

10q , 11q , 12q , 13q -Frobenius. 

 

For the operator 7q -Frobenius, the subsection 3.1.2 gives us 

vvq 
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  Thus 
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with 2c  

We have 14m + 18a + 1c in qF  as a cost for computing the 

7q -Frobenius. We have the same cost for 14q -Frobenius. 

 

Lemma 3.1. In the finite field 21q
F , 

i) The computation of 7q ; 14q -Frobenius costs 14m + 

18a + 1c; 

ii) The computation of morphisms q , 2q , 3q , 4q , 5q , 

6q , 8q , 9q , 10q , 11q , 12q , 13q -Frobenius costs 22m + 

18a + 2c; 

iii) The inverse of  , an element of the cyclotomic 

subgroup  7
3 q

G


 is computed as 
1471 qq    and 

costs 3c+3a+3m in 7q
F . 

 

4. Elliptic Curves with an embedding degree 

21 
This section describes the computation of the optimal Ate 

pairing (Miller’s step and the final exponentiation) on the 

elliptic curves parameterized in [17]. 

This family of elliptic curves has the embedding degree 21, 

and is parameterized by: 

 1  x  x  x  2xx  x  2xxq 2789141516 
3

1

 

1  x x  x x  x x  x xr 346891112   

1 xt  
 

4.1 Optimal Ate pairing 

 

The Vercauteren approach describes in [13] allows us to get 

the short vectors from the L lattice defined by the equation: 
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which gave the optimal function    
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A direct application of the formula (1) yields the optimal 

pairing: 
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4.2 Determination of the cost of the execution of the 

Miller loop 

 

In this subsection, we consider the Miller function given in 

affine coordinates, following the analysis of Montgomery, 

Lauter & Naehrig [18] who suggested using affine 

coordinates at the highest level of security. The Miller 

function used for computing  Pf Qx,  in this case is 

described in [19]. At a 192-bit security level on elliptic 

curves with k = 21, the best x value we could find with a 

SAGE (SageMath) code is: 

x = 2
36

 + 2
35

 + 2
34

 + 2
31

 + 2
30

 + 2
28

 + 2
27

 + 2
25

 + 2
24

 + 2
22

 

+ 2
20

 + 2
18

 + 2
17

 + 2
16

 + 2
14

 + 2
12

 + 2
9
 + 2

8
 + 2

4
 + 2

3
 + 1. 

This value gives a r(x) prime of 443 bits and q(x) of 589 bits 

that match the 192-bit security level setting according to 

Table 1. The value of q is congruent to 1 modulo 6, as is the 

value of x so the corresponding elliptic curve is 132  xy  

[20]. The Miller loop here consists of computing Qxf ,  which 

costs 36 dubbing steps, 20 additions, 35 squares and 55 

multiplications in 21q
F . To our knowledge no explicit cost 

exists in the literature for the k = 21 with a specific value of 

x. 

 

4.3 Estimation of the cost of computing the final 

exponentiation 

 

As explained in the subsection 2.3, the final exponentiation 

can be divided as 
d
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The lattice method that we briefly described in the 2.3 sub-

section applied to the matrix 
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allows us to get the next multiple of d (see Appendix for 

more details): 
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where the polynomials i  i = 0; : : : ; 13 are defined as 

follows 

1; x  x  x

x;x  x  x;xx  x  x

34

2452356





2

10




 

2;  x  x  xx  2xx  x  2xx 23678131415 3  

2;  2x  xx  xx x  x  xxx 2567812131415 4  

3;  x  xxx  x  xxx 457811121415 5  

;9101213

346710111314

x  xxx

;x  xxx  x  xxx





7

6




 

;x  xxx;x  x xx 781011891112  98   

;x  xxxx  xxx 568967910  1110  ;  

.x  xxx;x  xxx 34674578  1312   

These polynomials verify the following relationships: 

      ;1xxx1xx 23  2
2 11  

;xx;xx

;xx;xx;x

13

01

122
5

112
4

12

2
3

132
2

021








 

;xx;xx 1011   2
7

92
6

10  

;x;x

;xx;xx

13

89

36576

2
9

72
8

8








 

;110 213118754    

.0 212118653    

Computations of 3  and 4  can be simplified by using 

another intermediate polynomial 1185214   . 

Thus, we obtain:  0  126143  and 

 110   137144 . 

Set 17  qfA : 

 The cost for computing A est 1 7q -Frobenius, 1 inversion 

in 21q
F

 
and 1 multiplication in 21q

F . 

 The cost for computing 2A  est: 1 inversion in the 

cyclotomic subgroup, 2 exponentiations by  1x  and 1 

exponentiation by  12  xx . 
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 Computations of 1A , 0A , 12A  , 11A , 10A , 9A , 8A  

and 7A  each cost 1 exponentiation by x. In total, 8 

exponentiations by x. 

 The computation of 13A  costs 1 exponentiation by x and 1 

inversion in the cyclotomic subgroup. 

 The cost for computing 5A  is: 2 multiplications, 1 

squaring, and 1 exponentiation by x. 

 The cost for computing 6A  is: 1 exponentiation by x and 

1 multiplication. 

 The computation of 14A  costs 3 multiplications. 

 The computation of 3A costs 3 multiplications and 1 

inversion in the cyclotomic subgroup. 

 And finally the computation of 4A  cost 4 multiplications 

and 1 inversion in the cyclotomic subgroup. 

 

As said in 3.1.2 the cyclotomic inversion is computed as 
7141 qq AAA  . The cost of the difficult part 'dA is then 26 

multiplications in 21q
F , 11 exponentiations by x, 1 

exponentiation by  12  xx , 4 cyclotomic inversions , 2 

exponentiations by  1x , 1 squaring and q , 2q , 3q , 4q , 

5q , 6q , 72 q , 8q , 9q , 10q , 11q , 12q , 13q -Frobenius 

maps. 

 

5. Conclusion 
 

In this paper, we have provided details on the computation of 

the Miller loop and the final exponentiation for the optimal 

pairing on the elliptic curves of BLS with an embedding 

degree 21. An explicit cost estimate is given for the Miller 

loop. It would be interesting to look at their behavior against 

small-subgroup attacks and security of subgroups. 
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