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Abstract: Since the advent of pairing based cryptography, much research has been done on the efficient computations of elliptic curve
pairings with even embedding degrees. However, little work has been done on the cases of odd embedding degrees and the existing few
are to be improved. Thus, Fouotsa & al. have lead on the computation of optimal ate pairings on elliptic curves of embedding degrees k
=9; 15 and 27 which have twists of order three in [1]. According to our research, work does not exist on the case of embedding degree k
= 21. This paper considers the computation of optimal ate pairings on elliptic curves of embedding degree k = 21 which have twists of
order three too. Mainly, we provide a detailed arithmetic and cost estimation of operations in the tower field of the corresponding
extension fields. Using the lattice-based method, we obtained good results of the final exponentiation and improved the theoretical cost

for the Miller step at the 192-bits security level.
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1. Introduction and state of the art

Pairings are bilinear applications defined on groups of
rational points of elliptic or hyperelliptic curves. Thanks to
the pairings, several cryptographic protocols have been
developed such as the Identity-Based cryptosystem [2], the
Identity-Based Encryption [3], the Identity-Based undeniable
signature [4], short signatures [5] or Broadcast Encryption

[6]. Let E be an elliptic curve defined over a finite field Fq

and r a large prime divisor of the order of the group E(FQ),

the embedding degree of E relatively to r is the smallest

1 s,
, that is,

integer k such that but r does not

i .
divide any 4 ~+ V! el k=1 e ysed Optimal Ate
Pairing as a pairing that is one of the most used in
cryptography.

Its computation goes through the application of Miller’s
algorithm [7] and a final exponentiation. An efficient
computation of the pairings requires a construction of

pairing-friendly elliptic curves over Fq with an embedding
degree k (see for example [8] and [9]) and efficient

arithmetic in the towers associated with Fqk. Following
several work on the reduction of the Miller loop, the final
exponentiation step has become a difficult task. In this
article, we focus on Barretto, Lynn and Scott Elliptic Curves
of embedding degree k = 21.

These curves admit twists of order 3 which make it possible
to make the computations in the sub-fields and also lead to
the technique of elimination of the denominator.

Table 1: Bit sizes of curves parameters and corresponding
embedding degrees to obtain commonly desired levels of
security.

Sﬁgt’/;:ty Bits length of r |Bits length of g K kol | kp=2
80 160 960 — 1280 6-8 | 3-4
128 256 3000-5000 [12-20|6-10
192 384 8000 — 10000 |20-—26|10-13
256 512 14000 — 18000 |28 —36 |14 —18

This article is organized as follows:

In section 2, we make the state of the art on the work done
on the Optimal Ate Pairing on elliptic curves.

In Section 3, we detail the arithmetic in the tower fields of

F

21 . 21
9", and we compute the costs of the square in 9,

cyclotomic inversion and Frobenius operators.

In Section 4, we present the optimal Ate pairing and we talk
about the Miller loop and estimate the cost of computing the
final exponentiation using the LLL algorithm to reduce the
cost of the computation.

Section 5 concerns the conclusion of the presentation and the
prospects for future work on security.

2. State of the Art
2.1 LLL’s Algorithm

The reduction of lattices consists in transforming any lattice
into a one in which the vectors are rather short and almost
orthogonal. This is a classic problem in mathematics that
goes back to Lagrange and Gauss for rank 2 lattices. Lenstra,
Lenstra and Lovasz [10] invented a very efficient algorithm
for the reduction of lattices with larger dimensions. This
algorithm is known as LLL and has been used to solve a lot
of problems.
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Theorem 2.1 (Orthogonalization method of Gram-Schmidt).
Let V be a vector subspace of dimension n and (b,,...,b,) a

basis of V. We consider the vector family (bl* b;) defined
by

i—1
by = by, bf:bi—Zmi,jb]f; with for j <i

Then (bl*b;) is a orthogonal basis of V.

Definition 2.1. (The reduction of Lenstra, Lenstra and
Lovasz).
A basis (by,...,b,) is LLL-reduce if, the basis (bl*b;)
produced by the Gram-Schmidt orthogonalization method
verifies

|mi’j|£%, for 1<j<i<n,

3

4

*

2 * * |12 .
bj_]_" < ||b| + mi‘j_lbi_]_" , for 1<i<n.

2.2 Miller’s Algorithm

Let E be an elliptic curve defined over Fg, a finite field of

characteristic g > 3 and r a large prime factor of the curve
group order. The Tate reduced pairing e, is a bilinear and
non-degenerate application defined as:
e : E(Fq Jrlx E(Fqk Ir] N
‘-1
(P.Q) B Q)

where 4 is the group of r-th roots of the unit in F;k .

Set [i]: P+ [ilP the endomorphism defined on E(F, ) which
consists of adding P to itself i~1 times. Consider the

endomorphism of Frobenius =, : EF;) - EF} (xy) > (,y7)
where E means the finite field closing F;. The cardinal of
E is obtained according to g and the trace of the
endomorphism of Frobenius t as follows:
#E(Fy)=g+1-tand 7, has exactly two eigenvalues which
are 1 and g. Which allows us to
P e G, = E(Fy Jr] ~ Ker(z, - 1]) = E(Fy Jr]and

QeG, = E(F_qlr]m Ker(;zq —[q]). In [11], a variant of the

Tate pairing called Ate pairing is defined as below:
ea Gy xGy >

consider

q“-1

QP) B fao(P)y

Optimal ate pairing have needs for a function f..y(V), with m
€ Z, which is computed efficiently using Miller’s algorithm .
To compute f := f,.u(V), Miller uses the double-and-add
method as addition string for m (See [12, Chapter 9] for
more informations). Write m as linear combination of
powers of 2, that is m=m,2" +---+m2+my >0 with

m; € {~10,1}, the Miller’s algorithm (modified) which

k

. q
computes effectively f, (V) ¢
given as follows:

of two points U and V is

Algorithm 1 : Miller’s Algorithm
1. Set f «1and R« U
2. Fori=n-1t00:
a) e« f2xhgp(V)
R« 2R
b) If m; =1 then:
f« fxhgy )
R« R+U
End if
c) If mj=-1 then:
f<—f/hru )
R« R-U
End if

Doubling Step

Addition Step

Addition Step

g -1
3. Returne=f r

Final Exponentiation

To reduce the length of the Miller loop to improve pairing
computations, we use the generalized method developed by
Vercauteren, [13].

2.3 Final exponentiation and the lattice-based method
for calculating it

After getting the function from the Miller loop, the result is

k
raised to the power %ﬁl This step is called the final

exponentiation (line 3 in the Miller’s algorithm). It can be
seen that this exponent can be divided into two parts as
follows:

a“-1_a“ -1 ¢

r (@) r
where ¢, (x) is the k-th cyclotomic polynomial. The final
exponentiation is therefore computed as

4 (a)
q“-1 g1 fq . .
£ | fa@ . The computation of the first part

g1

A= f4@ js generally less expensive since it requires little
multiplication, inversion and g-th powering in Fye - The

4(a)
second part A r , more difficult, is called the hard part.

We use the more efficient method described by Fuentes et
al., [14] based on that developed by Scott et al. [15] to the
hard part.

. . - - F 21
3. Arithmetic in the tower fields of ¢

Although the pairing is computed as an element of the Fy

extension, the optimization of this computation uses the
subfield arithmetic of Fy which are organized as a tower

extension. In this section, we recall the round of finite field
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extensions Fqﬂ and we detail the explicit costs of arithmetic

operations.

Let g be a prime number other than 2, and n; m > 0 two
integers. The easiest way to build a tower fields Fym Over

Fqn would be to use a binomial x™ — ¢« which is irreducible

over Fqn and successively add the roots of the root

previously obtained until the tower has been completely
constructed as the general method described by Benger &
Scott [16].

. F o
To apply this theory on % | let’s take « < Fq such as

x’ — a be irreducible in Fq.Atower extension for qu1 can

be constructed as follows:
Fy = Folu] with u' =«

Foo=Fy [v] with v® =u where ue Fo

. . F 21
3.1 Squaringin ¢

Let a:ao +a1V+a2V2 € Fq21 W|th ao, al, az S Fq7 . We
have : a 2= Ay + AV +Ayv? where :

A =a¢ + 22" Taa,
A, = 2apay + ot "a3

A, =2aga, + alz
Indeed,

2 2R
a® = lag + Vv +a,v

= ag + a12v2 + a%v4 + 2apayVv + 2a0a2v2 + 2a1a2v3
=a? +a?v? +aZ(uv)+ 2agayv + 2aga,v? + 28,3, (u)
because v3 = u.
a® = (ag + 2o 7a1a2)+ (a“ 7a§ + 2a0al)/ + (af + ZaOaZ}/Z
with u” =«
The computation of the square costs 3m + 3¢ + 3a.
Considering that 2xy = (x + y)? — x? — y2, we obtain:
Ay = a? +al/7[(a1 +ay)? —al —a%]
A =(ag+a)? —ag —al +a'7a3
Ay =(ag +a,)* —af — a5 +af

The computation of the square costs 6¢ + 12a.
3.2 Cyclotomic inversion

Let ae qu1 as defined in the sub section 3.1.1, in the

cyclotomic subgroup G%((f). Then, a satisfies a® *9'*1 =1

14 7 14 7
and so, al=a%*% =a% .a%. To compute the

cyclotomic inversion in qul , just determine the two factors

and make their product. For that, we need to know the value
q'-1

7_ 7 .
7 3.4 1+l 3.q -1 1 3
of vl =v 3 =(v) 3 v=|a’ V.

1
N

1\ 3
Set = [oﬂ} . We have g =1 and g% =1. Therefore

o
|

B is a cubic primitive root of unity in Fy - We obtain

7 14 .
v9 = pv. If necessary, the value of v% is obtained as
follows:

7
14

7\4 7 747
2

v (v = () = gV = =
7 2\’ q’ q q’ K
al :(a0+a1v+a2v) =aj +a'v? +aj (v)

7 7\2 2
=ay + v +az(vq ) =ag + a  +ay(pv)
_ 2,2
=ag +a pV+aBv

7
14 7\4 7
al :(aq j = (ao +a1,b’v+a2ﬂ2v2)q

—ad val g7 v ad (52 (2
=g + ayf(Av) + ap B2 (W) = ag + af?v + 2,84 (v)°
=ay +a; 8%V + a, A2
a?".ad = (ao +a v+ aZ,BVZXaO +a v+ azﬁzvz)
= ag + g BV + aoaz,[;’zv2 + aoalﬂzv + alzﬁ’e’v2
+aga, BNV + aga, A2 + a8, B3 + adpivt
= ag + (ﬂ + ﬂz)aoalv + (ﬂ + ﬂz)aoazvz + alzv2
+ (,6 + ﬂ2}31a2v3 + agv4

because 8% =1

14 7
a% .a% = (aé - ua1a2)+ (ua% - aoal)/ + (al2 —agay }/2

because v3 =u and 1+ 8+ %2 =0
14 7 1 E
a¥ a% =|af -aTaa, |+|a’a) —apy v+(a127aoaz>’2

The computation of cyclotomic inversion costs 3c + 3a +
3min Fy -

3.3 Computation of Frobenius operators

The q' Frobenius is the application
2 i Fan > Fa,amal.
q q

Set a = ag + a1V + azvz (S Fq21 with ao, d,ay € Fq7 .
z(a)=a% =ad +alvd + aq(vz)q

0o td 2 -

_ 2 3 4 5 6.

ChS Fq7 = dg =0g +gU+gou” +g3u” +guu” +Qgsu™ +ggu-;

g; € Fq; ie {0,1,---,6}.
Then, we obtain:
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a = 05 +otu + gdlu2 ' + g3l + gfluf
r ol f - gglucf

=gy +gul + gz( 2)q + g3(u3)q + g4(u4)q

+95(“ ) +96(U )q

because g =g; Vie{0L-6}
39ty -1 q-1
W s =(u3)3 u. Setﬂ:(u3)T
q-1

We have g= (u3)7 #1 and p°= (u3)q_l =1. Which
means that g is a primitive cubic root of unity in F, and
ul = pu.
a o o o
3§ = 90 + g + 0202 + g50°f' + 0alu*f + 05°)
o
+ g0°)
= go + 1/ + 0o 8%U% + gau® + ggpu + g5 p7u° + geu®
Set
a; =hg +hu+ hou? + h3u3 +hut + h5u5 + h6u6;
h e Fyief01 6} and
a2 = IO + |1u + |2U2 + |3U3 + |4U4 + |5U5 + |6U6;
l; € Fq; ie {0,1,-~~,6}
Similarly, we find:

ajl = hy + B+ hy8%u? + hgu® + hypu* + hgp2u® + hgu®
ag = IO + Ilﬂl + |2ﬂ2u2 + |3|J3 + I4ﬂ.|4 + |5ﬂ2U5 + |6U6

3.971 4 q-1 9-1 q-1
vli=v 3 (v3)3 v=u3v=@ with d=u 3 . We

have 6 =1 and 6 =1. Then @ is a primitive cubic root of

unity in Fy and v9 =&,

ad = (ao +ay + azvz)q =ad +av? +af (vq)2
= go + 01U + 9, 5%u% + gau® + gy’
+ (ho + hfu + hz,b’zu2 + h3u3 +hyput + h5,6'2u5 + h6u6)ﬂ/
+(I0 + 1 pu+1,8%02 +I3u3 +lgput +158%5 + 1 5)92 2
9= gg+ g1+ gyp°u° +93U +gq4pu* + gsB%u° + geu®
+ (h00 +hgpu + h,08%u2 + hyau® + hygpu’ +h 9ﬂ2u5
+h66u6)/+(| 0% + 100 u +1,0% p%u” +130%u
+ 1y 62 put + 1560 ,Bzu +1 qus)/z

We can compute the existing products first 'l in the

2,5 6
+0gs5f°U” + geU

expression of a%. Set

bo = % b =68, b, =68% =by8; by =06

by =0°5 = flog; b5 =075 =bobs.

What costs 2¢ + 4m.

Putting these values in the place of their corresponding in

a%, we obtain:
a% = gg + g1 + g B°u” + gau® + g put + g5 p7U° + geu®
+(h00+hlb1u + hybou? + hgtu® + hybu? + hgbou® +h6w6)¢

+ (|0b3 + |1b4U + |2b5U2 + |3b3U3 + |4b4u4 + |5b5U5 + |6b3U6)/2

The computation of g-Frobenius costs (4 +7x2)m+3x6a.
Adding the previous cost, we have 18m + 18a + 2¢ + 4m.

That is a total cost of 22m + 18a + 2c in Fq-

We have the same cost for g2, ¢°, g%, d°, q°, 4% q°,

a*°, q'*, g*?, q*3-Frobenius.

For the operator q’ -Frobenius, the subsection 3.1.2 gives us
Vi = A Thus

;
=ag +a pv+ azﬁzv2

= go + 01U + gou® + gau® + gau + gsu® + geu®

+ (ho + hlU + h2U2 + h3U3 + h4u4 + hSUS + hﬁue)ﬂ/

7 7 7 7 7
a _ 44 a4 Q(Z)q
a' =a; +av' +a, \v

+ (IO + Ilu + |2U2 + |3U3 + |4U4 + |5U5 + IGUG)ﬂZVZ

7 7 7
because g =g;, h{ =hand I} =1;.

0 0 a0 (2 ) 2,2
a' =a; +a’'v' +a;\v =ag +a v+ a,BVv
= go + 01U + gou® + gau® + gau® + gsu® + geu®
+ (hoﬂ + hlﬁu + hzﬂuz + h3ﬁU3 + h4ﬂu4 + hSﬁUS + heﬂJG)\/
+ (Ioc +licu + lyeu? + lgeu® + Iyeu? + Iscu® + Iﬁcuﬁ)/2
with ¢ = 2
We have 14m + 18a + 1c in F, as a cost for computing the

q’ -Frobenius. We have the same cost for g** -Frobenius.

Lemma 3.1. In the finite field Fq21 ,

i) The computation of q’; q'*-Frobenius costs 14m +
18a + 1c;

ii) The computation of morphisms q, g2, 9%, q*, q°,
qG, q8, qu qu’ qll, q12
18a + 2c;

iii) The inverse of «, an element of the cyclotomic

3 _Frobenius costs 22m +

subgroup Gy () is computed as ot = a% xa¥ and
costs 3c+3a+3m in Fq7 .

4. Elliptic Curves with an embedding degree
21

This section describes the computation of the optimal Ate

pairing (Miller’s step and the final exponentiation) on the

elliptic curves parameterized in [17].

This family of elliptic curves has the embedding degree 21,

and is parameterized by:

q =%(x16 — xS x4 x® —2x® 4 xT 4 x2 +x+1)

r=x - xMix® - x8ex8 —x*+x3—x+1

t=x+1

4.1 Optimal Ate pairing

The Vercauteren approach describes in [13] allows us to get
the short vectors from the L lattice defined by the equation:
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eO:GzXGl—),ur

I i 1-1 r 1)
(Q’ P) i H fC?vQ(P) ' H h[5i+1]Qv[Ciqib(P)
i=0 i=0

i=
|
which gave the optimal function h(z) = > ¢iz' = x-z < Z[z].
i=0

A direct application of the formula (1) yields the optimal
pairing:
ey : Gy xGy = uy

2a_q

(Qv P)'_) fx,Q(P) r

4.2 Determination of the cost of the execution of the
Miller loop

In this subsection, we consider the Miller function given in
affine coordinates, following the analysis of Montgomery,
Lauter & Naehrig [18] who suggested using affine
coordinates at the highest level of security. The Miller
function used for computing f,o(P) in this case is

described in [19]. At a 192-bit security level on elliptic
curves with k = 21, the best x value we could find with a
SAGE (SageMath) code is:

X = 236 + 235 + 234 + 231 + 230 + 228 + 227 + 225 + 224 + 222
+220+218+217+216+214+212+29+28+24+23+l.
This value gives a r(x) prime of 443 bits and g(x) of 589 bits
that match the 192-bit security level setting according to
Table 1. The value of g is congruent to 1 modulo 6, as is the

value of x so the corresponding elliptic curve is y? = x% +1
[20]. The Miller loop here consists of computing f, 5 which
costs 36 dubbing steps, 20 additions, 35 squares and 55
multiplications in Fqﬂ. To our knowledge no explicit cost

exists in the literature for the k = 21 with a specific value of
X.

4.3 Estimation of the cost of computing the final
exponentiation

As explained in the subsection 2.3, the final exponentiation

14 7
:(fq7‘1)d .

-1 q +q +1
.
can be dividedas f r = (fq ‘1j r

The lattice method that we briefly described in the 2.3 sub-
section applied to the matrix

3d(x)
3xd(x)

allows us to get the next multiple of d (see Appendix for
more details):

d'=3x3d(x) = g + 720 + 720% + 730> + 740% + 750° + 760°

7 8 9 10 11 12 13
+7709° +ys8Q” +yod” + 1007 + 1207 + 71207 + 134

follows

7o =X +xP4x3 x2S extex® o x

12 = x*+x3 +x-1;

V3 = X _ox 18 1 x8 _ox7 1 X8 —x3+x2+x+2;

Va = x5 x4 B x2 e xB _x —x8 x5 - X%+ 2x+2;

V5 = x5 x4 12 1 8 T —x5+x4+3;

ve = x" —x* 6 _x*+x3;

7 = x13 _x12 _y10 0.

12 11 9 8 11 10 8 7

0

— x4 x4 x7 —x

78 =X =X =X +X%; yg=xT—xT —x°+x;
710 = X0 =x% =X +x8; gy =x® —x® —x8 x5
8 7 _ 5 4 7_ 6 _ 4,3

710 =X =X =X7+X7; pz =X =X =X +X".
These polynomials verify the following relationships:
79 = —(x —1)(x3 - 1): —(x —1)2(x2 + X+ l}

n=xr2; 70 =X72=Xr1; 713 =72 = X0
r2 = X*2 = xr3s oy = X2 = Xy1s

710 = —x%5 = xy11; V9 = X'y, = X710

78 = —X872 =Xyg: 77 = —XgJ’z = Xyg,:

Ye =Xr7 +713; V5 =Xrg +3;

Ya=Ys—Vy7tyg VotV —ri3—r1t7r2;
Y3=V5~"V6T¥stri1—712"Y0 t72:

Computations of y; and y, can be simplified by using
another intermediate polynomial
Thus, we  obtain:

ra=r2+trs+trstr-

y3=ra—(rs +712 +70)  and

¥a =114 —(r7 + 710 + 713 + 71)-

Set A= 9L

e The cost for computing A est 1 q’ -Frobenius, 1 inversion
in Fqﬂ and 1 multiplication in Fqﬂ .

e The cost for computing A’2 est: 1 inversion in the
cyclotomic subgroup, 2 exponentiations by (x-1) and 1

exponentiation by (x2 + X +1).
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o Computations of A%, Ao, A2 Au Ao AVS - Ae

and A’7 each cost 1 exponentiation by x. In total, 8
exponentiations by x.

e The computation of A’ costs 1 exponentiation by x and 1
inversion in the cyclotomic subgroup.

e The cost for computing A’ is: 2 multiplications, 1
squaring, and 1 exponentiation by x.

o The cost for computing A”s is: 1 exponentiation by x and
1 multiplication.

e The computation of A”¢ costs 3 multiplications.

e The computation of A’ costs 3 multiplications and 1
inversion in the cyclotomic subgroup.

o And finally the computation of A’ cost 4 multiplications
and 1 inversion in the cyclotomic subgroup.

As said in 3.1.2 the cyclotomic inversion is computed as

A= AT . A9 The cost of the difficult part AY'is then 26
multiplications in Fqﬂ, 11 exponentiations by x, 1

exponentiation by (x2 +x+1), 4 cyclotomic inversions , 2

exponentiations by (x—1), 1 squaring and q, q2, %, q*,

q5, q6,2><q7, C|8, q9’ qu’ qlll q12

maps.

, g~ -Frobenius

5. Conclusion

In this paper, we have provided details on the computation of
the Miller loop and the final exponentiation for the optimal
pairing on the elliptic curves of BLS with an embedding
degree 21. An explicit cost estimate is given for the Miller
loop. It would be interesting to look at their behavior against
small-subgroup attacks and security of subgroups.
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