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Abstract: The LIGO interferometers which are inspired by a setup of Michelson interferometer which consists of a beam splitter, light 

source, frequency resonators and mirrors as their basic working tools.LIGO-type interferometerswhich are used to detect gravitational 

waves are installed in LIGO-Hanford and LIGO-Livingston.Light travelling in the arms of the interferometers should experience a 

change in time dilation due to uniform rotation of the earth as inertial gravitational forces come into picture. By using Newtonian 

method of vector addition, we find the path of light with respect to rotation of earth whilst neglecting third-degree order terms of angular 

velocity of the earth. The change in time of arrival and fractional fringe shift induced in LIGO-type interferometer due to the uniform 

rotation of the earth is obtained in this paper. A direct relationship between the fractional fringe shift andthe angular velocity of the 

earth is found, and other parameters dependent are arm’s length, latitude of object placed, wavelength of light source and speed of light. 
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1. Introduction 
 

To understand the absolute motion and existence of 

hypothetical aether the Michelson-Morley experiment was 

performed. Similar to the Michelson interferometer setup, 

LIGO uses kilometre-scaled Michelson interferometers to 

detect gravitational waves and their source [1][2] [9]. There 

are two such setups operating at Livingston and Hanford, 

USA. The setup uses two orthogonal coherent beams of light 

that travels between two mirrors and the interferometer 

compares the time taken to travel between two mirrors [2] 

[6] [9]. Light leaving the source splits perpendicularly at 

beam-splitter and travels towards the end mirrors. Thislight 

then reflects back to the beam-splitter to form an 

interference pattern if there is a change in path of lights [1] 

[6].We would obtain interference fringes at the detector if 

the path of light is changed. As the apparatus moves about in 

space, the experiment should obtain a change in dark fringes 

[3].  

 

Each LIGO interferometer consists of 4 km long arms 

andthe laser type usedisNd: YAG ofa wavelength of 1064 

nm [4] [6]. For amplification of the signal to the LIGO 

interferometers use Fabry-Perot cavity to increase the 

sensitivity and interaction time between mirrors [11]. The 

angle of entry at the Fabry-Perot cavity at zero 

degrees.Figure (1) below represents the components and 

illustrates the working of the Michelson type interferometer 

used in LIGO.  

 
Figure 1: Schematic diagram of LIGO interferometers 

where M1 and M2 are end mirrors.(Source: International 

journal of Science and Research; Article:ART20201134) 

 

To sense the gravitational waves, LIGO uses kilometre-

scaled Michelson type interferometers ofthe sensitivity of 

10
-23

 in metric strain. The beam splitter of the detector 

measures the relative distance between the two orthogonally 

placed mirrors for an incident gravitational wave [6]. Where 

the path length or change in the lengths between the mirrors 

is given by [6]: 

 

𝛥𝐿 = ℎ𝐿/2  (a) 

 

Here h denotes the amplitude of the gravitational wave 

incident on the setup and L being the arm length. This 

induced change in path can be used to measure the fractional 

fringe shift in the setup.   
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One of the sources that can be responsible for obtaining 

fringe patterns in LIGO like interferometers is the uniform 

rotation of the earth. The light in the interferometer 

propagatingperpendicular in the arms should experience 

difference in time dilation as inertial gravitational forces 

come into picture [5].  As a result, the lightreturns to the 

beam splitter at different times, causing change in path 

length experienced by the light rays in both arms.This 

paperattempts to evaluate the difference in time taken for the 

light beams to reach the beam splitter andderive the effect of 

rotation on fringe shift for kilometre scaled Michelson type 

interferometers such as LIGO using Newtonian method of 

vector addition. Next section explains, in brief, the method 

used to calculate the fractional fringe shift for kilometre 

scaled Michelson type interferometer.        

 

2. Evaluating the effect of the earth’s rotation 

on the interferometer using Newtonian 

vector Addition 
 

2.1 Equation of path of light 

 

Let us consider the centre of earth as the non-rotating frame 

of reference, where the origin is at the centre of the earth. 

Let another frame of reference be at a latitude λ whose 

origin is at that latitude and is rotating, this is somewhere on 

the earth’s surface. Let x’, y’ and z’ be the coordinate axes 

of the non-rotating frame and x,y,z are the coordinates axes 

of the rotating frame, where x is pointed northward, y is 

pointed westward and z is perpendicular to earth’s surface 

pointing vertically upwards. Therefore, the acceleration a’ of 

body moving relative to non-rotating frame is related to its 

acceleration a, body moving also relative to rotating frame, 

as:  

 
Which can also be written as: 

 
Where, 𝐴     is the acceleration of the body relative to the non-

rotating frame and is given by: 

 
Over head dot denotes time derivative, 𝑅𝐸 = 6.371 × 106 𝑚 

is the radius of the earth, Ω = 7.27 × 10−5 𝑟𝑎𝑑 𝑝𝑒𝑟 𝑠𝑒𝑐 is 

angular velocity of the earth. 

 

The body under consideration here is light which has a 

uniform velocity of c, so the acceleration 𝑎′     relative to the 

non-rotating frame of reference tends to zero.  

 

Therefore, from equation (2), we obtain, 

𝑥 =  +Ω2𝑅𝐸 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆 + Ω 𝑦 𝑠𝑖𝑛 𝜆 + Ω2𝑥 𝑠𝑖𝑛2 𝜆 −
Ω2𝑧 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆 + 2Ω𝑠𝑖𝑛 𝜆 𝑦   (4) 

𝑦 =  +Ω  𝑧 𝑐𝑜𝑠 𝜆 − 𝑥 𝑠𝑖𝑛 𝜆 + Ω2𝑦 − 2Ω 𝑠𝑖𝑛 𝜆 𝑥 +
2Ω 𝑐𝑜𝑠 𝜆 𝑧             (5)                                                                                                         

𝑧 =  +Ω2𝑅𝐸 𝑐𝑜𝑠
2 𝜆 − Ω 𝑦 𝑐𝑜𝑠 𝜆 + Ω2𝑧 𝑐𝑜𝑠2 𝜆 −

Ω2𝑥 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆 − 2Ω 𝑐𝑜𝑠 𝜆 𝑦    (6) 

 

The rotation of the earth is constant over period of time 

therefore Ω  can be neglected.Also from here on we can 

neglect Ω
3
 order or greater terms as they are too less to be 

taken into account. Differentiating 𝑦  with respect to time 

gives us equation that consists  𝑥  and 𝑧 . Thus, substituting 

equation (4) and (6) into 𝑣𝑦  we get the equation of light as 

observed by topo-centric (rotating) observer in y direction. 

We also obtain the velocity of light in y direction relative to 

rotating observer. Substituting the value of y and vy into 

equation (4) and (6) and setting the arbitrary constants to 

zero. We obtain a second order differential equation for x 

and z. Solving the equations we obtain final equations of 

path of light with respect to the rotating observer. The 

equations are given by: 

𝑥 = 𝑥0 + 𝑥0 𝑡 + 𝑦0 𝑡
2Ω𝑠𝑖𝑛 𝜆 +  𝑥0 + 𝑅𝐸 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆 +

𝑥0𝑡 

3
 
Ω2𝑡2

2
 (7) 

𝑦 =  𝑦0 𝑡 −
𝑦0 

2
Ω2𝑡3 + 𝑦0  (8) 

𝑧 = 𝑧0 + 𝑧0 𝑡 − 𝑦0 𝑡
2Ω𝑐𝑜𝑠 𝜆 +  𝑧0 + 𝑅𝐸 𝑐𝑜𝑠

2 𝜆 +
𝑧0𝑡 

3
 
Ω2𝑡2

2
(9) 

The equation for the velocity of light for the rotating 

observer is: 

𝑥 = 𝑥0 + 2𝑦0 𝑡Ω 𝑠𝑖𝑛 𝜆 +  𝑥0 + 𝑅𝐸 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆 +
𝑥0𝑡 

2
 Ω2𝑡 

(10) 

𝑦 =  𝑦0 [1 −
3Ω2𝑡2

2
]  (11) 

𝑧 =  𝑧0 − 2𝑦0 𝑡Ω 𝑐𝑜𝑠 𝜆 +  𝑧0 + 𝑅𝐸 𝑐𝑜𝑠
2 𝜆 +

𝑧0𝑡 

2
 Ω2𝑡 (12) 

Using the equations above we can find the distance travelled 

by light in time t, which is given by: 

𝑑 𝑡 ≡   𝑥 − 𝑥0 
2 +  𝑦 − 𝑦0 

2 +  𝑧 − 𝑧0 
2 

1

2  

= 𝑣0𝑡 +
1

2
𝛼𝑡2 +

1

2
𝛽𝑡2  (13.0) 

Where,  

𝛼 =  𝑥0 𝑠𝑖𝑛 𝜆 − 𝑧0 𝑐𝑜𝑠 𝜆 
𝑦0 

𝑣0

(2Ω) 

Where 𝑣0 is the square root of sum of squares of initial 

velocity of light components. 

And  

𝛽 = 2𝑥0  𝑥0 + 𝑅𝐸 𝑐𝑜𝑠 𝜆 𝑠𝑖𝑛 𝜆 +
𝑥0 𝑡

3
 
Ω2

2
 

 

Here, 𝑣0 is the effective velocity of the light. Also, it evident 

from the geometry that the velocity of light in z-direction 

will always be zero. Hence, 𝑧0 = 0. Therefore, the velocity 

component in the z direction vanishes from the values of 𝛼 

and 𝛽. 
 

Furthermore, we can also obtain the expression for velocity 

by taking the square root of the sum of velocity components 

of light.  Then by using 𝑇 ≡ 𝑑(𝑡)/𝑣(𝑡), we can obtain the 

expression for the time of travel of light when covering 

distance 𝑑(𝑡).  Which is given by:  

𝑇 ≡ 𝑡 −
1

2

𝛼

𝑣0
𝑡2 −

1

2

𝛽

𝑣0
𝑡2  (13.1) 

For our consideration of light, we can ignore the 𝛽 term 

from the distance and total time equations as it consists of 

Ω2 terms which then multiplies to initial velocity component 

of x axes and goes to order of cube. Also, after substituting 

the values of the constants it leads very low value of the 𝛽 

term.  

 

2.2 Bent path of light 

 

The two arms of the LIGO interferometers act as small 

tangents to the surface of the earth, as the surface area of the 

earth is too large as compared to the arms of the 

interferometer. The equation of path of light described above 

includes terms that are dependent on the angular velocity of 
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the earth which is assumed to be uniform. This means when 

we relate the normal of the mirrors to the velocity of light in 

different components, we ought to obtain the deflection in 

the path of light due to rotation of the earth. 

 

Before we dwell into the mathematics of obtaining the bent 

path of light it is important to understand the construction of 

the interferometer and the changes in the setup due to 

uniform rotation of the earth.Point ‘A’ (in figure 2)is the 

point where the light splits in the beam splitter, the light rays 

travel orthogonally to each other towards M1 and M2. Both 

mirrors are aligned perpendicular to the propagation of light. 

For LIGO type detectors, the arm lengths are equal as 

discussed above. 

 

Now, (Figure 2) the light travels from point A to mirrors M1 

and M2, due uniform rotation of the earth the by the time the 

light reaches the mirrors have changed their orientation by 

some angle δθ. The next step is to find the expression for the 

δθ for both the mirrors. This can be obtained by using dot 

product rule for the normal of both mirrors and the 

component velocity of light, which is given by: 

For arm 1:𝑁1
     = (0, −1,0) and 𝑥0 = 0, 𝑦0 = −𝑐, 𝑧0 = 0 

For arm 2:𝑁2
     = (−1,0,0) and 𝑥0 = 𝑐, 𝑦0 = 0, 𝑧0 = 0 

 

Also,  

𝑐𝑜𝑠(𝑁   , 𝑣     ) =  
𝑁   •𝑣     

 𝑁       |𝑣 |     
  (14) 

Where (from figure 2) for arm 1 we find that the normal for 

mirror 1 has moved by δθ1 and for arm 2 the normal has also 

moved by δθ2. Solving equation (14) for mirrors 1 and 2 we 

get:  

𝑡𝑎𝑛 𝛿𝛩1 = ± 3Ω𝑡  (15)  

𝑡𝑎𝑛 𝛿𝛩2 =  ±
 𝑧0+𝑅𝐸 𝑐𝑜𝑠

2 𝜆 Ω2𝑡 

𝑐+ 𝑥0+𝑅𝐸 𝑠𝑖𝑛 𝜆 𝑐𝑜𝑠 𝜆+
𝑥0𝑡 

2
 Ω2𝑡

  (16) 

Where for mirror 2 the value of 𝑧0 is zero as the value of the 

velocity of light in the z component is zero. We can also 

substitute 𝑅𝐸 = 𝑣𝐸/Ω, where 𝑣𝐸  is the velocity of earth 

rotation in m/s. 𝑣𝐸  is comparable to the velocity of light by: 

𝑣𝐸 = 𝜁𝑐 

Where 𝜁 = 1.54 × 10−6 

By, obtaining the values of deflection from equation (15) 

and (16) it is evident that there is a change in orientation of 

mirrors with different values. We can assume 𝑡𝑎𝑛 𝛿𝛩1 ≈
𝛿𝛩1  𝑎𝑛𝑑 𝑡𝑎𝑛 𝛿𝛩2 ≈ 𝛿𝛩2as the value of deflection angle is 

too small. Also, we take positive value of the δθ for both 

mirrors as the rotation of the earth is anticlockwise.  

 

2.3 Change in the path of light 

 

Using the laws of reflection,it can be seen that the angle of 

incident and angle of reflection for both the mirrors is the 

same and the total angle made is ‘2δθ’. Also, using the laws 

of reflection the light rays should lie on the same plane. As it 

is observed form equation (15) and (16), the light rays are 

reflected with reference to the normal of the mirror, this 

means that the light rays do not trace the same path back to 

the beam splitter. Due to this shift in the path of light we can 

obtain the value of change in path length for light rays.  

For arm 1 and arm 2 the values of initial velocity 

components for the changed path of light is: 

For arm 1: 𝑥0 = 2𝑐𝛿𝛩1 , 𝑦0 = 𝑐, 𝑧0 = 0 

For arm 2: 𝑥0 = −𝑐, 𝑦0 = −2𝑐𝛿𝛩2 , 𝑧0 = 0 

 

 
Figure 2: A’ gives the point at which the light meets after 

reflection.The solid red line gives the path of light followed 

and blue arrows define the direction of the normal of the 

mirrors. Black solids give position of mirrors that have 

changed orientation due to uniform rotation of the earth and 

grey solids give the initial position of the mirrors. Point A is 

the position of the beam splitter where the light rays split 

and the δΘ is different for both the mirrors represented by 

adding suffixes to each deflection with respect to the 

mirrors.(Source: International journal of Science and 

Research; Article:ART20201134) 

 

Substituting the above initial velocity values into equation 

(13.0), we can obtain the value of the distance travelled by 

light after reflecting from the mirror. Here, the total time 

taken by the light to reach A’ with reference to the rotating 

observer (from figure 2) should be equal to 𝑡 = 𝐿/𝑐, here we 

cannot neglect the effect angular velocity of the earth as it 

plays a major role in finding the difference of effective time 

of travel. Therefore, the time of travel for arms (1) and (2) 

can be given by:  

𝑇1 =  
𝐿

𝑐
+

𝐿2

𝑐2 2Ω sin 𝜆  𝛿𝛩1   (17) 

𝑇2 =
𝐿

𝑐
−

𝐿2

𝑐2 2Ω sin 𝜆  𝛿𝛩2  (18) 

Here, the terms 𝑇1 and 𝑇2 are the time of travel for light to 

A’ from M1 and M2 respectively. These values of time when 

substituted into equation (13.0) we obtain the value of A’M1 

and A’M2 (from figure 2). These values, given by 𝑑1  𝑎𝑛𝑑 𝑑2 

when subtracted give the change in path length, which in 

turn leads to change in time of arrival, which is given by:  

∆𝑇 = 𝑇1 − 𝑇2 = 2Ω
𝐿2

𝑐2 sin 𝜆 (𝛿𝛩2 + 𝛿𝛩1) (19) 

Finally, submitting the values of deflection angles, the final 

expression forthe time change is divided by ‘ƛ/c’, to the 

fractional fringe shift obtained for the interferometer due to 

uniform rotation of the earth. Where ‘ƛ’ is the wavelength of 

the light source. The expression is given by: 

∆𝑁 =  
2Ω𝐿2 sin 𝜆

𝑐ƛ
(ζ cos2 𝜆 +  3) 
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Here, ζ cos2 𝜆 +  3 term act as constants for the fractional 

fringe shift value. Where the whole term is close to 2 for any 

value of λ. Ultimately the fractional fringe shift value is 

dependent on sin part of the latitude, angular velocity of the 

earth, arm length, wavelength of light source and speed of 

light.  

 

3. Conclusion  
 

It is proved using the Newtonian method of vector addition 

that fractional fringe shift for LIGO like interferometers can 

be obtained. The dependency of fractional fringe shift onto 

the speed of light, angular velocity of the earth, arm length 

and latitude of the object is been proved by above-

mentioned expression. It is also evident that if we do not 

neglect the second order angular velocity term in light path 

equation, we can observe the effect of angular velocity onto 

the interferometer. Furthermore, if the latitude is at zero 

degrees for any Michelson type interferometer the fractional 

fringe shift value is vanishing, hence placement of any 

LIGO interferometer for latitude values of degree would 

mean no observance of fringe shit due to uniform rotation. 

Whereas, the case opposite when the interferometer is 

placed at latitude of 90 degrees. LIGO type interferometers 

also using Fabry-Perot resonators that help enhance the 

sensitivity of the interferometers by bouncing back the light 

back and forth in the arms which in turn increases the 

effective length travelled by the light. Here we have not 

considered the orientation of arms which could also become 

multiples into fringe shift values. similar expressionsare 

obtained for Michelson-Gale experiment [8] and by 

Silberstein [10] for a different setup of interferometry.  
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