
International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Comparative Analysis of the Efficiency in

Programming Languages: A Case of Study

Jesús A. Román
1
, María-Luisa Pérez-Delgado

2

1University of Salamanca, E.P.S. of Zamora,

Av. Cardenal Cisneros, 34, 49022, Zamora, Spain

zjarg[at]usal.es

2University of Salamanca, E.P.S. of Zamora,

Av. Cardenal Cisneros, 34, 49022, Zamora, Spain

mlperez[at]usal.es

Abstract: Software development is conditioned in many cases by the programming language chosen. Nowadays there are many

programming languages, each with different characteristics, so they are different from each other in terms of their performance. A

comparison of the computational efficiency of these languages will allow us to have an objective point of view when choosing one of

them, and it will also allow us to know the characteristics of the languages that are not obvious in many cases. To test them, a series of

programming languages and several algorithms have been selected. The algorithms have been implemented using these languages and

the execution time of each one has been determined, which makes it possible to make a comparison that allows us to characterize them.

Keywords: programming languages, algorithm, efficiency, benchmarking

1. Introduction

When a programming language is selected to develop any

application, there are preferences or prejudices that may be

taken over a particular language prevail in many cases.

However, when choosing a specific language we must go

further and put on value its computational efficiency, its

learning curve, its speed in terms of development and its

internal characteristics.

Due to the number of programming languages currently

available [1], and the characteristics of each one, it is

necessary to compare their main strengths and weaknesses, as

well as the speed of execution when the programs developed

in these languages are executed. In this way, there are many

organizations that are specialized in a particular

programming language for their developments. However, the

most prefer to choose the creation of expert work teams in

different languages [2].

In this research, 5 different programming languages have

been selected to perform the different benchmarking tests.

Four of these programming languages are among the ten most

used [3], and the last one is a historical programming

language. The following paragraphs show a set of

characteristics of each proposed programming language.

C: Its popularity is due to the ease it presents when writing

compact and very simple code, since it only has functions

and lacks procedures. All this is achieved through a syntactic

economy and, therefore, through simple structures, a flow

control and a large set of operators. It is powerful, its

learning curve is fast and it can be applied in an infinite

number of projects [4].

Java: It is mandatory to interpret this language through the

java virtual machine (JVM), which shows points in favor of

this language, such as greater security and stability, less

version problems, and less complexity that some of the

languages that preceded it, such as C or C ++. It includes a

“garbage collector” (automatic memory optimization) and the

code goes through some verified bytecodes to ensure the

correctness of the code and its secure nature [5].

Pascal: It is easy and fast to learn this language, which uses

different syntax for assignments and comparisons. It allows

defining assignments within expressions, which avoids errors

caused by variables used incorrectly due to an unknown type

and also makes Hungarian notation unnecessary (prefixes

assigned to the variable names to identify their type) [6].

PHP: It is very simple, but offers a large number of advanced

features for professional developers. Its use is widespread

and it is completely free. It has a great capacity for

adaptation, because in addition to developing web pages it

offers other functionalities, such as database communication,

sending cookies, evaluating data modules, etc. It is updated

with a high frequency, which controls vulnerabilities [7].

Python: It has experienced great growth in recent decades

due to its rapid development and simplicity, as well as its

libraries, data types and built-in functions. This language is

not only limited to Unix, it also presents the option of being

able to complete with Windows, Mac, OS / 2, etc. It is also

free, which encourages its use [8].

This article is organized as follows. Section 2 presents a

theoretical framework on programming languages and an

introduction of the proposed programming languages. In

section 3 the proposed algorithms for benchmarking the

selected languages are selected. Next, section 4 analyzes the

results obtained when the algorithms written using each

language are executed. Finally section 5 presents the

Paper ID: ART20201949 10.21275/ART20201949 788

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

conclusions obtained in this work.

2. Theoretical Framework

This section presents a general introduction to the types of

programming languages and their history. In addition, a brief

description is made of each of the programming languages

proposed above that allows them to be situated and

characterized in a descriptive way.

The programming languages have experienced an evolution

from their creation until the present, so we have defined five

different generations [9], [10]:

 1
st
 Generation: it includes the machine languages, which

use the binary system (combinations of zeros and ones) to

give orders to a specific processor for its correct operation.

Despite being faster than high-level languages, the syntax

is complex and makes it difficult to find errors in the

source code, which slows down the improvements.

 2
nd

 Generation: it includes the assembly languages, which

are heirs of the machine languages. Their instructions are

defined by abbreviations that combine numbers and letters,

called mnemonics. Their source codes are shorter and,

therefore, occupy less memory. However, their learning

curve is very slow and they are difficult to maintain and

execute. These languages gave rise to translator programs,

which could translate assembly language into machine

language.

 3
rd

 Generation: it includes the high-level languages. Their

algorithms are adapted to the capacity of intellect and

cognition of the human being, and they are fully prepared

for interaction with machines.

 4
th

 Generation: it includes the RAD (“Rapid Application

Development”) languages. As the name implies, they are

fast development applications that produce codes by

themselves. These are languages oriented to the

administration and processing of databases.

 5
th

 Generation: it includes languages whose fundamental

objective is to apply them to artificial intelligence,

although the latter are still in the making.

The following paragraphs introduce the programming

languages selected to perform the tests that will allow us to

compare their results and obtain the conclusions of this

research.

First, it is necessary to differentiate a compiler and an

interpreter. A compiler is software capable of translating and

transforming source language (high-level language) into

object language (machine language). On the other hand, an

interpreter is software that allows the translation and

execution of programs written in a source programming

language. Both translators also differ in that a compiler

translates the entire program at once while an interpreter

translates and executes the program line by line.

C (1972) was created by Dennis Ritchie. It is a general-

purpose language, linked to Unix (one of the first operating

systems in history and predecessor of others like Linux),

although it really does not depend on any system or machine.

Although it is mainly used to write compilers and operating

systems, it can also be used to develop applications. It differs

in its ability to handle data easily manageable by the

hardware of most specific computers (numbers, characters,

addresses, etc.).

Java (1995) was created by James Gosling and Sun

Microsystems. It is a general, concurrent language

(simultaneity in the execution of several interactive tasks)

and object-oriented. It not only provides software, but has

also developed hardware for its execution. According to Sun,

Java could be described by a series of key features such as:

simplicity, aesthetics, distribution, interpretation, robustness,

security, neutral architecture, multithreading (it performs

several threads at the same time), portability, high

performance and dynamism.

Pascal (1970) was created by Niklaus Wirth and owes its

name to the French mathematician Blaise Pascal. It is a

general-purpose language, very structured and strongly

typed, that is, its code is divided into easily readable portions

called functions or procedures and the data type of all

variables must be declared beforehand to enable its use. All

programs created with this language have two distinct parts:

declarative part and operations part, so that everything that

will be used in the second part appears in the first one.

PHP (1994) was created by Rasmus Lerdorf and Zeev

Suraski. It is a scripting language (“script language” means

configured to be executed by an interpreter). It works on the

server side to make dynamic content and web pages that

produce html, which will then be sent to the client, which will

execute the appropriate script.

Python (1991) was created by Guido Van Rossum. It was

born as a complement to C within Unix, inspired by the

previous ABC language. It is a general purpose scripting

language (despite not being designed exclusively for the web,

it allows the development of web pages in a satisfactory

way), interactive, with dynamic typing, interpreted (without

compilers), clear and multi-paradigm (since it is object-

oriented but in turn is compatible with both imperative and

functional programming).

3. Benchmarking Algorithms

This section describes the algorithms that have been used to

compare the different programming languages selected. This

comparison is carried out based on the execution time of the

algorithms. The proposed algorithms are the following:

Paper ID: ART20201949 10.21275/ART20201949 789

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Display in the screen N integer numbers.

N= {100,000; 500,000; 1,000,000}.

Table 1: Algorithm 1

for (i = 1 to i = N by 1) do

 write i

end for

 Access a local file N times to read from the file and display

content on the screen. N={1,000; 2,500; 5,000}.

Table 2: Algorithm 2

for (i = 1 to i = N by 1) do

 open file

 read file

 write content

 close file

end for

 Access a local file N times to write to it and display

content on the screen. N={1,000; 2,500; 5,000}.

Table 3: Algorithm 3

for (i = 1 to i = N by 1) do

 open file

 write file

 write content

 close file

end for

 Enter N integer numbers in an array and then go through it

to write the values on the screen (1,000; 2,500; 5,000).

Table 4: Algorithm 4

variable = matrix ()

for (i = 1 to i = N by 1) do

 variable [i] = i

end for

for (i = 1 to i = N by 1) do

 write variable [i]

end for

The choice of these algorithms is not random. It has been

taken into account that their programming is standard and

common to all languages, and that they do not use complex

data types that could generate differences external to the

desired performance.

4. Benchmarking Tests and Results

This section presents the results of the tests performed with

each programming language. Its evaluation was carried out

on an HP ENVY 17-j100ns laptop with an Intel Core i7-

4710MQ processor (6 MB cache) with four cores of 2.50

GHz each one, RAM / HDD memory: 12 GB RAM DDR3 /

1 TB (5400 RPM), Windows 10 and 6-cell battery.

The environment used to run the programs was the one

shown in Table 5.

Table 5: Development environments

Languag

e
Environment

C Dev C++ 5.11 [11]

Java BlueJ 3.1.7 (JDK 8) [12]

Pascal Free Pascal 3.0.0 [13]

PHP PHP for Windows 5.7 [14]

Python Python 3.5.2 [15]

To measure the runtime, a timestamp of difference has been

introduced in the code, so the accuracy is complete. In

addition, 10 tests have been performed for each algorithm

and language and the average value has been calculated.

Table 6: Execution time for Algorithm 1

Operations
Execution Time (ms)

C Java Pascal PHP Python

100,000 5,250 27,500 18,305 1,270 38,930

500,000 25,600 52,600 91,407 19,80

0
203,630

1,000,000 51,30

0

69,10

0

183,05

0

75,15

0
401,58

0

Figure 1: Benchmarking for Algorithm 1

Table 6 and Figure 1 show the results obtained in the tests

performed with algorithm 1. The most efficient programming

languages are C, Java and PHP. It is observed that the

execution time increases approximately linearly with the

number of operations for almost all languages (mainly for

Java and C). However, for PHP this linearity begins to be lost

when the number of operations increases considerably. The

slowest execution corresponds to the Python language with

clearly visible differences.

Table 7: Execution time for Algorithm 2

Operations
Execution Time (ms)

C Java Pascal PHP Python

1,000 321 240 313 126 743

2,500 581 454 783 230 1,769

5,000 1,240 867 1,570 592 3,319

Paper ID: ART20201949 10.21275/ART20201949 790

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Figure 2: Benchmarking for Algorithm 2

Table 7 and Figure 2 show the results obtained in the tests

performed with algorithm 2. The most efficient programming

languages are again C, Java and PHP. In this case, linearity

based on the increase of the operations is lost for all of them.

The slower execution corresponds again to the Python

language, with clearly visible differences.

Table 8: Execution time for Algorithm 3

Operations
Execution Time (ms)

C Java Pascal PHP Python

1,000 400 577 1,005 427 1,308

2,500 1,360 1,190 1,510 1,75

0
3,276

5,000 4,320 2,600 2,013 3,14

0
6,844

Figure 3: Benchmarking for Algorithm 3

The results of the execution of algorithm 3, which are

included in Table 8 and Figure 3, show a variation of the

trend followed in the previous algorithms. Python is still the

slowest language; however, C becomes the second slowest

language as the number of operations increases. In addition,

Pascal becomes the second fastest programming language.

Table 9: Execution time for Algorithm 4

Operations
Execution Time (ms)

C Java Pascal PHP Python

1,000 5.00 0.02 300 1.34 0.99

2,500 5.29 0.04 600 3.28 0.99

5,000 7.78 0.09 1,000 5.98 2.00

Figure 4: Benchmarking for Algorithm 4

Figure 4 shows an important difference between Pascal and

the other programming languages. However, it is in Table 9

where these differences can be observed in detail. While it is

true that the difference in time is very small, considering that

this algorithm works with internal memory, Java is the

language that behaves in the most efficient way. All

programming languages show linearity, except Pascal when

the number of operations increases.

5. Conclusions

Throughout this work, several programming languages have

been used to implement four algorithms and thus check their

computational efficiency. The proposed languages are in the

ranking of the most used, except one of them, which is

considered one of the historical languages to learn to

program. These algorithms have been selected to work with

internal memory, data input-output, and standard display

output. For this, a simple programming has been sought in

terms of standard typology, data and procedures that can be

implemented without any problem using the proposed

programming languages.

The results obtained in the different tests performed show

disparity in the execution of the different algorithms.

Although the results of each algorithm are more favorable to

a different programming language, it is true that the

languages that provide the best overall results for the set of

algorithms are Java and PHP.

It cannot be concluded that one programming language is

better than another because each one has different

characteristics that make it more suitable for specific cases.

However, the set of tests carried out shows differences in

runtime in the programs that implement the proposed

algorithms. This fact indicates that there are programming

languages that manage some features better than others; such

features include data input-output, internal memory or

standard output.

Paper ID: ART20201949 10.21275/ART20201949 791

International Journal of Science and Research (IJSR)
ISSN: 2319-7064

ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Volume 8 Issue 10, October 2019

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

References

[1] Yaofei Chen, R. Dios, A. Mili, Lan Wu and Kefei Wang,

"An empirical study of programming language trends,"

in IEEE Software, vol. 22, no. 3, pp. 72-79, May-June

2005.

[2] P. Kraft. Programmers and managers: The routinization

of computer programming in the United States. Springer

Science & Business Media, 2012.

[3] TIOBE, “TIOBE Index October 2019”. [Online].

Available: https://www.tiobe.com [Accessed: Oct. 05,

2019].

[4] Al Kelley and I. Pohl. A book on C; Programming in C.

Benjamin-Cummings Publishing Co., Inc., 1994.

[5] A. Ken, J. Gosling and D. Holmes. The Java

programming language. Addison Wesley Professional,

2005.

[6] N. Wirth. "The programming language Pascal." Acta

Informatica 1.1 (1971): 35-63.

[7] K. Tatroe, P. MacIntyre and R. Lerdorf. Programming

PHP: Creating Dynamic Web Pages. O'Reilly Media,

Inc. 2013.

[8] M. Guzdial, and B. Ericson. Introduction to computing

and programming in python. Pearson, 2016.

[9] G. O’Regan. Introduction to Programming Languages.

In: World of Computing. Springer, Cham, 2018.

[10] S. Valverde, and R. V. Solé. “Punctuated equilibrium in

the large-scale evolution of programming languages.”

Journal of The Royal Society Interface 12.107 (2015):

20150249.

[11] DEV C++, “C, C++ Compiler”. Available:

https://sourceforge.net/projects/orwelldevcpp/

[Accessed: Oct. 06, 2019]. (General Internet site)

[12] BlueJ, “Java IDE”. Available: https://www.bluej.org/

[Accessed: Oct. 06, 2019].

[13] Free Pascal, “Pascal Compiler”. Available:

https://www.freepascal.org/ [Accessed: Oct. 06, 2019].

[14] PHP, “PHP 5.7 Interpreter”. Available:

https://www.php.net/ [Accessed: Oct. 06, 2019].

[15] Python, “Python 3.5.2 Interpreter”. Available:

https://www.python.org/downloads/release/python-352/

[Accessed: Oct. 06, 2019].

Author Profile

Jesús A. Román is a professor in the Computer

Science and Automatics Department at the University

os Salamanca, Spain. He got his Computer Science

Engineering degree from the Pontificial University of

Salamanca in 2006, Mcs in Intelligent Systems in

2009, and PhD degree in 2016 from the University of Salamanca.

His research interests focus ok the areas of Intelligent Systems,

Artificial Intelligence and Computer Science. He has published

several research articles and chapters in books related to these

areas.

María-Luisa Pérez-Delgado is a Professor in the

Computer Science and Automatics Department at the

University of Salamanca, Spain. After getting her

Computer Science Engineering degree from the

University of Valladolid, Spain, she received her PhD degree from

the University of Salamanca. Her research interests focus on the

areas of artificial intelligence, optimization, graph theory and data

mining. She has published several research articles and books

related to these areas

Paper ID: ART20201949 10.21275/ART20201949 792

https://sourceforge.net/projects/orwelldevcpp/
https://www.bluej.org/
https://www.freepascal.org/
https://www.php.net/
https://www.python.org/downloads/release/python-352/

