Power Sharing Strategy in Islanded Microgrids

Xuan Hoa Thi Pham

Department of Electrical and Electronic Engineering, University of Food Industry, Ho Chi Minh City, Vietnam

Abstract: This paper presents a power sharing control method for use between paralleled three-phase inverters in an islanded microgrid under unbalanced and non-linear loads. In this study, the mismatch of power sharing when the line impedances have significant differences for inverters connected to a microgrid has been solved, the accuracy of power sharing and voltage quality in an islanded microgrid are improved, the voltage droop slope is tuned to compensate for the mismatch in the voltage drops across line impedances by using communication links. The method will ensure in accurate power sharing even if the communication is interrupted. If the load changes while the communication is interrupted, the accuracy of power sharing is reduced but the proposed method is better than the conventional droop control method. In addition, the accuracy of power sharing base on the proposed method is not affected by the time delay in the communication channel and local loads. The control model has been simulated in Matlab/Simulink with two or three inverters are connected in parallel. The simulation results demonstrate the accuracy of the proposed control method. Furthermore, in order to validate the theory analysis and simulation results, the experimental setup was built in laboratory and the experimental results have demonstrated the effectiveness of proposed methods.

Keywords: Droop control, power sharing, microgrid control, parallel inverter, voltage, line impedance, voltage unbalanced compensation

1. Introduction

In the microgrid, inverters are connected in parallel to form a backup system, improve the reliability, reduce the overload of each inverter, and provide flexibility. However, when a microgrid is operating in the islanded mode, each of the inverter should be able to supply its share of the total load in proportion to its rating. The control strategies for this mode are usually divided into two main types [1], [2] as follows. The first type is made up of the communication-based control techniques including concentrated control, master/slave control and distributed control. These techniques can achieve an excellent proper power sharing. However, these control strategies required communication lines between the modules which may increase cost of systems. Long distance communication lines are easier to disrupt, which reduces system reliability and expandability. The second type is based on the droop control technique without requiring communications, and it is widely used in conventional power systems [2]-[3], [4], [5]-[7]. The reason for the popularity of this droop control technique is that it provides a decentralized control capability that does not depend on external communication links. These techniques enable the “plug-and-play” interface and enhance the reliability of systems. However, communications can be used in addition to the droop control method to enhance the system performance without reducing reliability [8]-[18].

Traditional droop control techniques have some disadvantages in the power sharing due to the following reasons:

- The line impedances are not available and different from each other. This has a significant effect on power sharing due to different voltage drops. When the impedances of the lines connecting inverters to the common connection point are different, a current imbalance appears when the load sharing error increases [1].
- The heterogeneous line impedance, including the resistor and capacitance, is not suitable for conventional droop control with pure resistors or pure capacitance applying for the low voltage distribution [1], [18]. Moreover, with a heterogeneous line impedance, the active and reactive power interact with each other, which leads to difficulty for separate control [1]. Although frequency droop techniques can achieve accurate real power sharing, they typically result in poor reactive power sharing due to mismatches in the impedances of the DG unit feeders and the different ratings of the DG (distributed generation) units [7]-[13]. Consequently, the problem of reactive power sharing in islanded microgrids has received considerable attention in the literature and many control techniques have been developed to address this issue [16]-[18]. Currently, the studies for power sharing between inverters have the following disadvantages:
  - Communication links are used in some droop improvement studies to enhance the accuracy of power sharing, but the implementation of this technique is sensitive to communication delays, delays in delivery can further reduce the accuracy of the power sharing [12-15].
  - The reliability of these studies are also affected when the communication is interrupted [16-18].
  - Improved power sharing methods can reduce the quality of the voltage, such as: virtual output impedance method [19].
  - The accuracy of power sharing is enhanced negligible if local loads are connected at the output of each inverter [20].

Another problem in islanded microgrids is that they must harmonics power sharing between inverters when microgrid has nonlinear loads and unbalanced loads are connected. In fact, the conventional droop controllers are designed to share fundamental positive-sequence power components. Therefore, some studies have applied control methods to reduce distortion due to harmonics and to control harmonics between DG units. For example, the virtual output impedance method is introduced to automatically share the harmonic currents [19,6,18,4] between the DG units. This method, in order to reduce the effect of mismatch of the line impedances in power sharing, a large virtual impedance value is designed. As a result, the more voltage distortions exist. Another approach, uses a virtual capacitive loop to improve the voltage distortion and to share accurately the harmonic current [23,24]. However, this method is based on
knowing the line impedances to adjust the appropriate virtual impedance value.

In [25,26], the authors propose a harmonic droop controller to reduce the voltage harmonics distortion at the PCC and to share harmonics between the inverters. However, this method is complicated. Furthermore, in a low voltage (LV) microgrid, the total harmonic distortion (THD) is highly affected by the line impedances in the microgrid.

This paper proposes a method to compensate for the mismatch in the voltage drops across line impedances, proposed method allows an accurate power sharing ratio between the parallel inverters in islanded microgrids without being affected by:
- The line impedances have significant differences for inverters connected to point of common coupling (PCC).
- Microgrid have the local loads at the output of inverters.
- Mitigate the voltage harmonic distortion generated by non-linear loads.
- The communication is interrupted or delay.

2. Islanded Microgrid Control

a) The proposed control method

The principle of the droop control method is explained by considering the equivalent circuit of an inverter connected to an AC bus. The analysis method is based on Thevenin theorem as shown in Figure 2.

\[
P = \frac{V}{R^2 + \omega^2} \left[ R(V - V_{PCC} \cos \delta) + \omega V_{PCC} \sin \delta \right] 
\]

\[
Q = \frac{V}{R^2 + \omega^2} \left[ -R V_{PCC} \sin \delta + \omega(V - V_{PCC} \cos \delta) \right] 
\]

In general, both the inductance X and resistor R are considered. The use of an orthogonal linear rotational transformation matrix T from active power P and reactive power Q to active power P' and reactive power Q' is determined by:

\[
\begin{bmatrix} P' \\ Q' \end{bmatrix} = [T] \begin{bmatrix} P \\ Q \end{bmatrix} = \begin{bmatrix} Z_P & -Z_Q \\ Z_Q & Z_P \end{bmatrix} \begin{bmatrix} P \\ Q \end{bmatrix} 
\]

When the power angle \( \delta \) is small, equations (1), (2) and (3) can be rewritten as:

\[
\delta \approx \frac{Z P'}{V V_{PCC}} ; \quad V - V_{PCC} \approx \frac{Z Q'}{V} 
\]

From (4), the basis of the well-known frequency and voltage droop regulation through active and reactive power is calculated by:

\[
\omega = \omega_0 - m_p P' 
\]

\[
V = V_0 - m_q Q' 
\]

where \( V_0 \) and \( \omega_0 \) are the nominal amplitude voltage and frequency of the inverter, respectively; \( V_S \) and \( \omega \) are the measured amplitude voltage and frequency of the inverter, respectively; and \( m_p \) and \( m_q \) are the active and reactive droop coefficients, which are calculated as follows:

\[
m_p = \frac{\omega_0 - \omega_{\text{min}}}{P_{\text{max}}} ; \quad m_q = \frac{V_0 - V_{\text{min}}}{Q_{\text{max}}} 
\]

The impedance of the lines connecting the inverters to the PCCs significantly different, the load sharing accuracy is difficult to achieve and voltage adjustment is difficult because it depends on the parameters of the system. From (5) and (6), the following are obtained:

\[
m_{P1} Q_{1}' = m_{P2} Q_{2}' = \cdots = m_{Pn} Q_{n}' = \Delta V_{\text{max}} 
\]

\[
m_{P1} P_{1}' = m_{P2} P_{2}' = \cdots = m_{Pn} P_{n}' = \Delta \omega_{\text{max}} 
\]

Combining the equations (1), (2), (3), (5), (6), (8) and (9), produces the conditions for accurately rated power sharing as in (10):
\[
\begin{align*}
\frac{m_{22}}{m_{12}} &= \frac{Z_1}{Z_2} \\
\frac{m_{23}}{m_{13}} &= \frac{\delta_2}{\delta_1} \\
V_1 &= V_2' \\
\frac{m_{32}}{m_{31}} &= \frac{Z_1}{Z_2} \\
\end{align*}
\] (10)

To satisfy (10), it is necessary to choose droop coefficients that are proportional to the line impedance. If the system is adjusted to meet the requirements, the droop affects the quality of the frequency and voltage. Therefore, a controller is proposed to ensure the accurate power sharing of parallel inverters. The proposed controller is shown in Figure 3.

To calculate active power and reactive power, the active and reactive power produced by converters are calculated in a stationary abc frame:

2) Calculation of active power and reactive power

The active and reactive power produced by the converters are calculated in a stationary abc frame:

\[ p = \frac{3}{2} (i_{1a}v_{ca} + i_{1b}v_{cb}) \] (11)

\[ q = \frac{3}{2} (i_{1a}v_{cb} - i_{1b}v_{ca}) \] (12)

This paper has used double second order generalized integrator - quadrature signal generation (DSOGI-QSG) for calculation of active power and reactive power. To simplify, although the voltage may contain negative sequence components due to imbalanced load in the system, it is assumed that the negative sequence voltage is relatively small and is ignored. In this case, with the basic fundamental components are detected, the active, reactive and unbalanced powers of the three-phase inverters can be calculated as the Figure 4.

Figure 3: Block diagram of the proposed controller for islanded microgrid

Figure 4: Block diagram of Calculation of active power and reactive power

**Volume 8 Issue 10, October 2019**

[www.ijsr.net](http://www.ijsr.net)

Licensed Under Creative Commons Attribution CC BY
3) The proposed reactive power sharing controller
In this paper, the voltage droop slope is tuned to compensate for the mismatch in the voltage drops across line impedances by:

\[ V_{\text{ref}} = k_p \int (V' - V_{\text{PCC}}) \, dt \]  

(13)

Where: \( V' \) is the voltage at the output of the traditional Droop controller, which is determined by the equation (6).

\[ V' = V_0 - m_q Q' \]  

(14)

Where: \( k_p \) is the gain of the integral, \( V_{\text{PCC}} \) is the voltage at PCC.

4) The proposed active power sharing controller
According to the studies [12]–[22], the line impedance does not affect significantly to the accuracy of the active power sharing, so in this paper uses the traditional Droop controller to active power sharing. The proposed controller to active power sharing and reactive power sharing are shown in Figure 5.

\[ P' = \frac{V_{\text{PCC}} \sin(\delta - \delta_{\text{PCC}})}{Z} \]  

(15)

\[ Q' = \frac{V^2 - V_{\text{PCC}} \cos(\delta - \delta_{\text{PCC}})}{Z} \]  

(16)

Where \( V_{\text{PCC}} \) are the output of DSOGI-PLL blocks, \( V \) is the output of the reactive power sharing from the controller, and \( \delta \) is the output of the active power sharing controller.

By linearizing (13), (14) and (16) around \( Q' \), \( V \) and \( V_{\text{PCC}} \), the following is obtained:

\[ \Delta V_{\text{ref}} = k_p \int (\Delta V' - \Delta V_{\text{PCC}}) \, dt \]  

(17)

\[ \Delta V' = V_0 - m_q \Delta Q' \]  

(18)

\[ \Delta Q' = \frac{\partial Q'}{\partial V} \Delta V + \frac{\partial Q'}{\partial V_{\text{PCC}}} \Delta V_{\text{PCC}} = A \Delta V + B \Delta V_{\text{PCC}} \]  

(19)

Where:

\[ A = \frac{2V - V_{\text{PCC}} \cos(\delta - \delta_{\text{PCC}})}{Z} \]

\[ B = -\frac{V}{Z} \cos(\delta - \delta_{\text{PCC}}) \]

The relationships among (17), (18) and (19) are shown in Figure 6.

\[ \Delta V_{\text{ref}} = k_p \int (\Delta V' - \Delta V_{\text{PCC}}) \, dt \]

\[ \Delta V' = V_0 - m_q \Delta Q' \]

\[ \Delta Q' = A \Delta V + B \Delta V_{\text{PCC}} \]

The transfer function of Figure 5 is as follows:

\[ \Delta P' = C \Delta \delta + D \Delta V_{\text{PCC}} = C(\Delta \delta - \Delta V_{\text{PCC}}) \]  

(23)

Where:

\[ C = \frac{V_{\text{PCC}} \cos(\delta - \delta_{\text{PCC}})}{Z} \]

\[ D = -\frac{V_{\text{PCC}} \cos(\delta - \delta_{\text{PCC}})}{Z} \]

By linearizing (5) and (15) around \( P' \), \( \delta \) and \( \delta_{\text{PCC}} \), the following is obtained:

\[ \Delta \omega = \frac{\Delta \omega_0 - m_p \Delta P'}{s + m_p C} \]  

(22)

\[ \Delta P' = C \Delta \delta + D \Delta V_{\text{PCC}} = C(\Delta \delta - \Delta V_{\text{PCC}}) \]  

(24)

The relationships among (22) and (24) are shown in Figure 7.

\[ \Delta \omega = \frac{\Delta \omega_0 - m_p \Delta P'}{s + m_p C} \]

\[ \Delta P' = C \Delta \delta + D \Delta V_{\text{PCC}} = C(\Delta \delta - \Delta V_{\text{PCC}}) \]

From (23), \( \lambda \) can be calculated as:

\[ \lambda = -m_q \cdot A \]  

(21)

The transfer function (20) has shown that the constant of the loops control can be adjusted by \( k_p \), and not by \( m_q \). The reactive power sharing no longer affects the quality of the voltage or frequency.

5) Survey the stability of the control system
From (1), (2), (3) and (4), we can write:

\[ P' = \frac{V_{\text{PCC}} \sin(\delta - \delta_{\text{PCC}})}{Z} \]  

(15)

\[ Q' = \frac{V^2 - V_{\text{PCC}} \cos(\delta - \delta_{\text{PCC}})}{Z} \]  

(16)

By linearizing (13), (14) and (16) around \( Q' \), \( V \) and \( V_{\text{PCC}} \), the following is obtained:

\[ \Delta V_{\text{ref}} = k_p \int (\Delta V' - \Delta V_{\text{PCC}}) \, dt \]  

(17)

\[ \Delta V' = V_0 - m_q \Delta Q' \]  

(18)

\[ \Delta Q' = \frac{\partial Q'}{\partial V} \Delta V + \frac{\partial Q'}{\partial V_{\text{PCC}}} \Delta V_{\text{PCC}} = A \Delta V + B \Delta V_{\text{PCC}} \]  

(19)

Where:

\[ A = \frac{2V - V_{\text{PCC}} \cos(\delta - \delta_{\text{PCC}})}{Z} \]

\[ B = -\frac{V}{Z} \cos(\delta - \delta_{\text{PCC}}) \]

The relationships among (17), (18) and (19) are shown in Figure 6.

\[ \Delta V_{\text{ref}} = k_p \int (\Delta V' - \Delta V_{\text{PCC}}) \, dt \]

\[ \Delta V' = V_0 - m_q \Delta Q' \]

\[ \Delta Q' = A \Delta V + B \Delta V_{\text{PCC}} \]

From (20), \( \lambda \) can be calculated as:

\[ \lambda = -k_p \cdot m_q \cdot A \]  

(21)

The transfer function (20) has shown that the constant of the loops control can be adjusted by \( k_p \), and not by \( m_q \). The reactive power sharing no longer affects the quality of the voltage or frequency.

By linearizing (5) and (15) around \( P' \), \( \delta \) and \( \delta_{\text{PCC}} \), the following is obtained:

\[ \Delta \omega = \frac{\Delta \omega_0 - m_p \Delta P'}{s + m_p C} \]  

(22)

\[ \Delta P' = C \Delta \delta + D \Delta V_{\text{PCC}} = C(\Delta \delta - \Delta V_{\text{PCC}}) \]  

(23)

The transfer function of Figure 7 is as follows:

\[ \Delta P'(S) = \frac{C}{s + m_p C} \Delta \omega_0(S) + \frac{C}{s + m_p C} \Delta \omega_{\text{PCC}}(S) \]  

(25)

From (23), \( \lambda \) can be calculated as:

\[ \lambda = -m_q \cdot C \]  

(26)

m_q is determined by the equation (7).

6) The current and voltage controller
The voltage and current controllers are implemented on the stationary frame and the proportional resonant (PR)
controllers are employed in the $\alpha\beta$ frame by using the following transfer function.

$$G_p(S) = k_{pv} + \sum_{h=1,3,5,7} \frac{2k_{vh} \omega_h S}{s^2 + 2\omega_h S + (2\pi f)^2}$$ (27)

$$G_i(S) = k_{pi} + \sum_{h=1,3,5,7} \frac{2k_{ih} \omega_h S}{s^2 + 2\omega_h S + (2\pi f)^2}$$ (28)

Where $k_{pv}$ and $k_{pi}$ are the proportional gains, $k_{vh}$ and $k_{ih}$ respectively represent the voltage and current resonant controller coefficients for the $h^{th}$ order harmonic component (including fundamental component as the first harmonic) and $\omega_h$ represents cutoff frequency for resonant bandwidth control.

7) Modeling of a three phase DSOGI-PLL

Figure 8 shows the structure of a DSOGI-PLL. Both of the adaptive filtering technique and the in-quadrature phase detection technique are used in the DSOGI-PLL to generate the frequency and phase outputs. This system has a double feedback loop, i.e. the frequency/phase generator provides both the phase-angle to the Park transform and the central frequency to the second order generalized integrator - quadrature signal generation (DSOGI-QSG) [25].

Figure 8: Modelling of a three phase DSOGI-PLL

The parameters of the DSOGI-PLL are chosen as follows: $k=\sqrt{2}$, $t_s=100$ms, $\epsilon=1/\sqrt{2}$ and $T_0=t_s/2.3=0.021$ s. Figure 9 shows the responses of the DSOGI-PLL.

Figure 9: Responses of a DSOGI-PLL.

Figure 9(a) shows the frequency response of a DSOGI-PLL when the frequency of the input signal changes from 50Hz to 48Hz at $t=0.5$s, and from 48Hz to 50Hz at $t=1$s. Figure 9(b) shows the frequency response of a DSOGI-PLL when the phase angle of the input signal changes from $0^\circ$ to $45^\circ$ at $t=0.5$s. Figure 9(c) shows the response of the input and output voltages of a DSOGI-PLL. The simulation results in Figure 9 show that the DSOGI-PLL can obtain the exact voltage amplitude and frequency at the point of common coupling (PCC). The voltage amplitude is the input for the inner-controller. Therefore, when more exact values are obtained, more accurate power sharing is achieved.

b) Analyze the effect of local loads on reactive power sharing

The active power sharing base on frequency droop is not affected by the local loads. However, the local loads will affect the reactive power sharing during islanding operation [15-25], is showed in figure 10.

Figure 10: Reactive power flows of two inverters with local loads and line impedances are the same

The Figure 10 shows:

When the microgrid has no local loads, slope $k_{q1,2}$:

$$k_{q1,2} = \frac{V_{0,12} - V_0}{Q_{0,12}}$$ (29)

When the microgrid has local loads, slope $k_{c}$:

$$k_{q1,2} = \frac{V_{0,12} - V_{0,12}}{Q_{0,12} - Q_{0,12}}$$ (30)

Where:

$V_0$: the nominal amplitude voltage at the PCC

$V_{0,12}$: the nominal amplitude voltage of inverters 1, 2.

$Q_{0,12}$ : the nominal reactive power of inverters 1, 2.

$Q_{0,abc,b1,2}$: the nominal reactive power of local loads 1, 2.

In the case of the different local loads or different inverters will lead to reactive power sharing is inaccuracy, as shown in Figure 11 and 12.
When the microgrid has local load 1, slope \( k_{q1} \):
\[
k_{q1} = \frac{V_{q1}^2 - V_0}{Q_{0,1} - Q_{0,\text{local}1}} \tag{31}
\]
When the microgrid has local load 2, slope \( k_{q2} \):
\[
k_{q2} = \frac{V_{q2}^2 - V_0}{Q_{0,2} - Q_{0,\text{local}2}} \tag{32}
\]

By adjusting the integral gain coefficients \( k_p \) for the proposed controllers at the equation (13), when it is in the set state, the voltages \( V' \) of inverters will come to an equal voltage (\( V_1' = V_2' = \ldots V_n' = V_{\text{PCC}} \)). This means that the deviation of the voltage drop across the line and the difference of the local loads are eliminated. In other words, the effect of the deviation of the line impedance and the difference of local loads are eliminated. As a result, if inverters are the same, local loads and line impedance are the same or different, the power sharing for each inverter is:
\[
\begin{align*}
P_1 &= P_2 = P_n = \frac{1}{n} \left( P_{\text{public}} + P_{\text{local}1} + P_{\text{local}2} + \ldots + P_{\text{local}n} \right) \\
Q_1 &= Q_2 = Q_n = \frac{1}{n} \left( Q_{\text{public}} + Q_{\text{local}1} + Q_{\text{local}2} + \ldots + Q_{\text{local}n} \right) \tag{35, 36}
\end{align*}
\]

The improve proposed controller
Proposed droop controller in Figure 5 was added to the block composed of logic gates in order to improve reliability for the controller in case of communication is interrupted. The time out/enable logic is shown in figure 13.

When the communication is interrupted, in which case the control loop is disabled and the integrator output will remain constant until the communication is restored. The amplitude voltage at output of proposed adaptive droop are held at the last value before the communication failure occurred due to the integral action of the controller. The power sharing is still accurate if the operating point remains unchanged after the communication failure, but if the load changes the power sharing error is still acceptable.

The time delay is called the information update delay. The proposed droop controller is immune to the time delay in the communication channel. Communication link only used to set the value of the reference voltage for tuning the output voltage of the controller. Moreover, the reference voltage is the amplitude value therefore the system will reach steady state despite is slower than usual. If delays occur in steady state, it will not affect the power sharing accuracy. The reference voltage depends on the load so it is a fixed reference voltage until the load changes. Therefore, the
accurate power sharing at steady state is unaffected by time delays in the communication channels.

3. Simulation Results and Discussion

A microgrid with two or three parallel inverters, as shown in Figure 1, is simulated in Matlab/Simulink. All of the simulation parameters of the system are given in Table I.

<table>
<thead>
<tr>
<th>Table I: Parameters for the Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
</tr>
<tr>
<td>Input source voltage $V_{\text{dc}}$ (V)</td>
</tr>
<tr>
<td>Filter inductance $L$ (mH)</td>
</tr>
<tr>
<td>Filter resistance $R$ ($\Omega$)</td>
</tr>
<tr>
<td>Filter capacitance $C$ ($\mu$F)</td>
</tr>
<tr>
<td>Switching frequency $f_0$ (kHz)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

a) Simulation for power sharing of two identical inverters, the line impedances are different

In this case, the line parameters of the two inverters are given in Table II. The simulation results for this case including the real power output, reactive power output, current output and load voltage are shown in Figure 11.

Parameters of load:
Non-linear load: $R_{NL}=200\Omega$, $L_{NL}=200$mH, $C_{NL}=84\mu$F
Linear load: $P=3000$W, $Q=2800$kVar ($t=0$-5s)
$P=2000$W, $Q=1800$kVar ($t=5$-10s)

<table>
<thead>
<tr>
<th>Table 2: Line Parameters of Two Inverters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line parameters</td>
</tr>
<tr>
<td>Resistance $R$ ($\Omega$)</td>
</tr>
<tr>
<td>Inductance $L$ (mH)</td>
</tr>
</tbody>
</table>
Figure 14 shows the simulation results when the conventional droop control is applied with the power sharing ratio of 1:1. In case of the two line impedances are difference, the active power sharing is equal to the ratio of 1:1 by the conventional method as shown in Fig. 14a. However, the reactive power sharing is not good with the ratio of 1:1 as shown in Fig. 14b, in case of the two line impedances are different as shown in Table II. The conventional method cannot be applied to the power sharing when the line impedances are different and microgrid has nonlinear load and unbalanced load.

The three-phase voltage and current waveforms of the output inverter 1, inverter 2 and PCC using the traditional droop control method are shown in Figure 14(c); 14(d); 14(e) and 14(k).

From Figure 14(e) and 14(f), they are clearly shown that the current outputs of the inverter 1 and inverter 2 are different, in case of the two line impedances are different.
By using the proposed control strategy, the power sharing performance is improved as illustrated in Figure 15. From Figure 15(f), it is clearly shown that the current outputs of the inverter 1 and inverter 2 are same, and the current sharing errors are effectively decreased. As it can be seen, in Figure 15(a) and 15(b), the active and reactive power sharing are accurate with the proposed control method.
b) Simulation for power sharing of two identical inverters, the line impedances are difference, the loads are changed
In this case, the line parameters of the two inverters are given in Table III.

<table>
<thead>
<tr>
<th>Table 3: Line Parameters of Two Inverters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line parameters</td>
</tr>
<tr>
<td>Resistance (Ω)</td>
</tr>
<tr>
<td>Inductance (mH)</td>
</tr>
</tbody>
</table>

Parameters of linear load:
t=0-4s: P=2300W, Q=550Var, cosφ=0.9
t=4-8s: P=3400W, Q=2250Var, cosφ=0.83
t=8-12s: P=1000W, Q=900Var, cosφ=0.74

Figure 16: (a) Real power; (b) reactive power

Figure 16 shows that the proposed controller has result in good power sharing when the power of load varies.

Figure 17: The current output of inverters

Figure 17(a) and 17(c) are shown response of phase current at output of inverter, we can see that during this time the controller has not reached the set state so there is a mismatch in the power sharing, so that the phase current is mismatch also. Figure 17(b) is shown the response of phase current in stabilty, the current sharing is not mismatched.

Figure 18: The voltage at PCC
Figure 18 shows the voltage quality at the PCC, the voltage quality is always guaranteed by proposed controller.

c) Simulation for power sharing of two difference inverters (P1:P2=2:1), the line impedances are difference

In this case, the line parameters of the two inverters are given in Table IV.

<table>
<thead>
<tr>
<th>Table 4: Line Parameters of Two Inverters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line parameters</td>
</tr>
<tr>
<td>Resistance R (Ω)</td>
</tr>
<tr>
<td>Inductance L (mH)</td>
</tr>
</tbody>
</table>

Figure 19: (a) Real power; (b) reactive power

From Fig. 19(a) and 19(b), it can be seen that the proposed control method provides a good power sharing. Figures 19 can shows accurate real and reactive power with a 2:1 ratio.

Total output power of each inverter:

\[ P_1 = \frac{2}{3}(P_{local\_1} + P_{local\_2} + P_{public}) = \frac{2}{3}(700 + 760 + 3400) = 3240\text{W} \]

\[ P_2 = \frac{2}{3}(P_{local\_1} + P_{local\_2} + P_{public}) = \frac{2}{3}(700 + 760 + 3400) = 1620\text{W} \]

\[ Q_1 = \frac{2}{3}(Q_{local\_1} + Q_{local\_2} + Q_{public}) = \frac{2}{3}(500 + 700 + 2250) = 2300\text{Var} \]

\[ Q_2 = \frac{1}{3}(Q_{local\_1} + Q_{local\_2} + Q_{public}) = \frac{1}{3}(500 + 700 + 2250) = 1150\text{Var} \]

d) Simulation for power sharing of three identical inverters (P1:P2:P3=1:1:1), the line impedances are difference

In this case, the line parameters of the three inverters are given in Table V.

<table>
<thead>
<tr>
<th>Table 5: Line Parameters of Two Inverters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line parameters</td>
</tr>
<tr>
<td>Resistance R (Ω)</td>
</tr>
<tr>
<td>Inductance L (mH)</td>
</tr>
</tbody>
</table>

Figure 20(a) and 20(b) can be seen that the proposed control method provides a good power sharing. Figures 20 can shows accurate real and reactive power with a 1:1:1 ratio.

Figure 21: The current output of inverters
Figure 21(a) shows response of phase current at output of inverters, we can see that during this time the controller has not reached the set state so there is a mismatch in the power sharing, so that the phase current is mismatch also.

Figure 21(b) is shown the response of phase currents in satability the current sharing is not mismatched.

e) Simulation for power sharing of two identical inverters, the line impedances are difference, the communication is interrupted
In this case, the line parameters of the two inverters are given in Table VI.

<table>
<thead>
<tr>
<th>Line parameters</th>
<th>Inverter 1</th>
<th>Inverter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance R (Ω)</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Inductance L (mH)</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The communication is interrupted at t=3s and the communication is restored at t=8s, the load are changed in the period from t=5s to t=8s.

1) Simulation results with the proposed control

![Figure 22: (a) Real power; (b) reactive power](image)

2) Simulation results with the conventional droop control
In order to improve the performance of the reactive power sharing under the effect of the line impedance, some simulation tests have been carried out with the same scenario as in E1. However, the conventional droop control method is applied as shown in (5) and (6). The simulation results are shown in Fig. 23.

![Figure 23: (a) Real power; (b) reactive power](image)

As shown in Figs. 23(a) and 23(b), the conventional method has a good performance for the case of line impedances that are identical. However, in the case of the line impedances are difference, as shown in Table VI, the reactive power sharing is not accurate. The line impedance does not have an effect on the active power sharing. However, the line impedance has an effect on the active power sharing.

![Simulation in the case of the information update delay](image)

f) Simulation in the case of the information update delay
The line parameters of the two inverters for this simulation are provided in Table VII.

<table>
<thead>
<tr>
<th>Line parameters</th>
<th>Inverter 1</th>
<th>Inverter 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistance R (Ω)</td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>Inductance L (mH)</td>
<td>0.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

The effect of time delays in communication is investigated by introducing a delay in the signal sent to proposed paper ID: ART20201746
controller 1, not delay for proposed controller 2. In this case, the proposed controller 2 receives the Vpcc reference and starts acting before proposed controller 1. Which has more effect on the transients in comparison to the case when the delays are identical. The introduced time delay is chosen as 0.02s, which is significant given that the reference update period is 200μs. Simulation results are illustrated in Figure 24 and Figure 25.

![Image](https://example.com/image1.png)

Figure 24: (a) Real power and reactive power when the proposed controller has not been delay; (b) Real power and reactive power when the proposed controller has been delay

![Image](https://example.com/image2.png)

Figure 25: (a) Current output when the proposed controller has not been delay; (b) Current output when the proposed controller has been delay

The effect of time delays in communication is investigated by introducing a delay in the signal sent to proposed controller 2, not delay for proposed controller 1. The introduced time delay is chosen as 0.1s, a delay occurs at time t = 5s. Simulation results are illustrated in figure 26.
4. Hardware Implementation Using a DSP

In this paper, a practical model has been developed for testing the proposed method. The developed hardware model consists of three 3-phase inverters, drivers of Semikron, LEM HX 20P and LV–25P are used as voltage and current sensors as shown in Figure 27. The proposed control method has been implemented on a TMS320F28335 DSP controller and the results obtained from the experiment have been captured by a Tektronix TDS2014B oscilloscope and a Fluke 345 PQ clamp meter. To maintain the load demand, the three inverters have been used with a parallel output connection while RS485 lines are used as a communication network. The experiment has been carried out on three test cases with different ratios for real and reactive powers. The results obtained from the experiment have verified the advantages of the proposed control method through case studies.

For this case, the ratio of the active and reactive power is 1:1 for the two inverters with a load fixed at a pre-determined value, the line impedances are different. The measured power outputs for the two inverters are shown in Figure 28 and 29. The loads are changed from 925 W to 1250W and 350Var to 520Var. The power sharing errors for this case are very small.

Figure 24, 25, 26 shown that the time delay has little effect on the system transients. Most importantly, the time delay does not affect the accurate power sharing of the proposed controller. If delays occur in a steady state as Figure 26, it will not affect on the system transients.

Figure 26: (a) Real power and reactive power when the proposed controller has not been delay; (b) Real power and reactive power when the proposed controller has been delay

Figure 27: Hardware setup for the experiment

a) Case study 1: P1:P2 = 1:1, Q1:Q2 = 1:1, and the load changes

For this case, the ratio of the active and reactive power is 1:1 for the two inverters with a load fixed at a pre-determined value, the line impedances are difference. The measured power outputs for the two inverters are shown in Figure 28 and 29. The loads are changed from 925 W to 1250W and 350Var to 520Var. The power sharing errors for this case are very small.

Figure 28: Real power sharing
When the load increases and decreases, the ratio of the active and reactive powers is still kept at 1:1:1 for inverters in case of load changes. It can be seen that the Fi of the active power outputs for the three inverters increase within the limits as \( P_{1\text{min}} = 480\, W \), \( P_{2\text{min}} = 480\, W \) and \( P_{3\text{min}} = 1450\, W \), \( P_{1\text{max}} = 750\, W \), \( P_{2\text{max}} = 750\, W \), \( P_{3\text{max}} = 2250\, W \). These results have demonstrated the response capability of the system based on the new control strategy when the load continuously changes online with a constant ratio. The active power sharing errors for this case are very small.

5. Conclusion

This paper has proposed a new method for an accurate load sharing ratio between the paralleled inverters in islanded microgrids. In this study, the voltage droop slope is tuned to compensate for the mismatch in the voltage drops across line impedances by using communication links. The method will ensure in accurate power sharing even if the communication is interrupted. If the load changes while the communication is interrupted, the accuracy of power sharing is reduced but the proposed method is better than the conventional droop control method. In addition, the accuracy of power sharing base on the proposed method is not affected by the time delay in the communication channel and local loads. Simulation results in Matlab/Simulink and hardware experiments have demonstrated the superiority of the proposed strategy in any case with any ratio.

References


