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Abstract: This study examines the comparative study of the different transformations for the time dependent signals. The most famous 

transformations for the data analysis are the Fourier transform, the Fast Fourier transform and the Hilbert Huang transform. A brief 

introduction of the Hilbert Huang transform is presented and it is used for the analysis of the earthquake motion dynamics. 
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1. Introduction 
 

Data are the only link we have with the unexplained 

reality; therefore, data analysis is the only way through 

which we can find out the underlying processes of any 

given phenomenon. As the most important goal of 

scientific research is to understand nature, data analysis is 

a critical ink in the scientific research cycle of observation, 

analysis, synthesizing, and theorizing. Because of the 

limitations of available methodologies for analyzing data, 

the crucial phase of data analysis has in the past been 

relegated to “data processing,” where data are routinely 

put through certain well-established algorithms to extract 

some standard parameters. Most traditional data 

processing methodologies are developed under rigorous 

mathematic rules; and we pay a price for this strict 

adherence to mathematical rigor, as described by Einstein. 

In order not to deviate from mathematical rigor, we are 

forced to live in a pseudoreality world, in which every 

process is either linear or stationary and for most cases 

both linear and stationary. 

 

For example, spectral analysis is synonymous with 

Fourier-based analysis. Methods based on the Fourier 

transform are almost synonymous with frequency domain 

processing of signals. The Fourier transform is essentially 

an integral over time. Thus, we lose all information that 

varies with time. All we can tell from the spectrum is that 

the signal has two distinct frequency components. In other 

words, we can comment on what happens a signal, not 

when it happens. 

 

The real world is neither linear nor stationary; thus the 

inadequacy of the linear and stationary data analysis 

methods that strictly adhere to mathematical rigor is 

becoming glaringly obvious. 

 

A popular choice to represent both time and frequency 

characteristics is the short-time Fourier transform 

(STFT)[1], which, simply put, transforms contiguous 

chunks of the input and aggregates the result in a 2 

dimensional form, where one axis represents frequency 

and the other represents time. This representation is quite 

satisfactory. However, there are a number of reasons why 

it might not always work. First of all, the short time 

Fourier transform is parameterized by two important 

things, other than the signal itself- the number of bins into 

which the frequency range of the signal is partitioned, and 

the window function used for smoothing the frequencies. 

 

There are a number of heuristics one can apply to make 

this representation more reasonable - like tweaking the 

parameters of the TFT, increasing the sampling frequency 

of the signal, or to use another time-frequency 

representation altogether. Unfortunately none of these 

methods are fully data driven, in that they rely very 

strongly on a parametric model of the data, and the 

representation is only as good as the model. A major 

drawback of time frequency distributions that depend on 

Fourier or wavelet models is that they don’t allow for an 

“unsupervised” or data driven approach to time series 

analysis. 

 

2. Motivation for Hilbert Huang Transform 
 

The real world is neither linear nor stationary. A more 

suitable approach to revealing nonlinearity and 

nonstationarity in data is to let the data speak for 

themselves and not to let the analyzer impose irrelevant 

mathematical rules; that is, the method of analysis should 

be adaptive to the nature of the data. The combination of 

the well-known Hilbert spectral analysis (HAS) [2] and the 

recently developed empirical mode decomposition (EMD) 

[3], designated as the Hilbert-Huang transform (HHT) by 

NASA, indeed, represents such a paradigm shift of data 

analysis methodology. The HHT is designed specifically 

for analyzing nonlinear and nonstationary data. 

 

The key part of HHT is EMD with which any complicated 

data set can be decomposed into a finite and often small 

number of intrinsic mode functions (IMFs). The 

instantaneous frequency defined using the Hilbert 

transform denotes the physical meaning of local phase 

change better for IMFs than for any other non-IMF time 

series. This decomposition method is adaptive and 

therefore highly efficient. As the decomposition is based 

on the local characteristics of the data, it is applicable to 

nonlinear and nonstationary processes. 
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Figure 1: Empirical mode decomposition 

 

The Empirical mode decomposition (EMD) has implicitly 

a simple assumption that, at any given time, the data may 

have many coexisting simple oscillatory modes of 

significantly different frequencies, one superimposed on 

the other. Each component is defined as an intrinsic mode 

function (IMF) satisfying the following conditions: (1) In 

the whole data set, the number of extrema and the number 

of zero crossings must either equal or differ at most by 

one. (2) At any data point, the mean value of the envelope 

defined using the local maxima and the envelope defined 

using the local minima is zero. Let m1 be the mean of the 

lower and the upper envelope data x(t), then 

 

h1 = x(t) − m1                                  (1) 

 

By construction, h1 is expected to satisfy the definition of 

the IMF. However if changing a local zero from a 

rectangular to a curvilinear coordinate system may 

introduce new extrema and further adjustments are needed 

then repeat of the above procedure is applied. The shifting 

process has to be repeated as many times as is required to 

make the extracted signal satisfy the definition of an IMF. 

After k times of iterations. 

 

h1k = h1(k−1) − m1k                            (2) 

 

The approximate local envelope symmetry condition is 

satisfied, and h1k becomes the IMF c1, i.e. c1 = h1k 

 

Hilbert spectral analysis (HSA) s a signal analysis method 

applying the Hilbert Transform to compute the 

instantaneous frequency of signals. For any function x(t) 

its Hilbert transform  

 

                    (3) 

 

Empirical Mode Decomposition 

 

where P is the Cauchy principal value of the singular 

integral. With the Hilbert transform y(t) of the function 

x(t), we obtain the analytic function, 

 

                         (4) 

 

where  

 

             (5) 

 

Here a is the instantaneous amplitude, and θ is the 

instantaneous phase function. The instantaneous frequency 

is simply 

 

                                     (6) 

 

With both amplitude and frequency being a function of 

time, we can express the amplitude (or energy, the square 

of amplitude) in terms of a function of time and frequency, 

H(ω, t). An example of obtaining an IMF from an 

arbitrarily given time series is displayed in Figure 1. The 

details regarding the working of the HHT are discussed in 

the reference [4]. 

 

3. Analysis of the Earthquake Motion 

Dynamics 
 

Hilbert-Huang transform (HHT) can be widely used for 

analyzing dynamic and earthquake motion recordings [5] 

in studies of seismology and engineering. Earthquake data 

are inherently nonstationary because the recordings are the 

result of propagation of various type waves with different 

amplitude, frequency, and wave speed in soil media that 

are likely nonlinear. It should be noted that earthquake 

recordings are often viewed as nonstationary, nonlinear 

data. Because earthquake motion data are nonstationary, 

Fourier spectral analysis of the data fails to capture the 

energy distribution of events over both time and 

frequency. 

 

 
Figure 2: Empirical mode decomposition of the time 

dependent signal 
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Figure 3: Hilbert Spectral Analysis of the Time dependent 

signal 

 

In this section, we use the wave recording to illustrate 

features of HHT analysis in nonstationary data processing, 

which are also compared with those of traditional 

approaches for data processing. We now demonstrate the 

rationale for use of HHT in analyzing the earthquake 

motion. The data for the earthquake motion has been from 

the reference [6]. On the data we apply the EMD and the 

Hiplbert Spectrum as shown the figures 2 and figure 3. 

 

In contrast, the EMD can reveal important characteristics 

of the waves with just a few IMF components, while the 

Hilbert spectrum in HSA shows a clear picture of 

temporal-frequency energy distribution. The distribution 

of amplitude (energy) in time-frequency domain, H(w, t), 

in HHT can be regarded as a skeleton form of that in 

continuous wavelet analysis, which has been widely 

pursued in the wavelet community. 

 

4. Results and Discussion 
 

In section I, we discussed about the different 

transformations and their applicability for the time 

dependent signals. In section II, we presented the need of 

the Hilbert Huang transform, a brief introduction on it 

where we found the HHT is composed of the Empirical 

mode decomposition (EMD) and Hilbert Spectral analysis 

(HSA), and its dominance over the other transformations. 

In section III, we studied the earthquake motion dynamics 

using the Hilbert Huang transform. We found that we can 

be able to estimate the amplitude and frequency as shown 

in Figure 2. 

 

5. Conclusion 
 

The different transformations such as Fourier transform, 

the Fast Fourier transform and the Hilbert Hunag 

transform were studied in the scope of the time dependent 

signal. It was found that HHT offers a potentially viable 

method for nonlinear and nonstationary data analysis, 

especially for time-frequency -energy representations. It 

has been tested widely in various applications other than 

geophysical research. The earthquake motion dynamic was 

studied using the HHT as an application. In most cases 

studied HHT gives result much sharper than most of the 

traditional analysis methods. And in most cases, it reveals 

true physical meanings. One of the major drawbacks of the 

EMD is mode mixing like for a signal of a similar scale 

residing in the different IMF components. In order to make 

the methods more robust, rigorous and friendlier in 

application and analytic mathematical foundation is 

needed. 

 

A confidence [7] limit is always desirable in any statistical 

analysis, for it provides a measure of reliability of the 

results. The EMD is an empirical algorithm and involves a 

prescribed stoppage criterion to carry out the sifting move. 

Therefore, a confidence limit of the EMD is a desirable 

quantity. 
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Appendix 
 

Code1 

 

frompyhht:visualizationimportplotimfs 

frompyhhtimportEMD 

importnumpyasnp 

t = np:linspace(0; 1; 1000) 

modes = np:sin(2 ∗ np:pi ∗ 5 ∗ t) + np:sin(2 ∗ np:pi ∗ 

10 ∗ t) 

x = modes + t 
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decomposer = EMD(x) 

imfs = decomposer:decompose() 

plotimfs(x; imfs; t) 

 

Code2 

 

fromhhtpywrapper:eemdimportEEMD 

importmatplotlib:pyplotasplt 

importnumpyasnp 

 

tstart = int(np.fix(40 / dt)) 

tend = int(np.fix(50 / dt)) 

 

hinoise = np:sum(eemdpostprocessing:imfs[:; : 

2]; axis = 1) 

c3 = eemd 

postprocessing:imfs[:; 2] 

c4 = eemd 

postprocessing:imfs[:; 3] 

c5 = eemd 

postprocessing:imfs[:; 4] 

lownoise = np:sum(eemdpostprocessing:imfs[:; 5 : 

]; axis = 1) 

 

plt.figure() 

plt.subplot(611) 

plt.plot(time[tstart:tend],  
rate[tstart:tend]/1000, 

’k’) 

plt.xticks([]) 

plt.yticks([0, 20, 40]) 

plt.xlim([40, 50]) 

plt.ylabel(’Data’) 

plt.subplot(612) 

plt.plot(time[tstart:tend],  

hinoise[tstart  : 

tend]=1000; 0  k 0 ) 
 
plt:xticks([]) 

plt:yticks([-10; 0; 10]) 

plt:xlim([40; 50]) 

plt:ylabel(r0c1 : c2’) 

plt.subplot(613) 

plt.plot(time[tstart:tend], c3[tstart:tend]/1000, ’k’) 

plt.xticks([]) 

plt.yticks([-5, 0, 5]) 

plt.ylabel(r’c3’) 

plt.xlim([40, 50]) 

plt.subplot(614) 

plt.plot(time[tstart:tend], c4[tstart:tend]/1000, ’r’) 

plt.xticks([]) 

plt.yticks([-10, 0, 10]) 

plt.xlim([40, 50]) 

plt.ylabel(r’c4’) 

plt.subplot(615) 

plt.plot(time[tstart:tend], c5[tstart:tend]/1000, ’k’) 

plt.xticks([]) 

plt.yticks([-5, 0, 5]) 

plt.xlim([40, 50]) 

plt.ylabel(r’c5’) 

plt.subplot(616) 

plt.plot(time[tstart:tend], lownoise[tstart : 

tend]=1000;0 k0) 

plt:yticks([10; 15; 20; 25]) 

plt:xticks(np:arange(40; 51)) 

plt:xlim([40; 50]) 

plt:xlabel(0Time(s)0) 

plt:ylabel(r0c6 : residual’) 

plt.show() 
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