
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 11, November 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

A Simplified Introduction to the Architecture of

High Performance Computing

Utkarsh Rastogi

Department of Computer Engineering and Application, GLA University, India

Abstract: High-performance computing (HPC) is the ability to process data and perform complex calculations at high speeds. To put it

into perspective, a laptop or desktop with a 3 GHz processor can perform around 3 billion calculations per second. While that is much

faster than any human can achieve, it pales in comparison to HPC solutions that can perform quadrillions of calculations per second.

One of the best-known types of HPC solutions is the supercomputer. A supercomputer contains thousands of compute nodes that work

together to complete one or more tasks. This is called parallel processing. It’s similar to having thousands of PCs networked together,

combining compute power to complete tasks faster.

1. Introduction

The paper is focused on IST Gravity Group Computer

Cluster, Baltasar Sete S´ois and study the impact of a

decoupled high performance computing system architecture

for data-intensive sciences. Baltasar is part of the “DyBHo”

ERC Starting Grant awarded to Prof. Vitor Cardoso, to study

and understand dynamical black holes. Baltasar was

designed to help solve a specific problem with a Cactus-

based implementation. The goal was to have 4GB per

processor, a minimum of 200 processors and at least

500MB/s of network storage capability. Even though it was

designed to address a specific application, , it exceeded –by

far– the group’s expectations to a point that it can be

considered an all-around cluster.

This paper starts by going through the construction and

fundamental computer notions one needs in order to fully

understand the parallel computation paradigms. It also cover

some of the essential tools necessary for an efficient

workflow in the HPC realm. Finally, it tries to demystify the

“beast” of shared computer cluster’s usage with simple and

clear examples.

A simplified diagram of high performance computing

1) Construction

To build a high-performance computing architecture,

compute servers are networked together into a cluster.

Software programs and algorithms are run simultaneously

on the servers in the cluster. The cluster is networked to the

data storage to capture the output. Together, these

components operate seamlessly to complete a diverse set of

tasks. HPC systems often include several different types of

nodes, which are specialised for different purposes.

Head (or front-end or login) nodes are where you login to

interact with the HPC system. Compute nodes are where the

real computing is done. You generally do not have access to

the compute nodes directly - access to these resources is

controlled by a scheduler or batch system (more on this

later!). Depending on the HPC system, the compute nodes,

even individually, might be much more powerful than a

typical personal computer. They often have multiple

processors (each with many cores), and may have

accelerators (such as Graphics Processing Units (GPUs))

and other capabilities less common on personal computers.

To operate at maximum performance, each component must

keep pace with the others. For example, the storage

component must be able to feed and ingest data to and from

the compute servers as quickly as it is processed. Likewise,

the networking components must be able to support the

high-speed transportation of data between compute servers

and the data storage. If one component cannot keep up with

the rest, the performance of the entire HPC infrastructure

suffers.

2) Cluster

An HPC cluster consists of hundreds or thousands of

compute servers that are networked together. Each server is

called a node. The nodes in each cluster work in parallel

with each other, boosting processing speed to deliver high-

performance computing. Deployed on premises, at the edge,

or in the cloud. A typical cluster architecture has 3 node

types. The entry nodes, the storage nodes and the worker

nodes. The entry nodes are the nodes we connect to in order

to use the computer cluster. The storage nodes are the nodes

that permanently store data. The worker nodes are the nodes

that run programs in the cluster environment and have

limited to no local storage space. Usually, small clusters

have only one entry node while larger clusters can have

more than one for availability purposes. On small clusters

like Baltasar, the entry node is also one of the storage nodes.

In this typical architecture scenario, storage nodes’ access is

shared across all worker nodes so that programs can read

and write data independently of the worker node they are

Paper ID: ART20202688 10.21275/ART20202688 833

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 11, November 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

running in. Although typical, we may find different

architectures in different clusters.

3) Nodes

Each individual “computer” component of an HPC system is

known as a node. Different types of node exist for different

tasks. The nodes are connected together by a network

usually known as interconnect. Each node on an HPC

system is essentially an individual computer. The processor

contains multiple compute cores (usually shortened to core);

4 in the diagram below. Each core contains a floating point

unit (FPU) which is responsible for actually performing the

computations on the data and various fast memory

caches which are responsible for holding data that is

currently being worked on. The compute power of a

processor generally depends on three things:

The speed of the processor (2-3 GHz are common speeds on

modern processors), The power of the floating point unit

(generally the more modern the processor, the more

powerful the FPU is), The number of cores available (12-16

cores are typical on modern processors). Often, HPC nodes

have multiple processors (usually 2 processors per node) so

the number of cores available on a node is doubled (i.e. 24-

26 cores per node, rather than 12-16 cores per node). This

configuration can have implications for performance. Each

node also has a certain amount of memory available (also

referred to as RAM or DRAM) in addition to the processor

memory caches. Modern compute nodes typically have in

the range 64-256 GB of memory per node. Finally, each

node also has access to storage (also called disk or file

system) for persistent storage of data. As we shall see later,

this storage is often shared across all nodes and there are

often multiple different types of storage connected to a node.

A simplified diagram of a node

4) Scheduling

In order to share these large systems among many users, it is

common to allocate subsets of the compute nodes to tasks

(or jobs), based on requests from users. These jobs may take

a long time to complete, so they come and go in time. To

manage the sharing of the compute nodes among all of the

jobs, HPC systems use a batch system or scheduler. The

batch system usually has commands for submitting jobs,

inquiring about their status, and modifying them. The HPC

center defines the priorities of different jobs for execution on

the compute nodes, while ensuring that the compute nodes

are not overloaded. Scheduling is an essential component in

computer clusters in order to make full use of the available

resources while reducing resource concurrency to an optimal

level. As an example, if no scheduling is present on a

computer cluster, there would occasionally be so many

simultaneously running programs that none would have

acceptable performance, as well as occasions where the

opposite is true: large amounts of free resources and no

programs taking advantage of them. For example, a typical

HPC workflow could look something like this:

a) Transfer input datasets to the HPC system (via the login

nodes)

b) Create a job submission script to perform your

computation (on the login nodes)

c) Submit your job submission script to the scheduler (on

the login nodes)

d) Scheduler runs your computation (on the compute

nodes)

e) Analyse results from your computation (on the login or

compute nodes, or transfer data for analysis elsewhere)

 Computer cluster scheduling can be done in various ways.

Most clusters use some Portable Batch System (PBS) based

queue and scheduler4 but there are alternatives and different

approach solutions like HTCondor. In Baltasar, we use PBS

Torque, with the Maui Scheduler.

5) Storage and File System

The kind of computing that people do on HPC systems often

involves very large files, and/or many of them. Further, the

files have to be accessible from all of the front-end and

compute nodes on the system. So most HPC systems have

specialized file systems that are designed to meet these

needs. Frequently, these specialized file systems are

intended to be used only for short- or medium-term storage,

not permanent storage. As a consequence of this, most HPC

systems often have several different file systems available –

for example home, and scratch file systems. It can be very

important to select the right file system to get the results you

want (performance or permanence are the typical trade-offs).

6) Parallel Computing

By definition, parallel computing is a form of computation

in which many calculations are carried out simultaneously,

operating on the principle that large problems can often be

divided into smaller ones. As simple as it may seem,

splitting efficiently a large problem into smaller ones so that

they can be truly solved parallelly, is almost an art. While

“parallelly” may seem equivalent to “concurrently”, both are

quite different things. Solving a problem parallelly implies

splitting the problem into smaller, completely independent

tasks. If, for some reason, one task depends on some other

task we can consider both as concurrent tasks. Since there

are few problems that can be completely split into loosely-

coupled tasks, the ideal scenario to bear in mind would be

“use pure parallelism if you can, concurrency otherwise”.

7) Accessing Software

Because HPC systems serve many users with different

software needs, HPC systems often have multiple versions

of commonly used software packages installed. Since you

cannot easily install and use different versions of a package

at the same time without causing potential issues, HPC

systems often use environment modules (often shortened

to modules) that allow you to configure your software

Paper ID: ART20202688 10.21275/ART20202688 834

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 11, November 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

environment with the particular versions of software that

you need. We will learn more about modules and how they

work later in this lesson. Many HPC systems also have a

custom environment that means that binary software

packages (for example, those you may download from

websites) will not simply work “out-of-the-box”. They may

need different options or settings in your job script to make

them work or, at worst, may need to be recompiled from

source code to work on the HPC system.

8) Performance

The “P” in HPC does stand for performance and the makeup

of an HPC system is designed to allow researchers to access

higher performance (or capabilities) than they could on their

local systems. The way in which an HPC system is put

together does have an impact on performance and workflows

are often categorised according to which part of the HPC

system constrains their performance. You may see the

following terms used to describe performance on an HPC

system:

 Compute bound. The performance of the workflow is

limited by the floating point (FPU) performance of the

nodes. This is typically seen when performing math-heavy

operations such as diagonalising matrices in

computational chemistry software or computing pairwise

force interactions in biomolecular simulations.

 Memory bound. The performance of the workflow is

limited by access to memory (usually in terms

of bandwidth: how much data can you access at one time).

Almost all current HPC applications have a part of their

workflow that is memory bound. A typical example of a

memory bound application would be something like

computational fluid dynamics.

 I/O bound. The performance of the workflow is limited by

access to storage (usually in terms of bandwidth but

sometimes in terms of numbers of files being accessed

simultaneously). This is often seen in climate modelling

and bioinformatics workflows.

 Communication bound. The performance of the workflow

is limited by how quickly the parallel tasks can exchange

information across the interconnect. This is often seen

when single applications scale out to very large numbers

of nodes and the amount of traffic flowing across the

interconnect becomes high. Particular common

algorithms, such as multidimensional Fourier

transformations, can also exhibit this behaviour.

9) Baltasar sete sóis Specs and Uses

It consists of total of 272 CPUs. 2,6 TB RAM and 89 TB of

Distributed Filesystem Storage. It has 3 Entry Nodes

(Baltasar-1) consist of 24 GB Ram, storage of 23 TB and

Intel(R) Xeon(R) CPU W3565 @3.20GHz (raid 6

redundant). It also has 4 High-Ram Computational

Nodes(nodes 1,2,3,4) of specs 4 AMD Opteron(tm)

processor 6180 SE @ 2.5 Ghz (12 cores each, 48 total) 256

GB of Ram and 14 GB SWAP. Node 5 is a Medium RAM

computational node with specs as node 1, 2, 3 and 4 but with

128 GB RAM. Node 6-10 are 5 Medium- RAM

Computational Nodes. They consist of 4 AMD Opteron (tm)

Processor 6344 @ 3.2 Ghz (max clock) - 12 cores each (48

total). 128 GB RAM and 14 GB SWAP. Node 11 and 12 are

2 High-RAM Computational Nodes with specs as 2 AMD

EPYC 7410 24-Core Processor @ 3.0 GHz(max clock) - 48

cores each (96 total) with 256 GB RAM and 14 GB SWAP.

Baltasar sete sóis is used by Centra which is a research unit

of Instituto Superior Técnico (IST), with a branch at

Faculdade de Ciências (FCUL), and a leading center for

astrophysics and gravitation. The main topics of research are

black hole physics, gravitational waves, big bang and the

inflationary universe, supernovae, stellar physics, galaxies,

and dark matter.

10) Performance Complexity Problem

There is also more performance complexity. Consider a

simple real-world problem like putting 1,000 index cards

into alphabetical order (imagine a bunch of vocabulary

words for a foreign language class, for example). This

problem would take a long time for one person to do, but it’s

not at all hard to figure out how to do it. One person simply

sits down and alphabetises the cards using knowledge she

already has in her head (the order of the alphabet) and

without the need to talk to or coordinate with anyone else. If

we wanted to get it done faster, we could recruit more

people to help with the problem. But even adding a single

new person dramatically adds to the complexity. The two

people now must work together in some way: even if they

each start by sorting their stack individually without

speaking to one another, they’re still going to have to

cooperate to get their two stacks sorted into one. And there

are a bunch of ways that even that seemingly easy thing can

be done.

The exact same problems exist in cluster computing. The

problem of getting the processors to work together on a

single problem is largely a software problem, but the

software needs hardware in order to work: two processors

cannot speak to one another unless they are both connected

to the same network. You’ll need to make sure you have the

right processors for the compute task you are running, the

right amount of memory and disk, the right cluster

interconnect, and so on.

2. Conclusion

In this paper, I present my research study trying to answer

the HPC system architecture. I studied a decoupled HPC

system architecture for scientific applications. How a

decoupled architecture builds separate data processing nodes

and compute nodes, with computation-intensive and data-

intensive operations mapped to compute nodes and data

processing nodes respectively. The data processing nodes

and compute nodes collectively provide a balanced system

design for data-intensive applications. I have presented

modelling to study the potential. The result has shown a

promising potential of such a HPC system architecture. I

was able to draw important conclusions for HPC system

design and development, and these conclusions can guide

the configuration and deployment of future HPC systems for

solving data intensive scientific problems.

Paper ID: ART20202688 10.21275/ART20202688 835

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 11, November 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

3. Acknowledgement

I would like to say Thanks to Centra, Universidade Téchnia

de Lisboa, Sergio Almeida, Lisbon Gravity Group, Professor

Vitor Cardoso for letting me access the relevant data and

information for my research. I further want to thank my

mentor Dr. Manoj Choubey who had introduced me to High

Performance computing and also helped me on

parallel/concurrent computing that really helped to clarify

the subject. The cluster “Baltasar Sete-S´ois” is supported by

the DyBHo256667 ERC Starting Grant

References

[1] An Introduction to High Performance Computing-

Sergio Almeida

[2] Lisbon Gravity Group, http://blackholes.ist.utl.pt/ .

[3] Baltasar Sete-Sóis Cluster,

http://blackholes.ist.utl.pt/baltasar/ .

[4] Cactus Webpage http://cactuscode.org/ .

[5] Portable Bactch System

http://en.wikipedia.org/wiki/Portable_Batch_System .

[6] HTCondor http://research.cs.wisc.edu/htcondor/

[7] Torque Resource Manager,

http://www.adaptivecomputing.com/products/opensour

ce/torque/ .

[8] Maui Cluster Scheduler,

http://www.adaptivecomputing.com/products/opensour

ce/maui/ .

[9] Parallelism and Concurrency,

http://www.yosefk.com/blog/parallelismandconcurrenc

yneeddifferenttools.html .

[10] Baltasar Sete S´ois Cluster Wiki,

http://blackholes.ist.utl.pt/wiki/index.php/Baltasar_Set

e_Sois .

[11] Centra, https:centra.tecnio.ulisboa.pt/ .

Paper ID: ART20202688 10.21275/ART20202688 836

