
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

ARM Cortex M Processor Custom Boot Loader

Chethan S K

Embedded Software Engineer, Sigma Microsystems India Pvt Ltd

Abstract: The developer faces the problem when they have two different applications (means two different source code) and they want

to merge both of them to one application. At that point, the developer can place both the application separately in controller internal

flash along with the custom boot loader on top of the applications. On power ON using the custom boot loader, the user can decide

which application has to run. In this literature, I have used the NUCLEO F446RE STM development board.

Keywords: Custom boot loader, STM32F446RE, Booting sequence, keil uVision5

1. Introduction

Over the years, The Embedded systems are playing a keen

role in modernizing human life. Most of the human day to

day work is automated using embedded systems. The

embedded systems are existing in all kinds of industries like

Automobile, Telecommunication, Medical, Agriculture, etc.

Long years back Embedded systems were used to perform

specific dedicated task but as time flies the embedded

systems are also used for general applications. Example

mobile phones, previously mobile phones were used only for

phone calls, nowadays can do much more than phone calls.

Microcontroller is a main working unit in Embedded

systems which handles all the external events, process the

event and reply to the event.

Booting is one of the first important process for the

microcontroller. The booting sequence guides the

microcontroller, that from where it has to read application

code, where it has to write the application code and how the

controller has to jump to the application part.

This literature explains :

1) The ARM booting sequence.

2) Memory architecture and memory aliasing.

3) How to load boot code along with two different

application code into the internal flash.

4) How boot code decides to switch between the

applications on power ON of the microcontroller.

Figure 1: Block organization of internal flash

2. Arm Cortex M Booting Sequence

What happens when we reset the processor, the address

pointer of the processor always starts with zero i.e.

0x00000000. The reset interrupt is the highest priority

interrupt as per the vector table. Vector table provides the

information about the initial stack pointer value and various

exceptional handler addresses.

The sequence followed upon the reset of the ARM cortex M

processor:

1) After reset, PC (Program counter) is loaded with the

address 0x00000000.

2) The processor fetches the value at 0x00000000 into the

MSP(Main Stack Pointer). The processor basically first

initializes the main stack pointer.

3) The processor reads the address of the reset handler from

the location 0x00000004 into the program counter. The

reset handler is a normal function written in assembly/C

language, which is get called whenever the processor

resets. The reset handler code doesinitial device-specific

initialization such as configuration clock, configuration

hardware block, re-initializing the stack space, before

calling the main function of the application source code.

4) The processor jumps to the updated reset handler address

and start executing the first instruction written over there.

5) Finally, the reset handler function calls the main

function. From there the processor executes all the user

instructions.

3. Memory architecture and memory aliasing
To understand the concept of memory architecture, this

literature consider the example of the microcontroller

STM32F446RE. The understandability of memory

architecture of microcontroller is very important for the

developer because he has to be sure about the memory

section where he is going to place the application code.

STM32F446RE memory architecture :

1) Internal flash memory – 512 KB

2) Internal SRAM1 and SRAM2 – 112KB and 16KB

3) ROM – 30KB

4) OTP memory – 528 bytes

5) Option byes memory – 16bytes

6) Backup RAM – 4KB

The ARM processor has different booting mode, in which

booting from internal flash is also one of the option. The

internal flash memory begins at 0x08000000 and ends at

0x0807FFFF, total 7 sectors each of 16Kbytes. This flash

has main memory, System memory, OTP area and Option

bytes. The main memory has seven sectors which all are

used to store the user application code.

Paper ID: ART20202270 10.21275/ART20202270 1767

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Now, let understand the concept of memory aliasing. Upon

controller reset, the controller starts read data from the base

address 0x00000000. But the developer has placed the code

from the start location 0x08000000. So, to overcome this

problem the chip manufactures use the concept called

memory aliasing. Aliasing means the particular locations can

be mapped to some the other locations.

Figure 2: Memory aliasing

3.1 Flashing three different code to internal flash

Suppose, Developer has to flash three different codes to

internal flash at different sectors. The prerequisite to do so:

1) Size of the application code and sector start address.

Developer has to verify the code size, by checking the code

raw binary file size. Based on the sizes of the code, the

developer has to decide which sectors of the flash to be used

to store the application code. suppose, code sizes are

10Kbytes each, then developer can choose:

 0x08000000(sector 0 base address) for custom boot-

loader code.

 0x08004000(sector 1 base address) for application 1

code.

 0x08008000(sector 2 base address) for application 2

code.

2) KeiluVision settings

There are three major settings to be notices in order to flash

the code to different locations.

 Sector start address where the code to be flashed.

Figure 3: Writing sector start address

 Sector address change in linker setting

Figure 4: Linker setting

3) Vector table offset setting

The reset is the highest priority interrupt for the controller.

The reset handler ISR is either written in assembly or C

language. Whenever the controller gets reset, the controller

calls the reset handler ISR. The reset handler ISR performs

some system initializationslike clock settings, clear all reset

and setting vector offset register.

The vector table offset register has to be updated as per the

start address of the sector, where the code is going to be

placed. we can find this in controller startup code. As per the

cortex M processor design, the processor has some

exceptional handlers like Initial MSP value which is the first

handler in the vector table and reset handler vector is the

second in vector table. Based on this, the controller initialize

the stack area for very first time. Then controller reads the

reset vector value. Based on the reset vector value controller

jumps to that particular location and from there after

developer application instructions start execute.

Paper ID: ART20202270 10.21275/ART20202270 1768

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 5: Vector table in a program image

The reset sequence of the ARM cortex M processor is shown

below.

Figure 6: Reset Sequence

Custom boot-loader flow chart and algorithm

 Flow chart

Figure7: Flow Chart

 Algorithm for custom boot-loader

The below algorithm is explained with reference to the flash

sector address which are mentioned in the section IV.

Step 1: START

Step 2: System and I/O initialization

Step 3: Read switch input

Step 4: If switch input is LOW call application_1 function

Step 5: In application_1 function set application 1 MSP

value, which is located at the address 0x08004000.

Step 6: Call the reset handler address of the application 1,

which is stored at the address 0x08004004 based on which

controller jumps to application 1code section.

Step 7: If switch is HIGH call application_2 function

Step 8: In application_2 function set application 2 MSP

value, which is located at the address 0x08008000.

Step 9: Call the reset handler address of the application 2,

which is stored at the address 0x08008004 based on which

controller jumps to application 2 code section.

Step 10: STOP

4. Conclusion

Storing two different code to the controller internal flash and

booting the code from the custom boot-loader, reduces the

complexity of merging two different codes to a single code.

I have considered the application 1 to print some message

over serial port. The below shown figure is an output of the

application 1, which is booted when the user switch is not

pressed under controller reset.

Figure 8: Application 1 output

controller resets. The below shown figure is the output of the

application 2. In application 2 I have I am just glowing the

user LED, where this application 2 is booted when the user

switch is pressed under controller reset.

Figure 9: Application 2 output

References

[1] Joseph Yiu, "The definitive guide to the ARM cortex-

M0(book style with paper title and editor), " 1st edition,

2011.

[2] Byte Craft, “First Steps with Embedded Systems”,

ByteCraft Limited, first edition.

Paper ID: ART20202270 10.21275/ART20202270 1769

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

[3] Andrew Sloss, Dominic Symes and Chris Wright “ARM

System Developers Guide – Designing and Optimizing

System Software” , published by ELSEVIER, 2009.

[4] Michael Pont, “Embedded C”, Pearson Publication,

2002.

[5] Ted Van Sickle, “Programming Microcontrollers in C”,

LLH Technology Publishing, 2001.

[6] Michael Barr, “Programming Embedded Systems in C

and C++”, Oreilly Publication, edition January 1999.

[7] Intel. Intel hexadecimal object file format specification,

Revision A, 1/6/88, 1988.

[8] Raj Kamal, “Microcontrollers: Architecture,

Programming, Interfacing and System Design”, Fourth

Edition, Pearson Education.

Paper ID: ART20202270 10.21275/ART20202270 1770

