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Abstract: SUMOylation has been known as one of the most important post-translational modification in Eukaryotes species, which 

has significant roles in many biological processes and cellular functions. The mechanism underlined SUMOylation process will affect 

many biological processes and functions, leading to many common serious diseases, such as: breast cancer, cardiac, Parkinson’s and 

Alzheimer’s disease. Because of its very inportant roles, the demand on extensively understanding of SUMOylation and its mechanism 

is one of the most hottest isusse that interested many researchers nowadays. In this work, we will present an approach combinating of 

amino acid composition and informative k-spaced amino acid pairs to identify protein SUMOylation sites. 
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1. Introduction 
 

Protein SUMOylation is a kind of very important post-

translational modification (PTM) that plays significant roles 

in many biological processes and cellular functions. The 

machinery of SUMOylation process will affect many 

biological processes and functions, and then leading to many 

common serious diseases [1, 2]. Due to the important roles 

regulated by SUMOylation, the demand on extensively 

understanding of SUMOylation and its mechanism is one of 

the most hottest isusse that interested many researchers 

nowadays. So far, there is an increasing number of 

researches proposed for the identification of protein 

SUMOylation [3-8]. Besides, various predictors have been 

developed to support scientist identifying protein 

SUMOylation sites [9-13].  

 

Althought there are many of researches has been proposed 

for identifying protein SUMOylation sites [9-18], however 

the number is still not meet our demand to have extensively 

understanding of protein SUMOylation and its mechanism. 

Therefore, in this work we will present an approach 

incorporating of amino acid composition and k-spaced 

amino acid pairs to identify protein SUMOylation sites. The 

results has demonstrated that our proposed approach could 

be efficiently used for identifying the potential protein 

SUMOylation sites 

2. Data Preparation and Model Learning 
 

2.1. Data preparation 

 

In this work, the experimentally verified SUMOylation sites 

has been collected from many different resources, including: 

SUMOsp [9], GPS-SUMO-Ver 3.0 [10], JASSA [11], 

pSumo-CD [12], SUMOhydro [13] and dbPTM-2019 [19]. 

After the process of removing duplicated or redundant data, 

we obtained a total of 1160 uniques proteins (having 2109 

SUMOylation sites) for this work. Of these 1160 uniques 

proteins, we have randomly selected 160 proteins 

(containing 289 SUMOylation sites) to be utilized as 

independent testing dataset. The remaining data (1000 

unique proteins, having 1820 SUMOylation sites) has been 

used as training dataset. 

 

In this work, we analyze the characterization of substrate site 

specificity of SUMOylated protein in-term of sequence-

based. So, applying the same approach from previous works 

[14-18, 20] in extracting data being used for model training, 

the window size of 13 has been selected to extract 13-mer 

fragment sequence (-6 to +6) with the Lysine (K) at the 

central of the sequence. With the 1000 experimentally 

verified SUMOylated proteins of the training dataset, the 

total fragments that has extracted using window  size of 13 

containing 1820 postitive fragments and 37222 negative 

fragments. As the binary classification problem, the 

performance of the predictive models may be overestimated 

or underestimated due to the fact of homologous fragments 

in the positive and negative dataset. Thus, the CD-HIT 

program [21] has been applied to remove homologous 

fragments. With the use of 40% of fragment identify, the 

training dataset aftered filtered out consists of 745 positive 

training fragment and 7450 negative training fragments. 

 

To find out the best model, firstly the cross-validaion 

approach is adopted to evaluate the performance of the 

various predictive models. Then, the best predictive model 

with the highest accuracy and MCC value is selected. After 

choosing of the best predictive model, it is neccessary to 

perform  an independent testing to assess the real case of the 

chosen model. As presented above, the independent testing 

dataset contains 160 proteins. Applying the same approach 

of extracting training fragment, the final independent testing 

dataset containing 117 positive and 1170 negative fragments. 

 

 

 

2.2. Features Encoding and Transformation 
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In this study, various sequence-based features have been 

investigated, including: Amino Acid Composition (AAC), 

Amino Acid Pairwise Composition, Positional Weighted 

Matrix (PWM) and Evolutionary information (PSSM, 

Position-Specific Scoring Matrix).  The AAC, AAPC and 

PSSM features have been extracted and encoded by applying 

same approach with previous studies [14-18]. The PWM 

feature has been built by referring the SulfoSite method  

[22]. The PWM was determined by calculating the 

occurrence rate of twenty types of amino acids surrounding a 

substrate SUMOylation sites, and was utilized in encoding 

for the sequence fragment. Each sequence fragment as 

represented by a matrix of (2n+1)w elements, where w 

stands for 21 elements including 20 types of amino acids and 

one for the non-existing residue. In the viewpoint of protein 

sequence evolution, several amino acid residues of a protein 

can be mutated without changing its score structure or 

functional domain.  

 

Besides, the k-spaced amino acid pairs (CKSAAP) encoding 

using CKSAAP scheme [23-25] been anlayzed also. This 

study has examined the CKSAAPs with k ranging from 1 to 

5, as displayed in Figure 1.  

 

 
Figure 1: The construction of CKSAAP feature 

 

Given 2020 amino acid pairs and five values for k, the total 

of 52020 = 20000 attributes are used to train the 

predictive  model. Due to the fact that the higher dimensions 

of features vectors could induce a lower efficiency of model 

learning and evaluation. Thus, all of these 2000 CKSAAP 

features should be tuned to achieve the optimal CKSAAPs 

for providing better predictive performance. In this work, to 

extract informative features prior constructing predictive 

model, each CKSAAPs attribute is examined based on the 

index score calculated by the minimum redundancy-

maximum relevance (mRMR) algorithm [26]. According the 

findings in [26, 27], the CKSAAP attribute having maximum 

relevance and minimum redundancy will contain the best 

discriminating power between positive and negative 

instances. 

 

 

 

2.3. Model learning and performance evaluation 

 

It has been common known that support vector machine 

(SVM) is a well-known machine learning method and widely 

utilized for solving the parttern identification problem with 

clear connection to the underlying statistical learning theory. 

With purpose of identifying potential protein SUMOylation 

site is positive or not, it comes to meet and suitable with the 

problem of the binary classification using SVM method. 

Herein, LibSVM [28], a public SVM library proposed by 

Chang C. C. and Lin C.J, is adopted to contruct the 

predictive models to discriminate the SUMOylation sites 

from non-SUMOylation sites.  

 

To evaluate the performance of the predictive models, the 5-

fold cross-validation approaches has been performed to 

assess the classifying power of the constructed SVM-based 

models. The following measurements are common used to 

evaluate the performance of the constructed models: 

 

The common measures: Sensitivity (SEN), Specificity 

(SPE), Accuracy (ACC), and Matthews Correlation 

Coefficient (MCC): 

; ;  ; 

  

 

Wherein the measurements were explained as belows: 

 TP (True Positive), TN (True Negative) represented the 

number of positive and negative sites that are correctly 

predicted. 

 FP (False Positive) and FN (False Negative) indicated the 

number of positive and negative sites that are falsely 

predicted.  

 SEN (Sensitivity) and SPE (Specificity) measured the 

proportion of positives and negatives that are correctly 

identified.  

 MCC is an import measurement that has been used to 

reflect the balance quality in case of the numbers of 

negative and positive data are significant imbalance. 

 

After running 5-fold cross-validation process, the 

constructed model containing highest values of MCC and 

accuracy has been selected  as the optimal model for 

identifying potential protein SUMOylation sites. Moreover, 

the independent testing approach has also been carried out to 

evaluate the ability of selected model, in the real case. 

 

3. Results and Discussion 
 

Based on the analysis of amino acid composition on the 

substrate protein, the frequency of occurrence of twenty 

amino acid residues surrounding the substrate sites could be 

determined to find the potential consensus motifs for the 

identifying SUMOylation sites. As displayed in  

Table 1, the total of 5 single features (AAC, AAPC, PWM, 

PSSM, CKSAAP) have been investigated for the 

identification of protein SUMOylation sites.  

 

As displayed in  

Table 1, the total of 5 single features (AAC, AAPC, PWM, 

PSSM, CKSAAP) have been investigated for the 

identification of protein SUMOylation sites. Additionally, as 

binary classification between SUMOylation and non-

SUMOylation sites, it is feasible to combine two or more 
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different feature to generate hybrid features to be used for 

the model learning. Therefore, based on single features, we 

have constructed 4 hybrid features to be analyzed for the 

identification of SUMOylation sites.  

 

 

Table 1 displayed in detail the performance of constructed 

models when evaluated using the five-fold cross-validation. 

The hybrid feature of “PSSM+CKSAAP” is appeared to be 

the optimal feature for contructing the predictive model, 

reaching the accuracy value at 78,44% and MCC value is at 

0,380.  

 

Table 1: Performance evaluation by Five-Fold Cross-

Validation 

Feature 
Five-fold Cross-Validation 

SEN SPE ACC MCC 

AAC 60.40% 67.11% 66.50% 0.165 

AAPC 67.11% 67.11% 67.11% 0.205 

PWM 66.22% 67.11% 67.03% 0.199 

PSSM 73.83% 67.11% 67.72% 0.244 

CKSAAP (K = 1) 73,15% 67,11% 67,66% 0,240 

CKSAAP (K = 2) 74,63% 67,11% 67,80% 0,249 

CKSAAP (K = 3) 75,17% 67,11% 67,85% 0,252 

CKSAAP (K = 4) 74,50% 66,85% 67,54% 0,246 

CKSAAP (K = 5) 66,44% 67,11% 67,05% 0,201 

AAC+CKSAAP 66,17% 67,11% 67,03% 0,199 

AAPC+CKSAAP 81,21% 73,56% 74,25% 0,339 

PWM+CKSAAP 78,52% 75,56% 75,82% 0,338 

PSSM+CKSAAP 81,21% 78,17% 78,44% 0,380 

 

Moreover, the independent testing has been performed to 

assess the performance of the predictive model for the real 

case. Table 2 displayed in detail the performance of the 

predictive model using independent testing approach. 

Luckily, the results indicated that the hybrid feature of 

“PSSM+CKSAAP” was also the best feature that could help 

to yield the highest performance, reaching the accuracy value 

at 73,91% and MCC value is at 0,324.  
 

Table 2: Performance evaluation by Independent Testing 

Feature 
Independent Testing 

SEN SPE ACC MCC 

AAC 62.39% 61.97% 62.00% 0.143 

AAPC 65.81% 62.39% 62.70% 0.165 

PWM 64.10% 62.31% 62.47% 0.155 

PSSM 70.09% 70.51% 70.47% 0.248 

CKSAAP (K = 1) 72,65% 70,54% 70,73% 0,263 

CKSAAP (K = 2) 72,65% 72,33% 72,36% 0,278 

CKSAAP (K = 3) 73,45% 71,82% 71,96% 0,275 

CKSAAP (K = 4) 75,22% 73,10% 73,29% 0,296 

CKSAAP (K = 5) 75,22% 72,59% 72,82% 0,291 

AAC+CKSAAP 72,57% 73,19% 73,13% 0,281 

AAPC+CKSAAP 77,88% 73,27% 73,68% 0,313 

PWM+CKSAAP 76,99% 73,10% 73,44% 0,306 

PSSM+CKSAAP 79,65% 73,36% 73,91% 0,324 
 

 

4. Conclusion 
 

SUMOylation has been known as one of the most important 

post-translational modification in Eukaryotes species. It 

plays a very important roles in many biological processes, 

cellular functions, as well as being a key factor that leads to 

many common serious diseases nowadays. In this work, we 

have presented an approach that combinates amino acid 

composition and informative k-spaced amino acid pairs to 

identify protein SUMOylation sites. Evaluation by cross-

validation and independent testing approach, the proposed 

model has been demonstrated its strength and ability in the 

purpose of identifying the potential protein SUMOylation 

sites. 
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