Fermat’s Last Theorem is True

Dibyajyoti Dutta
P-Way Engineer at Lumding, N.F. Railway, India

Abstract: According to Fermat’s Last Theorem there would be integer number a, b & z such that, \(a^n + b^n = z^n \) Where n is a integer. In this topic we are going to show that such assumption as Fermat’s Last Theorem is true.

Proof

We know that \((a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k}\)

\((a + b)^n = a^n + b^n + \sum_{k=1}^{n} \binom{n}{k} a^k b^{n-k}\)

Let us assume \((A+B) = 8\) And \(Z= 6\)

Example: 1

Suppose \(k = 100000000\) then \(Z = 327106631\) and \(a = 25\)

Example: 2

Let us assume \((A+B) = 8\) And \(Z= 6\)

Thus \(a^3 + b^3 = z^3\) is proved.

Conclusion

Thus the conclusion is Fermat’s Last Theorem is true for which \(\frac{A^n}{AB} \) is the criteria to fulfill

Author Profile

Dibyajyoti Dutta, B.E.(CIVIL) from Jadavpur University, Kolkata working as P-Way Engineer at Lumding, N.F. Railway